Harmonic and subharmonic function theory on the hyperbolic ball /:
This comprehensive monograph is ideal for established researchers in the field and also graduate students who wish to learn more about the subject. The text is made accessible to a broad audience as it does not require any knowledge of Lie groups and only a limited knowledge of differential geometry...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge :
Cambridge University Press,
2016.
|
Schriftenreihe: | London Mathematical Society lecture note series ;
431. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This comprehensive monograph is ideal for established researchers in the field and also graduate students who wish to learn more about the subject. The text is made accessible to a broad audience as it does not require any knowledge of Lie groups and only a limited knowledge of differential geometry. The author's primary emphasis is on potential theory on the hyperbolic ball, but many other relevant results for the hyperbolic upper half-space are included both in the text and in the end-of-chapter exercises. These exercises expand on the topics covered in the chapter and involve routine computations and inequalities not included in the text. The book also includes some open problems, which may be a source for potential research projects. |
Beschreibung: | 1 online resource (xv, 225 pages) |
Bibliographie: | Includes bibliographical references and indexes. |
ISBN: | 9781316341063 1316341062 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn960031050 | ||
003 | OCoLC | ||
005 | 20240705115654.0 | ||
006 | m o d | ||
007 | cr mn||||||||| | ||
008 | 161006t20162016enk ob 001 0 eng d | ||
040 | |a YDX |b eng |e rda |e pn |c YDX |d OCLCO |d YDXCP |d UIU |d OTZ |d N$T |d IDEBK |d OCLCF |d OSU |d IDB |d OCLCQ |d U3W |d COO |d OCLCQ |d LEAUB |d UKAHL |d OCLCQ |d K6U |d OCLCO |d OCLCQ |d OCLCO |d S9M |d OCLCL |d SFB | ||
019 | |a 951646105 | ||
020 | |a 9781316341063 |q (electronic bk.) | ||
020 | |a 1316341062 |q (electronic bk.) | ||
020 | |z 9781107541481 |q (pbk.) | ||
020 | |z 1107541484 |q (pbk.) | ||
020 | |z 9781316667989 | ||
020 | |z 1316667987 | ||
035 | |a (OCoLC)960031050 |z (OCoLC)951646105 | ||
050 | 4 | |a QA405 |b .S76 2016 | |
072 | 7 | |a MAT |x 005000 |2 bisacsh | |
072 | 7 | |a MAT |x 034000 |2 bisacsh | |
082 | 7 | |a 515/.53 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Stoll, Manfred. |0 http://id.loc.gov/authorities/names/nr94024383 | |
245 | 1 | 0 | |a Harmonic and subharmonic function theory on the hyperbolic ball / |c Manfred Stoll, University of South Carolina. |
264 | 1 | |a Cambridge : |b Cambridge University Press, |c 2016. | |
264 | 4 | |c ©2016 | |
300 | |a 1 online resource (xv, 225 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society lecture note series ; |v 431 | |
520 | |a This comprehensive monograph is ideal for established researchers in the field and also graduate students who wish to learn more about the subject. The text is made accessible to a broad audience as it does not require any knowledge of Lie groups and only a limited knowledge of differential geometry. The author's primary emphasis is on potential theory on the hyperbolic ball, but many other relevant results for the hyperbolic upper half-space are included both in the text and in the end-of-chapter exercises. These exercises expand on the topics covered in the chapter and involve routine computations and inequalities not included in the text. The book also includes some open problems, which may be a source for potential research projects. | ||
504 | |a Includes bibliographical references and indexes. | ||
505 | 0 | |a Möbius transformations -- Möbius self-maps of the unit ball -- The invariant laplacian, gradient, and measure -- Harmonic and subharmonic functions -- The Poisson kernel and Poisson integrals -- Spherical harmonic expansions -- Hardy-type spaces of subharmonic functions -- Boundary behavior of Poisson integrals -- The Riesz decomposition theorem for subharmonic functions -- Bergman and Dirichlet spaces of harmonic functions. | |
588 | 0 | |a Print version record. | |
650 | 0 | |a Harmonic functions. |0 http://id.loc.gov/authorities/subjects/sh85058943 | |
650 | 0 | |a Subharmonic functions. |0 http://id.loc.gov/authorities/subjects/sh85052351 | |
650 | 0 | |a Hyperbolic spaces. |0 http://id.loc.gov/authorities/subjects/sh86006874 | |
650 | 6 | |a Fonctions harmoniques. | |
650 | 6 | |a Fonctions sous-harmoniques. | |
650 | 6 | |a Espaces hyperboliques. | |
650 | 7 | |a MATHEMATICS |x Calculus. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Mathematical Analysis. |2 bisacsh | |
650 | 7 | |a Funciones armónicas |2 embne | |
650 | 0 | 7 | |a Geometría hiperbólica |2 embucm |
650 | 7 | |a Harmonic functions |2 fast | |
650 | 7 | |a Hyperbolic spaces |2 fast | |
650 | 7 | |a Subharmonic functions |2 fast | |
655 | 0 | |a Electronic books. | |
655 | 4 | |a Electronic books. | |
758 | |i has work: |a Harmonic and subharmonic function theory on the hyperbolic ball (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGjcvc6hjyj6gTm9x9v9rC |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Stoll, Manfred. |t Harmonic and subharmonic function theory on the hyperbolic ball. |d Cambridge : Cambridge University Press, 2016 |z 9781107541481 |w (DLC) 2015049530 |w (OCoLC)932385183 |
830 | 0 | |a London Mathematical Society lecture note series ; |v 431. |0 http://id.loc.gov/authorities/names/n42015587 | |
856 | 1 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1230555 |3 Volltext | |
856 | 1 | |l CBO01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1230555 |3 Volltext | |
938 | |a Askews and Holts Library Services |b ASKH |n AH33404676 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH34210168 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH31091138 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH30687283 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL4522465 | ||
938 | |a EBSCOhost |b EBSC |n 1230555 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis35291667 | ||
938 | |a YBP Library Services |b YANK |n 13034208 | ||
938 | |a YBP Library Services |b YANK |n 13076227 | ||
938 | |a YBP Library Services |b YANK |n 13077412 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn960031050 |
---|---|
_version_ | 1813903734739042304 |
adam_text | |
any_adam_object | |
author | Stoll, Manfred |
author_GND | http://id.loc.gov/authorities/names/nr94024383 |
author_facet | Stoll, Manfred |
author_role | |
author_sort | Stoll, Manfred |
author_variant | m s ms |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA405 |
callnumber-raw | QA405 .S76 2016 |
callnumber-search | QA405 .S76 2016 |
callnumber-sort | QA 3405 S76 42016 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Möbius transformations -- Möbius self-maps of the unit ball -- The invariant laplacian, gradient, and measure -- Harmonic and subharmonic functions -- The Poisson kernel and Poisson integrals -- Spherical harmonic expansions -- Hardy-type spaces of subharmonic functions -- Boundary behavior of Poisson integrals -- The Riesz decomposition theorem for subharmonic functions -- Bergman and Dirichlet spaces of harmonic functions. |
ctrlnum | (OCoLC)960031050 |
dewey-full | 515/.53 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.53 |
dewey-search | 515/.53 |
dewey-sort | 3515 253 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04754cam a2200781 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn960031050</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20240705115654.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr mn|||||||||</controlfield><controlfield tag="008">161006t20162016enk ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">YDX</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">YDX</subfield><subfield code="d">OCLCO</subfield><subfield code="d">YDXCP</subfield><subfield code="d">UIU</subfield><subfield code="d">OTZ</subfield><subfield code="d">N$T</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OSU</subfield><subfield code="d">IDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">COO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LEAUB</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">S9M</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SFB</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">951646105</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781316341063</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1316341062</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781107541481</subfield><subfield code="q">(pbk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1107541484</subfield><subfield code="q">(pbk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781316667989</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1316667987</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)960031050</subfield><subfield code="z">(OCoLC)951646105</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA405</subfield><subfield code="b">.S76 2016</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">005000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">034000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515/.53</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Stoll, Manfred.</subfield><subfield code="0">http://id.loc.gov/authorities/names/nr94024383</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Harmonic and subharmonic function theory on the hyperbolic ball /</subfield><subfield code="c">Manfred Stoll, University of South Carolina.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2016.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xv, 225 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">431</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This comprehensive monograph is ideal for established researchers in the field and also graduate students who wish to learn more about the subject. The text is made accessible to a broad audience as it does not require any knowledge of Lie groups and only a limited knowledge of differential geometry. The author's primary emphasis is on potential theory on the hyperbolic ball, but many other relevant results for the hyperbolic upper half-space are included both in the text and in the end-of-chapter exercises. These exercises expand on the topics covered in the chapter and involve routine computations and inequalities not included in the text. The book also includes some open problems, which may be a source for potential research projects.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and indexes.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Möbius transformations -- Möbius self-maps of the unit ball -- The invariant laplacian, gradient, and measure -- Harmonic and subharmonic functions -- The Poisson kernel and Poisson integrals -- Spherical harmonic expansions -- Hardy-type spaces of subharmonic functions -- Boundary behavior of Poisson integrals -- The Riesz decomposition theorem for subharmonic functions -- Bergman and Dirichlet spaces of harmonic functions.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Harmonic functions.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85058943</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Subharmonic functions.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85052351</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Hyperbolic spaces.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh86006874</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Fonctions harmoniques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Fonctions sous-harmoniques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Espaces hyperboliques.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Calculus.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Mathematical Analysis.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Funciones armónicas</subfield><subfield code="2">embne</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometría hiperbólica</subfield><subfield code="2">embucm</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Harmonic functions</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hyperbolic spaces</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Subharmonic functions</subfield><subfield code="2">fast</subfield></datafield><datafield tag="655" ind1=" " ind2="0"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Harmonic and subharmonic function theory on the hyperbolic ball (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGjcvc6hjyj6gTm9x9v9rC</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Stoll, Manfred.</subfield><subfield code="t">Harmonic and subharmonic function theory on the hyperbolic ball.</subfield><subfield code="d">Cambridge : Cambridge University Press, 2016</subfield><subfield code="z">9781107541481</subfield><subfield code="w">(DLC) 2015049530</subfield><subfield code="w">(OCoLC)932385183</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">431.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42015587</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1230555</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">CBO01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1230555</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH33404676</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH34210168</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH31091138</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH30687283</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL4522465</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">1230555</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis35291667</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">13034208</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">13076227</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">13077412</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield></record></collection> |
genre | Electronic books. |
genre_facet | Electronic books. |
id | ZDB-4-EBA-ocn960031050 |
illustrated | Not Illustrated |
indexdate | 2024-10-25T16:23:24Z |
institution | BVB |
isbn | 9781316341063 1316341062 |
language | English |
oclc_num | 960031050 |
open_access_boolean | |
owner | MAIN |
owner_facet | MAIN |
physical | 1 online resource (xv, 225 pages) |
psigel | ZDB-4-EBA |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | Cambridge University Press, |
record_format | marc |
series | London Mathematical Society lecture note series ; |
series2 | London Mathematical Society lecture note series ; |
spelling | Stoll, Manfred. http://id.loc.gov/authorities/names/nr94024383 Harmonic and subharmonic function theory on the hyperbolic ball / Manfred Stoll, University of South Carolina. Cambridge : Cambridge University Press, 2016. ©2016 1 online resource (xv, 225 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier London Mathematical Society lecture note series ; 431 This comprehensive monograph is ideal for established researchers in the field and also graduate students who wish to learn more about the subject. The text is made accessible to a broad audience as it does not require any knowledge of Lie groups and only a limited knowledge of differential geometry. The author's primary emphasis is on potential theory on the hyperbolic ball, but many other relevant results for the hyperbolic upper half-space are included both in the text and in the end-of-chapter exercises. These exercises expand on the topics covered in the chapter and involve routine computations and inequalities not included in the text. The book also includes some open problems, which may be a source for potential research projects. Includes bibliographical references and indexes. Möbius transformations -- Möbius self-maps of the unit ball -- The invariant laplacian, gradient, and measure -- Harmonic and subharmonic functions -- The Poisson kernel and Poisson integrals -- Spherical harmonic expansions -- Hardy-type spaces of subharmonic functions -- Boundary behavior of Poisson integrals -- The Riesz decomposition theorem for subharmonic functions -- Bergman and Dirichlet spaces of harmonic functions. Print version record. Harmonic functions. http://id.loc.gov/authorities/subjects/sh85058943 Subharmonic functions. http://id.loc.gov/authorities/subjects/sh85052351 Hyperbolic spaces. http://id.loc.gov/authorities/subjects/sh86006874 Fonctions harmoniques. Fonctions sous-harmoniques. Espaces hyperboliques. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Funciones armónicas embne Geometría hiperbólica embucm Harmonic functions fast Hyperbolic spaces fast Subharmonic functions fast Electronic books. has work: Harmonic and subharmonic function theory on the hyperbolic ball (Text) https://id.oclc.org/worldcat/entity/E39PCGjcvc6hjyj6gTm9x9v9rC https://id.oclc.org/worldcat/ontology/hasWork Print version: Stoll, Manfred. Harmonic and subharmonic function theory on the hyperbolic ball. Cambridge : Cambridge University Press, 2016 9781107541481 (DLC) 2015049530 (OCoLC)932385183 London Mathematical Society lecture note series ; 431. http://id.loc.gov/authorities/names/n42015587 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1230555 Volltext CBO01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1230555 Volltext |
spellingShingle | Stoll, Manfred Harmonic and subharmonic function theory on the hyperbolic ball / London Mathematical Society lecture note series ; Möbius transformations -- Möbius self-maps of the unit ball -- The invariant laplacian, gradient, and measure -- Harmonic and subharmonic functions -- The Poisson kernel and Poisson integrals -- Spherical harmonic expansions -- Hardy-type spaces of subharmonic functions -- Boundary behavior of Poisson integrals -- The Riesz decomposition theorem for subharmonic functions -- Bergman and Dirichlet spaces of harmonic functions. Harmonic functions. http://id.loc.gov/authorities/subjects/sh85058943 Subharmonic functions. http://id.loc.gov/authorities/subjects/sh85052351 Hyperbolic spaces. http://id.loc.gov/authorities/subjects/sh86006874 Fonctions harmoniques. Fonctions sous-harmoniques. Espaces hyperboliques. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Funciones armónicas embne Geometría hiperbólica embucm Harmonic functions fast Hyperbolic spaces fast Subharmonic functions fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85058943 http://id.loc.gov/authorities/subjects/sh85052351 http://id.loc.gov/authorities/subjects/sh86006874 |
title | Harmonic and subharmonic function theory on the hyperbolic ball / |
title_auth | Harmonic and subharmonic function theory on the hyperbolic ball / |
title_exact_search | Harmonic and subharmonic function theory on the hyperbolic ball / |
title_full | Harmonic and subharmonic function theory on the hyperbolic ball / Manfred Stoll, University of South Carolina. |
title_fullStr | Harmonic and subharmonic function theory on the hyperbolic ball / Manfred Stoll, University of South Carolina. |
title_full_unstemmed | Harmonic and subharmonic function theory on the hyperbolic ball / Manfred Stoll, University of South Carolina. |
title_short | Harmonic and subharmonic function theory on the hyperbolic ball / |
title_sort | harmonic and subharmonic function theory on the hyperbolic ball |
topic | Harmonic functions. http://id.loc.gov/authorities/subjects/sh85058943 Subharmonic functions. http://id.loc.gov/authorities/subjects/sh85052351 Hyperbolic spaces. http://id.loc.gov/authorities/subjects/sh86006874 Fonctions harmoniques. Fonctions sous-harmoniques. Espaces hyperboliques. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Funciones armónicas embne Geometría hiperbólica embucm Harmonic functions fast Hyperbolic spaces fast Subharmonic functions fast |
topic_facet | Harmonic functions. Subharmonic functions. Hyperbolic spaces. Fonctions harmoniques. Fonctions sous-harmoniques. Espaces hyperboliques. MATHEMATICS Calculus. MATHEMATICS Mathematical Analysis. Funciones armónicas Geometría hiperbólica Harmonic functions Hyperbolic spaces Subharmonic functions Electronic books. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1230555 |
work_keys_str_mv | AT stollmanfred harmonicandsubharmonicfunctiontheoryonthehyperbolicball |