Perspectives on data science for software engineering /:
Presenting the best practices of seasoned data miners in software engineering, this book offers unique insights into the wisdom of the community{OCLCbr#92}s leaders gathered to share hard-won lessons from the trenches. --
Gespeichert in:
Weitere Verfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge, MA :
Morgan Kaufmann is an imprint of Elsevier,
2016.
|
Schlagworte: | |
Online-Zugang: | Volltext Volltext |
Zusammenfassung: | Presenting the best practices of seasoned data miners in software engineering, this book offers unique insights into the wisdom of the community{OCLCbr#92}s leaders gathered to share hard-won lessons from the trenches. -- |
Beschreibung: | 1 online resource (xxix, 378 pages) : illustrations |
Bibliographie: | Includes bibliographical references. |
ISBN: | 9780128042618 0128042613 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn953844182 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 160721s2016 maua ob 000 0 eng d | ||
040 | |a YDXCP |b eng |e rda |e pn |c YDXCP |d OPELS |d UIU |d EBLCP |d N$T |d UMI |d IDEBK |d OCLCQ |d N$T |d OCLCF |d UPM |d TOH |d STF |d COO |d NAM |d DEBBG |d S9I |d OCLCQ |d LVT |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ | ||
019 | |a 953849331 |a 957279026 |a 1229456625 | ||
020 | |a 9780128042618 |q (electronic bk.) | ||
020 | |a 0128042613 |q (electronic bk.) | ||
020 | |z 0128042060 | ||
020 | |z 9780128042069 | ||
035 | |a (OCoLC)953844182 |z (OCoLC)953849331 |z (OCoLC)957279026 |z (OCoLC)1229456625 | ||
037 | |a CL0500000772 |b Safari Books Online | ||
050 | 4 | |a QA76.758 |b .P47 2016 | |
072 | 7 | |a COM |x 051000 |2 bisacsh | |
082 | 7 | |a 005.1 |2 23 | |
049 | |a MAIN | ||
245 | 0 | 0 | |a Perspectives on data science for software engineering / |c edited by Tim Menzies, Laurie Williams, Thomas Zimmermann. |
264 | 1 | |a Cambridge, MA : |b Morgan Kaufmann is an imprint of Elsevier, |c 2016. | |
300 | |a 1 online resource (xxix, 378 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
588 | 0 | |a Online resource; title from PDF title page (ScienceDirect, viewed Aug. 1, 2016). | |
505 | 0 | |a Front Cover; Perspectives on Data Science for Software Engineering; Copyright; Contents; Contributors; Acknowledgments; Introduction; Perspectives on data science for software engineering; Why This Book?; About This Book; The Future; References; Software analytics and its application in practice; Six Perspectives of Software Analytics; Experiences in Putting Software Analytics into Practice; References; Seven principles of inductive software engineering: What we do is different; Different and Important; Principle #1: Humans Before Algorithms; Principle #2: Plan for Scale. | |
505 | 8 | |a Principle #3: Get Early FeedbackPrinciple #4: Be Open Minded; Principle #5: Be smart with your learning; Principle #6: Live With the Data You Have; Principle #7: Develop a Broad Skill Set That Uses a Big Toolkit; References; The need for data analysis patterns (in software engineering); The Remedy Metaphor; Software Engineering Data; Needs of Data Analysis Patterns; Building Remedies for Data Analysis in Software Engineering Research; References; From software data to software theory: The path less traveled; Pathways of Software Repository Research; From Observation, to Theory, to Practice. | |
505 | 8 | |a Dynamic Artifacts Are Here to StayAcknowledgments; References; Mobile app store analytics; Introduction; Understanding End Users; Conclusion; References; The naturalness of software*; Introduction; Transforming Software Practice; Porting and Translation; The ``Natural Linguistics ́́of Code; Analysis and Tools; Assistive Technologies; Conclusion; References; Advances in release readiness; Predictive Test Metrics; Universal Release Criteria Model; Best Estimation Technique; Resource/Schedule/Content Model; Using Models in Release Management. | |
505 | 8 | |a Research to Implementation: A Difficult (but Rewarding) JourneyHow to tame your online services; Background; Service Analysis Studio; Success Story; References; Measuring individual productivity; No Single and Simple Best Metric for Success/Productivity; Measure the Process, Not Just the Outcome; Allow for Measures to Evolve; Goodharts Law and the Effect of Measuring; How to Measure Individual Productivity?; References; Stack traces reveal attack surfaces; Another Use of Stack Traces?; Attack Surface Approximation; References; Visual analytics for software engineering data; References. | |
504 | |a Includes bibliographical references. | ||
520 | |a Presenting the best practices of seasoned data miners in software engineering, this book offers unique insights into the wisdom of the community{OCLCbr#92}s leaders gathered to share hard-won lessons from the trenches. -- |c Edited summary from book. | ||
650 | 0 | |a Software engineering. |0 http://id.loc.gov/authorities/subjects/sh87007398 | |
650 | 6 | |a Génie logiciel. | |
650 | 7 | |a COMPUTERS / General. |2 bisacsh | |
650 | 7 | |a Software engineering |2 fast | |
700 | 1 | |a Menzies, Tim, |e editor. |0 http://id.loc.gov/authorities/names/no2003012478 | |
700 | 1 | |a Williams, Laurie, |d 1962- |e editor. |1 https://id.oclc.org/worldcat/entity/E39PCjFY7J7Xmqt687pxC3YWwC |0 http://id.loc.gov/authorities/names/n2002153248 | |
700 | 1 | |a Zimmermann, Thomas, |e editor. |0 http://id.loc.gov/authorities/names/n80056019 | |
776 | 0 | 8 | |i Print version: |z 0128042060 |z 9780128042069 |w (OCoLC)926742865 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1144641 |3 Volltext |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://www.sciencedirect.com/science/book/9780128042069 |3 Volltext |
938 | |a ProQuest Ebook Central |b EBLB |n EBL4592633 | ||
938 | |a EBSCOhost |b EBSC |n 1144641 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis35298718 | ||
938 | |a YBP Library Services |b YANK |n 13081961 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn953844182 |
---|---|
_version_ | 1816882355366789120 |
adam_text | |
any_adam_object | |
author2 | Menzies, Tim Williams, Laurie, 1962- Zimmermann, Thomas |
author2_role | edt edt edt |
author2_variant | t m tm l w lw t z tz |
author_GND | http://id.loc.gov/authorities/names/no2003012478 http://id.loc.gov/authorities/names/n2002153248 http://id.loc.gov/authorities/names/n80056019 |
author_facet | Menzies, Tim Williams, Laurie, 1962- Zimmermann, Thomas |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA76 |
callnumber-raw | QA76.758 .P47 2016 |
callnumber-search | QA76.758 .P47 2016 |
callnumber-sort | QA 276.758 P47 42016 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Front Cover; Perspectives on Data Science for Software Engineering; Copyright; Contents; Contributors; Acknowledgments; Introduction; Perspectives on data science for software engineering; Why This Book?; About This Book; The Future; References; Software analytics and its application in practice; Six Perspectives of Software Analytics; Experiences in Putting Software Analytics into Practice; References; Seven principles of inductive software engineering: What we do is different; Different and Important; Principle #1: Humans Before Algorithms; Principle #2: Plan for Scale. Principle #3: Get Early FeedbackPrinciple #4: Be Open Minded; Principle #5: Be smart with your learning; Principle #6: Live With the Data You Have; Principle #7: Develop a Broad Skill Set That Uses a Big Toolkit; References; The need for data analysis patterns (in software engineering); The Remedy Metaphor; Software Engineering Data; Needs of Data Analysis Patterns; Building Remedies for Data Analysis in Software Engineering Research; References; From software data to software theory: The path less traveled; Pathways of Software Repository Research; From Observation, to Theory, to Practice. Dynamic Artifacts Are Here to StayAcknowledgments; References; Mobile app store analytics; Introduction; Understanding End Users; Conclusion; References; The naturalness of software*; Introduction; Transforming Software Practice; Porting and Translation; The ``Natural Linguistics ́́of Code; Analysis and Tools; Assistive Technologies; Conclusion; References; Advances in release readiness; Predictive Test Metrics; Universal Release Criteria Model; Best Estimation Technique; Resource/Schedule/Content Model; Using Models in Release Management. Research to Implementation: A Difficult (but Rewarding) JourneyHow to tame your online services; Background; Service Analysis Studio; Success Story; References; Measuring individual productivity; No Single and Simple Best Metric for Success/Productivity; Measure the Process, Not Just the Outcome; Allow for Measures to Evolve; Goodharts Law and the Effect of Measuring; How to Measure Individual Productivity?; References; Stack traces reveal attack surfaces; Another Use of Stack Traces?; Attack Surface Approximation; References; Visual analytics for software engineering data; References. |
ctrlnum | (OCoLC)953844182 |
dewey-full | 005.1 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 005 - Computer programming, programs, data, security |
dewey-raw | 005.1 |
dewey-search | 005.1 |
dewey-sort | 15.1 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05114cam a2200577 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn953844182</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">160721s2016 maua ob 000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">YDXCP</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">YDXCP</subfield><subfield code="d">OPELS</subfield><subfield code="d">UIU</subfield><subfield code="d">EBLCP</subfield><subfield code="d">N$T</subfield><subfield code="d">UMI</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCF</subfield><subfield code="d">UPM</subfield><subfield code="d">TOH</subfield><subfield code="d">STF</subfield><subfield code="d">COO</subfield><subfield code="d">NAM</subfield><subfield code="d">DEBBG</subfield><subfield code="d">S9I</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LVT</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">953849331</subfield><subfield code="a">957279026</subfield><subfield code="a">1229456625</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780128042618</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0128042613</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0128042060</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780128042069</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)953844182</subfield><subfield code="z">(OCoLC)953849331</subfield><subfield code="z">(OCoLC)957279026</subfield><subfield code="z">(OCoLC)1229456625</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">CL0500000772</subfield><subfield code="b">Safari Books Online</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA76.758</subfield><subfield code="b">.P47 2016</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">051000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">005.1</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Perspectives on data science for software engineering /</subfield><subfield code="c">edited by Tim Menzies, Laurie Williams, Thomas Zimmermann.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, MA :</subfield><subfield code="b">Morgan Kaufmann is an imprint of Elsevier,</subfield><subfield code="c">2016.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xxix, 378 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Online resource; title from PDF title page (ScienceDirect, viewed Aug. 1, 2016).</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Front Cover; Perspectives on Data Science for Software Engineering; Copyright; Contents; Contributors; Acknowledgments; Introduction; Perspectives on data science for software engineering; Why This Book?; About This Book; The Future; References; Software analytics and its application in practice; Six Perspectives of Software Analytics; Experiences in Putting Software Analytics into Practice; References; Seven principles of inductive software engineering: What we do is different; Different and Important; Principle #1: Humans Before Algorithms; Principle #2: Plan for Scale.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Principle #3: Get Early FeedbackPrinciple #4: Be Open Minded; Principle #5: Be smart with your learning; Principle #6: Live With the Data You Have; Principle #7: Develop a Broad Skill Set That Uses a Big Toolkit; References; The need for data analysis patterns (in software engineering); The Remedy Metaphor; Software Engineering Data; Needs of Data Analysis Patterns; Building Remedies for Data Analysis in Software Engineering Research; References; From software data to software theory: The path less traveled; Pathways of Software Repository Research; From Observation, to Theory, to Practice.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Dynamic Artifacts Are Here to StayAcknowledgments; References; Mobile app store analytics; Introduction; Understanding End Users; Conclusion; References; The naturalness of software*; Introduction; Transforming Software Practice; Porting and Translation; The ``Natural Linguistics ́́of Code; Analysis and Tools; Assistive Technologies; Conclusion; References; Advances in release readiness; Predictive Test Metrics; Universal Release Criteria Model; Best Estimation Technique; Resource/Schedule/Content Model; Using Models in Release Management.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Research to Implementation: A Difficult (but Rewarding) JourneyHow to tame your online services; Background; Service Analysis Studio; Success Story; References; Measuring individual productivity; No Single and Simple Best Metric for Success/Productivity; Measure the Process, Not Just the Outcome; Allow for Measures to Evolve; Goodharts Law and the Effect of Measuring; How to Measure Individual Productivity?; References; Stack traces reveal attack surfaces; Another Use of Stack Traces?; Attack Surface Approximation; References; Visual analytics for software engineering data; References.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Presenting the best practices of seasoned data miners in software engineering, this book offers unique insights into the wisdom of the community{OCLCbr#92}s leaders gathered to share hard-won lessons from the trenches. --</subfield><subfield code="c">Edited summary from book.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Software engineering.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh87007398</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Génie logiciel.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS / General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Software engineering</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Menzies, Tim,</subfield><subfield code="e">editor.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2003012478</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Williams, Laurie,</subfield><subfield code="d">1962-</subfield><subfield code="e">editor.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjFY7J7Xmqt687pxC3YWwC</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2002153248</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zimmermann, Thomas,</subfield><subfield code="e">editor.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n80056019</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="z">0128042060</subfield><subfield code="z">9780128042069</subfield><subfield code="w">(OCoLC)926742865</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1144641</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://www.sciencedirect.com/science/book/9780128042069</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL4592633</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">1144641</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis35298718</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">13081961</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn953844182 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:27:18Z |
institution | BVB |
isbn | 9780128042618 0128042613 |
language | English |
oclc_num | 953844182 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xxix, 378 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | Morgan Kaufmann is an imprint of Elsevier, |
record_format | marc |
spelling | Perspectives on data science for software engineering / edited by Tim Menzies, Laurie Williams, Thomas Zimmermann. Cambridge, MA : Morgan Kaufmann is an imprint of Elsevier, 2016. 1 online resource (xxix, 378 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Online resource; title from PDF title page (ScienceDirect, viewed Aug. 1, 2016). Front Cover; Perspectives on Data Science for Software Engineering; Copyright; Contents; Contributors; Acknowledgments; Introduction; Perspectives on data science for software engineering; Why This Book?; About This Book; The Future; References; Software analytics and its application in practice; Six Perspectives of Software Analytics; Experiences in Putting Software Analytics into Practice; References; Seven principles of inductive software engineering: What we do is different; Different and Important; Principle #1: Humans Before Algorithms; Principle #2: Plan for Scale. Principle #3: Get Early FeedbackPrinciple #4: Be Open Minded; Principle #5: Be smart with your learning; Principle #6: Live With the Data You Have; Principle #7: Develop a Broad Skill Set That Uses a Big Toolkit; References; The need for data analysis patterns (in software engineering); The Remedy Metaphor; Software Engineering Data; Needs of Data Analysis Patterns; Building Remedies for Data Analysis in Software Engineering Research; References; From software data to software theory: The path less traveled; Pathways of Software Repository Research; From Observation, to Theory, to Practice. Dynamic Artifacts Are Here to StayAcknowledgments; References; Mobile app store analytics; Introduction; Understanding End Users; Conclusion; References; The naturalness of software*; Introduction; Transforming Software Practice; Porting and Translation; The ``Natural Linguistics ́́of Code; Analysis and Tools; Assistive Technologies; Conclusion; References; Advances in release readiness; Predictive Test Metrics; Universal Release Criteria Model; Best Estimation Technique; Resource/Schedule/Content Model; Using Models in Release Management. Research to Implementation: A Difficult (but Rewarding) JourneyHow to tame your online services; Background; Service Analysis Studio; Success Story; References; Measuring individual productivity; No Single and Simple Best Metric for Success/Productivity; Measure the Process, Not Just the Outcome; Allow for Measures to Evolve; Goodharts Law and the Effect of Measuring; How to Measure Individual Productivity?; References; Stack traces reveal attack surfaces; Another Use of Stack Traces?; Attack Surface Approximation; References; Visual analytics for software engineering data; References. Includes bibliographical references. Presenting the best practices of seasoned data miners in software engineering, this book offers unique insights into the wisdom of the community{OCLCbr#92}s leaders gathered to share hard-won lessons from the trenches. -- Edited summary from book. Software engineering. http://id.loc.gov/authorities/subjects/sh87007398 Génie logiciel. COMPUTERS / General. bisacsh Software engineering fast Menzies, Tim, editor. http://id.loc.gov/authorities/names/no2003012478 Williams, Laurie, 1962- editor. https://id.oclc.org/worldcat/entity/E39PCjFY7J7Xmqt687pxC3YWwC http://id.loc.gov/authorities/names/n2002153248 Zimmermann, Thomas, editor. http://id.loc.gov/authorities/names/n80056019 Print version: 0128042060 9780128042069 (OCoLC)926742865 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1144641 Volltext FWS01 ZDB-4-EBA FWS_PDA_EBA https://www.sciencedirect.com/science/book/9780128042069 Volltext |
spellingShingle | Perspectives on data science for software engineering / Front Cover; Perspectives on Data Science for Software Engineering; Copyright; Contents; Contributors; Acknowledgments; Introduction; Perspectives on data science for software engineering; Why This Book?; About This Book; The Future; References; Software analytics and its application in practice; Six Perspectives of Software Analytics; Experiences in Putting Software Analytics into Practice; References; Seven principles of inductive software engineering: What we do is different; Different and Important; Principle #1: Humans Before Algorithms; Principle #2: Plan for Scale. Principle #3: Get Early FeedbackPrinciple #4: Be Open Minded; Principle #5: Be smart with your learning; Principle #6: Live With the Data You Have; Principle #7: Develop a Broad Skill Set That Uses a Big Toolkit; References; The need for data analysis patterns (in software engineering); The Remedy Metaphor; Software Engineering Data; Needs of Data Analysis Patterns; Building Remedies for Data Analysis in Software Engineering Research; References; From software data to software theory: The path less traveled; Pathways of Software Repository Research; From Observation, to Theory, to Practice. Dynamic Artifacts Are Here to StayAcknowledgments; References; Mobile app store analytics; Introduction; Understanding End Users; Conclusion; References; The naturalness of software*; Introduction; Transforming Software Practice; Porting and Translation; The ``Natural Linguistics ́́of Code; Analysis and Tools; Assistive Technologies; Conclusion; References; Advances in release readiness; Predictive Test Metrics; Universal Release Criteria Model; Best Estimation Technique; Resource/Schedule/Content Model; Using Models in Release Management. Research to Implementation: A Difficult (but Rewarding) JourneyHow to tame your online services; Background; Service Analysis Studio; Success Story; References; Measuring individual productivity; No Single and Simple Best Metric for Success/Productivity; Measure the Process, Not Just the Outcome; Allow for Measures to Evolve; Goodharts Law and the Effect of Measuring; How to Measure Individual Productivity?; References; Stack traces reveal attack surfaces; Another Use of Stack Traces?; Attack Surface Approximation; References; Visual analytics for software engineering data; References. Software engineering. http://id.loc.gov/authorities/subjects/sh87007398 Génie logiciel. COMPUTERS / General. bisacsh Software engineering fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh87007398 |
title | Perspectives on data science for software engineering / |
title_auth | Perspectives on data science for software engineering / |
title_exact_search | Perspectives on data science for software engineering / |
title_full | Perspectives on data science for software engineering / edited by Tim Menzies, Laurie Williams, Thomas Zimmermann. |
title_fullStr | Perspectives on data science for software engineering / edited by Tim Menzies, Laurie Williams, Thomas Zimmermann. |
title_full_unstemmed | Perspectives on data science for software engineering / edited by Tim Menzies, Laurie Williams, Thomas Zimmermann. |
title_short | Perspectives on data science for software engineering / |
title_sort | perspectives on data science for software engineering |
topic | Software engineering. http://id.loc.gov/authorities/subjects/sh87007398 Génie logiciel. COMPUTERS / General. bisacsh Software engineering fast |
topic_facet | Software engineering. Génie logiciel. COMPUTERS / General. Software engineering |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1144641 https://www.sciencedirect.com/science/book/9780128042069 |
work_keys_str_mv | AT menziestim perspectivesondatascienceforsoftwareengineering AT williamslaurie perspectivesondatascienceforsoftwareengineering AT zimmermannthomas perspectivesondatascienceforsoftwareengineering |