Stochastic Methods for Boundary Value Problems :: Numerics for High-dimensional PDEs and Applications.
This monograph is devoted to random walk based stochastic algorithms for solving high-dimensional boundary value problems of mathematical physics and chemistry. It includes Monte Carlo methods where the random walks live not only on the boundary, but also inside the domain. A variety of examples fro...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin/Boston, GERMANY :
De Gruyter,
2016.
©2016 |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This monograph is devoted to random walk based stochastic algorithms for solving high-dimensional boundary value problems of mathematical physics and chemistry. It includes Monte Carlo methods where the random walks live not only on the boundary, but also inside the domain. A variety of examples from capacitance calculations to electron dynamics in semiconductors are discussed to illustrate the viability of the approach. |
Beschreibung: | 1 online resource (208) |
Bibliographie: | Includes bibliographical references. |
ISBN: | 3110479451 9783110479454 |
Internformat
MARC
LEADER | 00000cam a2200000Ma 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn960040322 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr |n||||||||| | ||
008 | 161007s2016 gw ob 000 0 eng d | ||
040 | |a IDEBK |b eng |e pn |c IDEBK |d EBLCP |d IDEBK |d YDX |d N$T |d COO |d DEBBG |d OCLCF |d IDB |d OCLCQ |d OTZ |d HEBIS |d OCLCO |d OCLCQ |d COCUF |d CCO |d MERUC |d DEGRU |d ZCU |d OCLCO |d K6U |d SNK |d DKU |d AUW |d INTCL |d MHW |d IGB |d D6H |d N$T |d OCLCQ |d WRM |d STF |d VTS |d ICG |d INT |d VT2 |d WYU |d OCLCQ |d G3B |d LVT |d S8J |d S9I |d TKN |d OCLCQ |d LEAUB |d DKC |d OCLCQ |d UKAHL |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d UEJ |d OCLCO |d OCLCQ | ||
019 | |a 962125295 |a 979760869 |a 1055398287 |a 1066429723 |a 1081237459 |a 1162019826 | ||
020 | |a 3110479451 |q (electronic bk.) | ||
020 | |a 9783110479454 |q (electronic bk.) | ||
020 | |z 9783110479454 | ||
020 | |z 9783110479164 | ||
020 | |z 3110479168 | ||
020 | |z 3110479060 | ||
020 | |z 9783110479065 |q (alk. paper) | ||
024 | 7 | |a 10.1515/9783110479454 |2 doi | |
035 | |a (OCoLC)960040322 |z (OCoLC)962125295 |z (OCoLC)979760869 |z (OCoLC)1055398287 |z (OCoLC)1066429723 |z (OCoLC)1081237459 |z (OCoLC)1162019826 | ||
037 | |a 957921 |b MIL | ||
050 | 4 | |a QA379 | |
072 | 7 | |a MAT |x 003000 |2 bisacsh | |
072 | 7 | |a MAT |x 029000 |2 bisacsh | |
082 | 7 | |a 519.2/3 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Sabelfeld, Karl K. | |
245 | 1 | 0 | |a Stochastic Methods for Boundary Value Problems : |b Numerics for High-dimensional PDEs and Applications. |
260 | |a Berlin/Boston, GERMANY : |b De Gruyter, |c 2016. | ||
264 | 4 | |c ©2016 | |
300 | |a 1 online resource (208) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a text file |b PDF |2 rda | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a 1 Introduction ; 2 Random walk algorithms for solving integral equations ; 2.1 Conventional Monte Carlo scheme ; 2.2 Biased estimators ; 2.3 Linear-fractional transformations and their relations to iterative processes. | |
505 | 8 | |a 2.4 Asymptotically unbiased estimators based on singular approximations 2.5 Integral equation of the first kind ; 3 Random walk-on-boundary algorithms for the Laplace equation ; 3.1 Newton potentials and boundary integral equations of the electrostatics. | |
505 | 8 | |a 3.2 The interior Dirichlet problem and isotropic random walk-on-boundary process 3.3 Solution of the Neumann problem ; 3.4 Random estimators for the exterior Dirichlet problem ; 3.5 Third BVP and alternative methods of solving the Dirichlet problem ; 3.6 Inhomogeneous problems. | |
505 | 8 | |a 3.7 Continuity BVP 3.7.1 Walk on boundary for the continuity problem ; 3.8 Calculation of the solution derivatives near the boundary ; 3.9 Normal derivative of a double-layer potential ; 4 Walk-on-boundary algorithms for the heat equation. | |
505 | 8 | |a 4.1 Heat potentials and Volterra boundary integral equations 4.2 Nonstationary walk-on-boundary process ; 4.3 The Dirichlet problem ; 4.4 The Neumann problem ; 4.5 Third BVP ; 4.6 Unbiasedness and variance of the walk-on-boundary algorithms. | |
504 | |a Includes bibliographical references. | ||
520 | |a This monograph is devoted to random walk based stochastic algorithms for solving high-dimensional boundary value problems of mathematical physics and chemistry. It includes Monte Carlo methods where the random walks live not only on the boundary, but also inside the domain. A variety of examples from capacitance calculations to electron dynamics in semiconductors are discussed to illustrate the viability of the approach. | ||
546 | |a In English. | ||
650 | 0 | |a Boundary value problems |x Numerical solutions. |0 http://id.loc.gov/authorities/subjects/sh85016105 | |
650 | 0 | |a Stochastic analysis. |0 http://id.loc.gov/authorities/subjects/sh85128175 | |
650 | 0 | |a Random walks (Mathematics) |0 http://id.loc.gov/authorities/subjects/sh85111357 | |
650 | 6 | |a Problèmes aux limites |x Solutions numériques. | |
650 | 6 | |a Analyse stochastique. | |
650 | 6 | |a Marches aléatoires (Mathématiques) | |
650 | 7 | |a MATHEMATICS |x Applied. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Probability & Statistics |x General. |2 bisacsh | |
650 | 7 | |a Boundary value problems |x Numerical solutions |2 fast | |
650 | 7 | |a Random walks (Mathematics) |2 fast | |
650 | 7 | |a Stochastic analysis |2 fast | |
650 | 7 | |a Partielle Differentialgleichung |2 gnd |0 http://d-nb.info/gnd/4044779-0 | |
650 | 7 | |a Integralgleichung |2 gnd |0 http://d-nb.info/gnd/4027229-1 | |
650 | 7 | |a Randwertproblem |2 gnd |0 http://d-nb.info/gnd/4048395-2 | |
650 | 7 | |a Monte-Carlo-Simulation |2 gnd |0 http://d-nb.info/gnd/4240945-7 | |
650 | 7 | |a Irrfahrtsproblem |2 gnd |0 http://d-nb.info/gnd/4162442-7 | |
700 | 1 | |a Simonov, N. A. |1 https://id.oclc.org/worldcat/entity/E39PCjrQrfr4fYrwGjWHGPM96q |0 http://id.loc.gov/authorities/names/n91005632 | |
758 | |i has work: |a Stochastic methods for boundary value problems (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGHDjRdJXCJ37MJfCW9xDq |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |z 9783110479065 |z 3110479060 |w (DLC) 2016042706 |w (OCoLC)949750711 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1362724 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH30656616 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH30477649 | ||
938 | |a De Gruyter |b DEGR |n 9783110479454 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL4707937 | ||
938 | |a EBSCOhost |b EBSC |n 1362724 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis34324466 | ||
938 | |a YBP Library Services |b YANK |n 13158387 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn960040322 |
---|---|
_version_ | 1816882364363571200 |
adam_text | |
any_adam_object | |
author | Sabelfeld, Karl K. |
author2 | Simonov, N. A. |
author2_role | |
author2_variant | n a s na nas |
author_GND | http://id.loc.gov/authorities/names/n91005632 |
author_facet | Sabelfeld, Karl K. Simonov, N. A. |
author_role | |
author_sort | Sabelfeld, Karl K. |
author_variant | k k s kk kks |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA379 |
callnumber-raw | QA379 |
callnumber-search | QA379 |
callnumber-sort | QA 3379 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | 1 Introduction ; 2 Random walk algorithms for solving integral equations ; 2.1 Conventional Monte Carlo scheme ; 2.2 Biased estimators ; 2.3 Linear-fractional transformations and their relations to iterative processes. 2.4 Asymptotically unbiased estimators based on singular approximations 2.5 Integral equation of the first kind ; 3 Random walk-on-boundary algorithms for the Laplace equation ; 3.1 Newton potentials and boundary integral equations of the electrostatics. 3.2 The interior Dirichlet problem and isotropic random walk-on-boundary process 3.3 Solution of the Neumann problem ; 3.4 Random estimators for the exterior Dirichlet problem ; 3.5 Third BVP and alternative methods of solving the Dirichlet problem ; 3.6 Inhomogeneous problems. 3.7 Continuity BVP 3.7.1 Walk on boundary for the continuity problem ; 3.8 Calculation of the solution derivatives near the boundary ; 3.9 Normal derivative of a double-layer potential ; 4 Walk-on-boundary algorithms for the heat equation. 4.1 Heat potentials and Volterra boundary integral equations 4.2 Nonstationary walk-on-boundary process ; 4.3 The Dirichlet problem ; 4.4 The Neumann problem ; 4.5 Third BVP ; 4.6 Unbiasedness and variance of the walk-on-boundary algorithms. |
ctrlnum | (OCoLC)960040322 |
dewey-full | 519.2/3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2/3 |
dewey-search | 519.2/3 |
dewey-sort | 3519.2 13 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05652cam a2200853Ma 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn960040322</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |n|||||||||</controlfield><controlfield tag="008">161007s2016 gw ob 000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">IDEBK</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">IDEBK</subfield><subfield code="d">EBLCP</subfield><subfield code="d">IDEBK</subfield><subfield code="d">YDX</subfield><subfield code="d">N$T</subfield><subfield code="d">COO</subfield><subfield code="d">DEBBG</subfield><subfield code="d">OCLCF</subfield><subfield code="d">IDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OTZ</subfield><subfield code="d">HEBIS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COCUF</subfield><subfield code="d">CCO</subfield><subfield code="d">MERUC</subfield><subfield code="d">DEGRU</subfield><subfield code="d">ZCU</subfield><subfield code="d">OCLCO</subfield><subfield code="d">K6U</subfield><subfield code="d">SNK</subfield><subfield code="d">DKU</subfield><subfield code="d">AUW</subfield><subfield code="d">INTCL</subfield><subfield code="d">MHW</subfield><subfield code="d">IGB</subfield><subfield code="d">D6H</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WRM</subfield><subfield code="d">STF</subfield><subfield code="d">VTS</subfield><subfield code="d">ICG</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">WYU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">G3B</subfield><subfield code="d">LVT</subfield><subfield code="d">S8J</subfield><subfield code="d">S9I</subfield><subfield code="d">TKN</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LEAUB</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">UEJ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">962125295</subfield><subfield code="a">979760869</subfield><subfield code="a">1055398287</subfield><subfield code="a">1066429723</subfield><subfield code="a">1081237459</subfield><subfield code="a">1162019826</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110479451</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110479454</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783110479454</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783110479164</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">3110479168</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">3110479060</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783110479065</subfield><subfield code="q">(alk. paper)</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110479454</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)960040322</subfield><subfield code="z">(OCoLC)962125295</subfield><subfield code="z">(OCoLC)979760869</subfield><subfield code="z">(OCoLC)1055398287</subfield><subfield code="z">(OCoLC)1066429723</subfield><subfield code="z">(OCoLC)1081237459</subfield><subfield code="z">(OCoLC)1162019826</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">957921</subfield><subfield code="b">MIL</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA379</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">003000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">029000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">519.2/3</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sabelfeld, Karl K.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stochastic Methods for Boundary Value Problems :</subfield><subfield code="b">Numerics for High-dimensional PDEs and Applications.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Berlin/Boston, GERMANY :</subfield><subfield code="b">De Gruyter,</subfield><subfield code="c">2016.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (208)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">text file</subfield><subfield code="b">PDF</subfield><subfield code="2">rda</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">1 Introduction ; 2 Random walk algorithms for solving integral equations ; 2.1 Conventional Monte Carlo scheme ; 2.2 Biased estimators ; 2.3 Linear-fractional transformations and their relations to iterative processes.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.4 Asymptotically unbiased estimators based on singular approximations 2.5 Integral equation of the first kind ; 3 Random walk-on-boundary algorithms for the Laplace equation ; 3.1 Newton potentials and boundary integral equations of the electrostatics.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.2 The interior Dirichlet problem and isotropic random walk-on-boundary process 3.3 Solution of the Neumann problem ; 3.4 Random estimators for the exterior Dirichlet problem ; 3.5 Third BVP and alternative methods of solving the Dirichlet problem ; 3.6 Inhomogeneous problems.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.7 Continuity BVP 3.7.1 Walk on boundary for the continuity problem ; 3.8 Calculation of the solution derivatives near the boundary ; 3.9 Normal derivative of a double-layer potential ; 4 Walk-on-boundary algorithms for the heat equation.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.1 Heat potentials and Volterra boundary integral equations 4.2 Nonstationary walk-on-boundary process ; 4.3 The Dirichlet problem ; 4.4 The Neumann problem ; 4.5 Third BVP ; 4.6 Unbiasedness and variance of the walk-on-boundary algorithms.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This monograph is devoted to random walk based stochastic algorithms for solving high-dimensional boundary value problems of mathematical physics and chemistry. It includes Monte Carlo methods where the random walks live not only on the boundary, but also inside the domain. A variety of examples from capacitance calculations to electron dynamics in semiconductors are discussed to illustrate the viability of the approach.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Boundary value problems</subfield><subfield code="x">Numerical solutions.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85016105</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Stochastic analysis.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85128175</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Random walks (Mathematics)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85111357</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Problèmes aux limites</subfield><subfield code="x">Solutions numériques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Analyse stochastique.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Marches aléatoires (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Applied.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Probability & Statistics</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Boundary value problems</subfield><subfield code="x">Numerical solutions</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Random walks (Mathematics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Stochastic analysis</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4044779-0</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Integralgleichung</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4027229-1</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Randwertproblem</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4048395-2</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Monte-Carlo-Simulation</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4240945-7</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Irrfahrtsproblem</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4162442-7</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Simonov, N. A.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjrQrfr4fYrwGjWHGPM96q</subfield><subfield code="0">http://id.loc.gov/authorities/names/n91005632</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Stochastic methods for boundary value problems (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGHDjRdJXCJ37MJfCW9xDq</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="z">9783110479065</subfield><subfield code="z">3110479060</subfield><subfield code="w">(DLC) 2016042706</subfield><subfield code="w">(OCoLC)949750711</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1362724</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH30656616</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH30477649</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">De Gruyter</subfield><subfield code="b">DEGR</subfield><subfield code="n">9783110479454</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL4707937</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">1362724</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis34324466</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">13158387</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn960040322 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:27:26Z |
institution | BVB |
isbn | 3110479451 9783110479454 |
language | English |
oclc_num | 960040322 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (208) |
psigel | ZDB-4-EBA |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | De Gruyter, |
record_format | marc |
spelling | Sabelfeld, Karl K. Stochastic Methods for Boundary Value Problems : Numerics for High-dimensional PDEs and Applications. Berlin/Boston, GERMANY : De Gruyter, 2016. ©2016 1 online resource (208) text txt rdacontent computer c rdamedia online resource cr rdacarrier text file PDF rda Print version record. 1 Introduction ; 2 Random walk algorithms for solving integral equations ; 2.1 Conventional Monte Carlo scheme ; 2.2 Biased estimators ; 2.3 Linear-fractional transformations and their relations to iterative processes. 2.4 Asymptotically unbiased estimators based on singular approximations 2.5 Integral equation of the first kind ; 3 Random walk-on-boundary algorithms for the Laplace equation ; 3.1 Newton potentials and boundary integral equations of the electrostatics. 3.2 The interior Dirichlet problem and isotropic random walk-on-boundary process 3.3 Solution of the Neumann problem ; 3.4 Random estimators for the exterior Dirichlet problem ; 3.5 Third BVP and alternative methods of solving the Dirichlet problem ; 3.6 Inhomogeneous problems. 3.7 Continuity BVP 3.7.1 Walk on boundary for the continuity problem ; 3.8 Calculation of the solution derivatives near the boundary ; 3.9 Normal derivative of a double-layer potential ; 4 Walk-on-boundary algorithms for the heat equation. 4.1 Heat potentials and Volterra boundary integral equations 4.2 Nonstationary walk-on-boundary process ; 4.3 The Dirichlet problem ; 4.4 The Neumann problem ; 4.5 Third BVP ; 4.6 Unbiasedness and variance of the walk-on-boundary algorithms. Includes bibliographical references. This monograph is devoted to random walk based stochastic algorithms for solving high-dimensional boundary value problems of mathematical physics and chemistry. It includes Monte Carlo methods where the random walks live not only on the boundary, but also inside the domain. A variety of examples from capacitance calculations to electron dynamics in semiconductors are discussed to illustrate the viability of the approach. In English. Boundary value problems Numerical solutions. http://id.loc.gov/authorities/subjects/sh85016105 Stochastic analysis. http://id.loc.gov/authorities/subjects/sh85128175 Random walks (Mathematics) http://id.loc.gov/authorities/subjects/sh85111357 Problèmes aux limites Solutions numériques. Analyse stochastique. Marches aléatoires (Mathématiques) MATHEMATICS Applied. bisacsh MATHEMATICS Probability & Statistics General. bisacsh Boundary value problems Numerical solutions fast Random walks (Mathematics) fast Stochastic analysis fast Partielle Differentialgleichung gnd http://d-nb.info/gnd/4044779-0 Integralgleichung gnd http://d-nb.info/gnd/4027229-1 Randwertproblem gnd http://d-nb.info/gnd/4048395-2 Monte-Carlo-Simulation gnd http://d-nb.info/gnd/4240945-7 Irrfahrtsproblem gnd http://d-nb.info/gnd/4162442-7 Simonov, N. A. https://id.oclc.org/worldcat/entity/E39PCjrQrfr4fYrwGjWHGPM96q http://id.loc.gov/authorities/names/n91005632 has work: Stochastic methods for boundary value problems (Text) https://id.oclc.org/worldcat/entity/E39PCGHDjRdJXCJ37MJfCW9xDq https://id.oclc.org/worldcat/ontology/hasWork Print version: 9783110479065 3110479060 (DLC) 2016042706 (OCoLC)949750711 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1362724 Volltext |
spellingShingle | Sabelfeld, Karl K. Stochastic Methods for Boundary Value Problems : Numerics for High-dimensional PDEs and Applications. 1 Introduction ; 2 Random walk algorithms for solving integral equations ; 2.1 Conventional Monte Carlo scheme ; 2.2 Biased estimators ; 2.3 Linear-fractional transformations and their relations to iterative processes. 2.4 Asymptotically unbiased estimators based on singular approximations 2.5 Integral equation of the first kind ; 3 Random walk-on-boundary algorithms for the Laplace equation ; 3.1 Newton potentials and boundary integral equations of the electrostatics. 3.2 The interior Dirichlet problem and isotropic random walk-on-boundary process 3.3 Solution of the Neumann problem ; 3.4 Random estimators for the exterior Dirichlet problem ; 3.5 Third BVP and alternative methods of solving the Dirichlet problem ; 3.6 Inhomogeneous problems. 3.7 Continuity BVP 3.7.1 Walk on boundary for the continuity problem ; 3.8 Calculation of the solution derivatives near the boundary ; 3.9 Normal derivative of a double-layer potential ; 4 Walk-on-boundary algorithms for the heat equation. 4.1 Heat potentials and Volterra boundary integral equations 4.2 Nonstationary walk-on-boundary process ; 4.3 The Dirichlet problem ; 4.4 The Neumann problem ; 4.5 Third BVP ; 4.6 Unbiasedness and variance of the walk-on-boundary algorithms. Boundary value problems Numerical solutions. http://id.loc.gov/authorities/subjects/sh85016105 Stochastic analysis. http://id.loc.gov/authorities/subjects/sh85128175 Random walks (Mathematics) http://id.loc.gov/authorities/subjects/sh85111357 Problèmes aux limites Solutions numériques. Analyse stochastique. Marches aléatoires (Mathématiques) MATHEMATICS Applied. bisacsh MATHEMATICS Probability & Statistics General. bisacsh Boundary value problems Numerical solutions fast Random walks (Mathematics) fast Stochastic analysis fast Partielle Differentialgleichung gnd http://d-nb.info/gnd/4044779-0 Integralgleichung gnd http://d-nb.info/gnd/4027229-1 Randwertproblem gnd http://d-nb.info/gnd/4048395-2 Monte-Carlo-Simulation gnd http://d-nb.info/gnd/4240945-7 Irrfahrtsproblem gnd http://d-nb.info/gnd/4162442-7 |
subject_GND | http://id.loc.gov/authorities/subjects/sh85016105 http://id.loc.gov/authorities/subjects/sh85128175 http://id.loc.gov/authorities/subjects/sh85111357 http://d-nb.info/gnd/4044779-0 http://d-nb.info/gnd/4027229-1 http://d-nb.info/gnd/4048395-2 http://d-nb.info/gnd/4240945-7 http://d-nb.info/gnd/4162442-7 |
title | Stochastic Methods for Boundary Value Problems : Numerics for High-dimensional PDEs and Applications. |
title_auth | Stochastic Methods for Boundary Value Problems : Numerics for High-dimensional PDEs and Applications. |
title_exact_search | Stochastic Methods for Boundary Value Problems : Numerics for High-dimensional PDEs and Applications. |
title_full | Stochastic Methods for Boundary Value Problems : Numerics for High-dimensional PDEs and Applications. |
title_fullStr | Stochastic Methods for Boundary Value Problems : Numerics for High-dimensional PDEs and Applications. |
title_full_unstemmed | Stochastic Methods for Boundary Value Problems : Numerics for High-dimensional PDEs and Applications. |
title_short | Stochastic Methods for Boundary Value Problems : |
title_sort | stochastic methods for boundary value problems numerics for high dimensional pdes and applications |
title_sub | Numerics for High-dimensional PDEs and Applications. |
topic | Boundary value problems Numerical solutions. http://id.loc.gov/authorities/subjects/sh85016105 Stochastic analysis. http://id.loc.gov/authorities/subjects/sh85128175 Random walks (Mathematics) http://id.loc.gov/authorities/subjects/sh85111357 Problèmes aux limites Solutions numériques. Analyse stochastique. Marches aléatoires (Mathématiques) MATHEMATICS Applied. bisacsh MATHEMATICS Probability & Statistics General. bisacsh Boundary value problems Numerical solutions fast Random walks (Mathematics) fast Stochastic analysis fast Partielle Differentialgleichung gnd http://d-nb.info/gnd/4044779-0 Integralgleichung gnd http://d-nb.info/gnd/4027229-1 Randwertproblem gnd http://d-nb.info/gnd/4048395-2 Monte-Carlo-Simulation gnd http://d-nb.info/gnd/4240945-7 Irrfahrtsproblem gnd http://d-nb.info/gnd/4162442-7 |
topic_facet | Boundary value problems Numerical solutions. Stochastic analysis. Random walks (Mathematics) Problèmes aux limites Solutions numériques. Analyse stochastique. Marches aléatoires (Mathématiques) MATHEMATICS Applied. MATHEMATICS Probability & Statistics General. Boundary value problems Numerical solutions Stochastic analysis Partielle Differentialgleichung Integralgleichung Randwertproblem Monte-Carlo-Simulation Irrfahrtsproblem |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1362724 |
work_keys_str_mv | AT sabelfeldkarlk stochasticmethodsforboundaryvalueproblemsnumericsforhighdimensionalpdesandapplications AT simonovna stochasticmethodsforboundaryvalueproblemsnumericsforhighdimensionalpdesandapplications |