The Theory of H(b) Spaces.: volume 1 /
An H(b) space is defined as a collection of analytic functions which are in the image of an operator. The theory of H(b) spaces bridges two classical subjects: complex analysis and operator theory, which makes it both appealing and demanding. The first volume of this comprehensive treatment is devot...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge :
Cambridge University Press,
2016.
|
Schriftenreihe: | New mathematical monographs ;
20. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | An H(b) space is defined as a collection of analytic functions which are in the image of an operator. The theory of H(b) spaces bridges two classical subjects: complex analysis and operator theory, which makes it both appealing and demanding. The first volume of this comprehensive treatment is devoted to the preliminary subjects required to understand the foundation of H(b) spaces, such as Hardy spaces, Fourier analysis, integral representation theorems, Carleson measures, Toeplitz and Hankel operators, various types of shift operators, and Clark measures. The second volume focuses on the central theory. Both books are accessible to graduate students as well as researchers: each volume contains numerous exercises and hints, and figures are included throughout to illustrate the theory. Together, these two volumes provide everything the reader needs to understand and appreciate this beautiful branch of mathematics. |
Beschreibung: | 1 online resource (xix, 681 pages) |
Bibliographie: | Includes bibliographical references and indexes. |
ISBN: | 9781139226752 1139226754 9781316357927 1316357929 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn959692465 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr mn||||||||| | ||
008 | 120111t20162016enk ob 001 0 eng d | ||
040 | |a UAB |b eng |e rda |e pn |c UAB |d OCLCO |d OCLCF |d OSU |d YDX |d YDXCP |d UIU |d NOC |d IDEBK |d EBLCP |d N$T |d COO |d IDB |d OCLCQ |d U3W |d OCLCQ |d LEAUB |d OCLCQ |d K6U |d OCLCO |d UKAHL |d OCLCO |d OCLCQ |d S9M |d OCLCL |d OCLCQ | ||
019 | |a 949643856 |a 958783614 |a 958865414 |a 958865492 |a 959425568 |a 959425806 |a 959648226 |a 959649356 |a 965422766 | ||
020 | |a 9781139226752 |q (electronic bk.) | ||
020 | |a 1139226754 |q (electronic bk.) | ||
020 | |a 9781316357927 | ||
020 | |a 1316357929 | ||
020 | |z 9781107027770 |q (hardback) | ||
020 | |z 1107027772 |q (hardback) | ||
020 | |z 9781107119413 | ||
020 | |z 9781107027787 | ||
020 | |z 1107027780 | ||
035 | |a (OCoLC)959692465 |z (OCoLC)949643856 |z (OCoLC)958783614 |z (OCoLC)958865414 |z (OCoLC)958865492 |z (OCoLC)959425568 |z (OCoLC)959425806 |z (OCoLC)959648226 |z (OCoLC)959649356 |z (OCoLC)965422766 | ||
050 | 4 | |a QA322.4 |b .F73 2014 | |
072 | 7 | |a MAT |x 005000 |2 bisacsh | |
072 | 7 | |a MAT |x 034000 |2 bisacsh | |
082 | 7 | |a 515/.733 |2 23 | |
084 | |a MAT002010 |2 bisacsh | ||
049 | |a MAIN | ||
100 | 1 | |a Fricain, Emmanuel, |e author. | |
245 | 1 | 4 | |a The Theory of H(b) Spaces. |n volume 1 / |c Emmanuel Fricain, Université Lille 1 ; Javad Mashreghi, Université Laval, Québec. |
264 | 1 | |a Cambridge : |b Cambridge University Press, |c 2016. | |
264 | 4 | |c ©2016 | |
300 | |a 1 online resource (xix, 681 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a New Mathematical Monographs ; |v 20 | |
520 | |a An H(b) space is defined as a collection of analytic functions which are in the image of an operator. The theory of H(b) spaces bridges two classical subjects: complex analysis and operator theory, which makes it both appealing and demanding. The first volume of this comprehensive treatment is devoted to the preliminary subjects required to understand the foundation of H(b) spaces, such as Hardy spaces, Fourier analysis, integral representation theorems, Carleson measures, Toeplitz and Hankel operators, various types of shift operators, and Clark measures. The second volume focuses on the central theory. Both books are accessible to graduate students as well as researchers: each volume contains numerous exercises and hints, and figures are included throughout to illustrate the theory. Together, these two volumes provide everything the reader needs to understand and appreciate this beautiful branch of mathematics. | ||
504 | |a Includes bibliographical references and indexes. | ||
505 | 0 | |a Normed linear spaces and their operators -- Some families of operators -- Harmonic functions on the open unit disk -- Hardy spaces -- More function spaces -- Extreme and exposed points -- More advanced results in operator theory -- The shift operator -- Analytic reproducing kernel Hilbert spaces -- Bases in Banach spaces -- Hankel operators -- Toeplitz operators -- Cauchy transform and Clark measures -- Model subspaces Ko -- Bases of reproducing kernels and interpolation. | |
588 | 0 | |a Print version record. | |
650 | 0 | |a Hilbert space. |0 http://id.loc.gov/authorities/subjects/sh85060803 | |
650 | 0 | |a Hardy spaces. |0 http://id.loc.gov/authorities/subjects/sh85058902 | |
650 | 0 | |a Analytic functions. |0 http://id.loc.gov/authorities/subjects/sh85004784 | |
650 | 0 | |a Linear operators. |0 http://id.loc.gov/authorities/subjects/sh85077178 | |
650 | 6 | |a Espace de Hilbert. | |
650 | 6 | |a Espaces de Hardy. | |
650 | 6 | |a Fonctions analytiques. | |
650 | 6 | |a Opérateurs linéaires. | |
650 | 7 | |a MATHEMATICS |x Calculus. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Mathematical Analysis. |2 bisacsh | |
650 | 7 | |a Funciones analíticas |2 embne | |
650 | 7 | |a Operadores lineales |2 embne | |
650 | 0 | 7 | |a Hilbert, Espacio de |2 embucm |
650 | 7 | |a Analytic functions |2 fast | |
650 | 7 | |a Hardy spaces |2 fast | |
650 | 7 | |a Hilbert space |2 fast | |
650 | 7 | |a Linear operators |2 fast | |
700 | 1 | |a Mashreghi, Javad, |e author. |0 http://id.loc.gov/authorities/names/nb2009008825 | |
776 | 0 | 8 | |i Print version: |a Fricain, Emmanuel, 1971- |t Theory of H(b) spaces. |d Cambridge, United Kingdom : Cambridge University Press, 2016 |z 9781107119413 |w (DLC) 2014005539 |w (OCoLC)870336350 |
830 | 0 | |a New mathematical monographs ; |v 20. |0 http://id.loc.gov/authorities/names/n2003010567 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1343268 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH26905351 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL4498724 | ||
938 | |a EBSCOhost |b EBSC |n 1343268 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis35943193 | ||
938 | |a YBP Library Services |b YANK |n 13171223 | ||
938 | |a YBP Library Services |b YANK |n 12981632 | ||
938 | |a YBP Library Services |b YANK |n 13172158 | ||
938 | |a YBP Library Services |b YANK |n 13221412 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn959692465 |
---|---|
_version_ | 1816882363675705344 |
adam_text | |
any_adam_object | |
author | Fricain, Emmanuel Mashreghi, Javad |
author_GND | http://id.loc.gov/authorities/names/nb2009008825 |
author_facet | Fricain, Emmanuel Mashreghi, Javad |
author_role | aut aut |
author_sort | Fricain, Emmanuel |
author_variant | e f ef j m jm |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA322 |
callnumber-raw | QA322.4 .F73 2014 |
callnumber-search | QA322.4 .F73 2014 |
callnumber-sort | QA 3322.4 F73 42014 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Normed linear spaces and their operators -- Some families of operators -- Harmonic functions on the open unit disk -- Hardy spaces -- More function spaces -- Extreme and exposed points -- More advanced results in operator theory -- The shift operator -- Analytic reproducing kernel Hilbert spaces -- Bases in Banach spaces -- Hankel operators -- Toeplitz operators -- Cauchy transform and Clark measures -- Model subspaces Ko -- Bases of reproducing kernels and interpolation. |
ctrlnum | (OCoLC)959692465 |
dewey-full | 515/.733 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.733 |
dewey-search | 515/.733 |
dewey-sort | 3515 3733 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05109cam a2200829 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn959692465</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr mn|||||||||</controlfield><controlfield tag="008">120111t20162016enk ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">UAB</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">UAB</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OSU</subfield><subfield code="d">YDX</subfield><subfield code="d">YDXCP</subfield><subfield code="d">UIU</subfield><subfield code="d">NOC</subfield><subfield code="d">IDEBK</subfield><subfield code="d">EBLCP</subfield><subfield code="d">N$T</subfield><subfield code="d">COO</subfield><subfield code="d">IDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LEAUB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">OCLCO</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">S9M</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">949643856</subfield><subfield code="a">958783614</subfield><subfield code="a">958865414</subfield><subfield code="a">958865492</subfield><subfield code="a">959425568</subfield><subfield code="a">959425806</subfield><subfield code="a">959648226</subfield><subfield code="a">959649356</subfield><subfield code="a">965422766</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139226752</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139226754</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781316357927</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1316357929</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781107027770</subfield><subfield code="q">(hardback)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1107027772</subfield><subfield code="q">(hardback)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781107119413</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781107027787</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1107027780</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)959692465</subfield><subfield code="z">(OCoLC)949643856</subfield><subfield code="z">(OCoLC)958783614</subfield><subfield code="z">(OCoLC)958865414</subfield><subfield code="z">(OCoLC)958865492</subfield><subfield code="z">(OCoLC)959425568</subfield><subfield code="z">(OCoLC)959425806</subfield><subfield code="z">(OCoLC)959648226</subfield><subfield code="z">(OCoLC)959649356</subfield><subfield code="z">(OCoLC)965422766</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA322.4</subfield><subfield code="b">.F73 2014</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">005000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">034000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515/.733</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT002010</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fricain, Emmanuel,</subfield><subfield code="e">author.</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The Theory of H(b) Spaces.</subfield><subfield code="n">volume 1 /</subfield><subfield code="c">Emmanuel Fricain, Université Lille 1 ; Javad Mashreghi, Université Laval, Québec.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2016.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xix, 681 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">New Mathematical Monographs ;</subfield><subfield code="v">20</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">An H(b) space is defined as a collection of analytic functions which are in the image of an operator. The theory of H(b) spaces bridges two classical subjects: complex analysis and operator theory, which makes it both appealing and demanding. The first volume of this comprehensive treatment is devoted to the preliminary subjects required to understand the foundation of H(b) spaces, such as Hardy spaces, Fourier analysis, integral representation theorems, Carleson measures, Toeplitz and Hankel operators, various types of shift operators, and Clark measures. The second volume focuses on the central theory. Both books are accessible to graduate students as well as researchers: each volume contains numerous exercises and hints, and figures are included throughout to illustrate the theory. Together, these two volumes provide everything the reader needs to understand and appreciate this beautiful branch of mathematics.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and indexes.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Normed linear spaces and their operators -- Some families of operators -- Harmonic functions on the open unit disk -- Hardy spaces -- More function spaces -- Extreme and exposed points -- More advanced results in operator theory -- The shift operator -- Analytic reproducing kernel Hilbert spaces -- Bases in Banach spaces -- Hankel operators -- Toeplitz operators -- Cauchy transform and Clark measures -- Model subspaces Ko -- Bases of reproducing kernels and interpolation.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Hilbert space.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85060803</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Hardy spaces.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85058902</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Analytic functions.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85004784</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Linear operators.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85077178</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Espace de Hilbert.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Espaces de Hardy.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Fonctions analytiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Opérateurs linéaires.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Calculus.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Mathematical Analysis.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Funciones analíticas</subfield><subfield code="2">embne</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Operadores lineales</subfield><subfield code="2">embne</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hilbert, Espacio de</subfield><subfield code="2">embucm</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Analytic functions</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hardy spaces</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hilbert space</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Linear operators</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mashreghi, Javad,</subfield><subfield code="e">author.</subfield><subfield code="0">http://id.loc.gov/authorities/names/nb2009008825</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Fricain, Emmanuel, 1971-</subfield><subfield code="t">Theory of H(b) spaces.</subfield><subfield code="d">Cambridge, United Kingdom : Cambridge University Press, 2016</subfield><subfield code="z">9781107119413</subfield><subfield code="w">(DLC) 2014005539</subfield><subfield code="w">(OCoLC)870336350</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">New mathematical monographs ;</subfield><subfield code="v">20.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2003010567</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1343268</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH26905351</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL4498724</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">1343268</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis35943193</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">13171223</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">12981632</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">13172158</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">13221412</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn959692465 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:27:26Z |
institution | BVB |
isbn | 9781139226752 1139226754 9781316357927 1316357929 |
language | English |
oclc_num | 959692465 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xix, 681 pages) |
psigel | ZDB-4-EBA |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | Cambridge University Press, |
record_format | marc |
series | New mathematical monographs ; |
series2 | New Mathematical Monographs ; |
spelling | Fricain, Emmanuel, author. The Theory of H(b) Spaces. volume 1 / Emmanuel Fricain, Université Lille 1 ; Javad Mashreghi, Université Laval, Québec. Cambridge : Cambridge University Press, 2016. ©2016 1 online resource (xix, 681 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier New Mathematical Monographs ; 20 An H(b) space is defined as a collection of analytic functions which are in the image of an operator. The theory of H(b) spaces bridges two classical subjects: complex analysis and operator theory, which makes it both appealing and demanding. The first volume of this comprehensive treatment is devoted to the preliminary subjects required to understand the foundation of H(b) spaces, such as Hardy spaces, Fourier analysis, integral representation theorems, Carleson measures, Toeplitz and Hankel operators, various types of shift operators, and Clark measures. The second volume focuses on the central theory. Both books are accessible to graduate students as well as researchers: each volume contains numerous exercises and hints, and figures are included throughout to illustrate the theory. Together, these two volumes provide everything the reader needs to understand and appreciate this beautiful branch of mathematics. Includes bibliographical references and indexes. Normed linear spaces and their operators -- Some families of operators -- Harmonic functions on the open unit disk -- Hardy spaces -- More function spaces -- Extreme and exposed points -- More advanced results in operator theory -- The shift operator -- Analytic reproducing kernel Hilbert spaces -- Bases in Banach spaces -- Hankel operators -- Toeplitz operators -- Cauchy transform and Clark measures -- Model subspaces Ko -- Bases of reproducing kernels and interpolation. Print version record. Hilbert space. http://id.loc.gov/authorities/subjects/sh85060803 Hardy spaces. http://id.loc.gov/authorities/subjects/sh85058902 Analytic functions. http://id.loc.gov/authorities/subjects/sh85004784 Linear operators. http://id.loc.gov/authorities/subjects/sh85077178 Espace de Hilbert. Espaces de Hardy. Fonctions analytiques. Opérateurs linéaires. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Funciones analíticas embne Operadores lineales embne Hilbert, Espacio de embucm Analytic functions fast Hardy spaces fast Hilbert space fast Linear operators fast Mashreghi, Javad, author. http://id.loc.gov/authorities/names/nb2009008825 Print version: Fricain, Emmanuel, 1971- Theory of H(b) spaces. Cambridge, United Kingdom : Cambridge University Press, 2016 9781107119413 (DLC) 2014005539 (OCoLC)870336350 New mathematical monographs ; 20. http://id.loc.gov/authorities/names/n2003010567 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1343268 Volltext |
spellingShingle | Fricain, Emmanuel Mashreghi, Javad The Theory of H(b) Spaces. New mathematical monographs ; Normed linear spaces and their operators -- Some families of operators -- Harmonic functions on the open unit disk -- Hardy spaces -- More function spaces -- Extreme and exposed points -- More advanced results in operator theory -- The shift operator -- Analytic reproducing kernel Hilbert spaces -- Bases in Banach spaces -- Hankel operators -- Toeplitz operators -- Cauchy transform and Clark measures -- Model subspaces Ko -- Bases of reproducing kernels and interpolation. Hilbert space. http://id.loc.gov/authorities/subjects/sh85060803 Hardy spaces. http://id.loc.gov/authorities/subjects/sh85058902 Analytic functions. http://id.loc.gov/authorities/subjects/sh85004784 Linear operators. http://id.loc.gov/authorities/subjects/sh85077178 Espace de Hilbert. Espaces de Hardy. Fonctions analytiques. Opérateurs linéaires. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Funciones analíticas embne Operadores lineales embne Hilbert, Espacio de embucm Analytic functions fast Hardy spaces fast Hilbert space fast Linear operators fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85060803 http://id.loc.gov/authorities/subjects/sh85058902 http://id.loc.gov/authorities/subjects/sh85004784 http://id.loc.gov/authorities/subjects/sh85077178 |
title | The Theory of H(b) Spaces. |
title_auth | The Theory of H(b) Spaces. |
title_exact_search | The Theory of H(b) Spaces. |
title_full | The Theory of H(b) Spaces. volume 1 / Emmanuel Fricain, Université Lille 1 ; Javad Mashreghi, Université Laval, Québec. |
title_fullStr | The Theory of H(b) Spaces. volume 1 / Emmanuel Fricain, Université Lille 1 ; Javad Mashreghi, Université Laval, Québec. |
title_full_unstemmed | The Theory of H(b) Spaces. volume 1 / Emmanuel Fricain, Université Lille 1 ; Javad Mashreghi, Université Laval, Québec. |
title_short | The Theory of H(b) Spaces. |
title_sort | theory of h b spaces |
topic | Hilbert space. http://id.loc.gov/authorities/subjects/sh85060803 Hardy spaces. http://id.loc.gov/authorities/subjects/sh85058902 Analytic functions. http://id.loc.gov/authorities/subjects/sh85004784 Linear operators. http://id.loc.gov/authorities/subjects/sh85077178 Espace de Hilbert. Espaces de Hardy. Fonctions analytiques. Opérateurs linéaires. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Funciones analíticas embne Operadores lineales embne Hilbert, Espacio de embucm Analytic functions fast Hardy spaces fast Hilbert space fast Linear operators fast |
topic_facet | Hilbert space. Hardy spaces. Analytic functions. Linear operators. Espace de Hilbert. Espaces de Hardy. Fonctions analytiques. Opérateurs linéaires. MATHEMATICS Calculus. MATHEMATICS Mathematical Analysis. Funciones analíticas Operadores lineales Hilbert, Espacio de Analytic functions Hardy spaces Hilbert space Linear operators |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1343268 |
work_keys_str_mv | AT fricainemmanuel thetheoryofhbspacesvolume1 AT mashreghijavad thetheoryofhbspacesvolume1 AT fricainemmanuel theoryofhbspacesvolume1 AT mashreghijavad theoryofhbspacesvolume1 |