Big data :: principles and paradigms /
Big Data: Principles and Paradigms captures the state-of-the-art research on the architectural aspects, technologies, and applications of Big Data. The book identifies potential future directions and technologies that facilitate insight into numerous scientific, business, and consumer applications....
Gespeichert in:
Weitere Verfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge, MA :
Morgan Kaufmann is an imprint of Elsevier,
[2016]
|
Schlagworte: | |
Online-Zugang: | Volltext Volltext |
Zusammenfassung: | Big Data: Principles and Paradigms captures the state-of-the-art research on the architectural aspects, technologies, and applications of Big Data. The book identifies potential future directions and technologies that facilitate insight into numerous scientific, business, and consumer applications. To help realize Big Data's full potential, the book addresses numerous challenges, offering the conceptual and technological solutions for tackling them. These challenges include life-cycle data management, large-scale storage, flexible processing infrastructure, data modeling, scalable machine learning, data analysis algorithms, sampling techniques, and privacy and ethical issues. |
Beschreibung: | 1 online resource (xxv, 468 pages) : illustrations (some color) |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9780128093467 0128093463 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn953411916 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 160711s2016 maua ob 001 0 eng d | ||
040 | |a OPELS |b eng |e rda |e pn |c OPELS |d UIU |d OCLCF |d IDEBK |d N$T |d COO |d YDXCP |d EBLCP |d TEFOD |d GGVRL |d NAM |d DEBSZ |d IDB |d Z5A |d MERUC |d OCLCQ |d MERER |d OCLCQ |d U3W |d UUM |d WRM |d D6H |d OCLCQ |d WYU |d NLE |d NRC |d RRP |d TKN |d LQU |d UKMGB |d OCLCQ |d UMI |d S2H |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d EZC |d OCLCO | ||
015 | |a GBB684814 |2 bnb | ||
016 | 7 | |a 017889118 |2 Uk | |
019 | |a 951712429 |a 951977580 |a 953602489 |a 956735857 |a 957324594 |a 1034982200 |a 1105172441 |a 1105569651 |a 1202816427 | ||
020 | |a 9780128093467 | ||
020 | |a 0128093463 | ||
020 | |z 9780128053942 |q (print) | ||
020 | |z 0128053941 |q (print) | ||
035 | |a (OCoLC)953411916 |z (OCoLC)951712429 |z (OCoLC)951977580 |z (OCoLC)953602489 |z (OCoLC)956735857 |z (OCoLC)957324594 |z (OCoLC)1034982200 |z (OCoLC)1105172441 |z (OCoLC)1105569651 |z (OCoLC)1202816427 | ||
037 | |a 938707 |b MIL | ||
050 | 4 | |a QA76.9.B45 | |
072 | 7 | |a COM |x 018000 |2 bisacsh | |
082 | 7 | |a 005.7 |2 23 | |
049 | |a MAIN | ||
245 | 0 | 0 | |a Big data : |b principles and paradigms / |c edited by Rajkumar Buyya, Rodrigo N. Calheiros, Amir Vahid Dastjerdi. |
264 | 1 | |a Cambridge, MA : |b Morgan Kaufmann is an imprint of Elsevier, |c [2016] | |
300 | |a 1 online resource (xxv, 468 pages) : |b illustrations (some color) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
520 | |a Big Data: Principles and Paradigms captures the state-of-the-art research on the architectural aspects, technologies, and applications of Big Data. The book identifies potential future directions and technologies that facilitate insight into numerous scientific, business, and consumer applications. To help realize Big Data's full potential, the book addresses numerous challenges, offering the conceptual and technological solutions for tackling them. These challenges include life-cycle data management, large-scale storage, flexible processing infrastructure, data modeling, scalable machine learning, data analysis algorithms, sampling techniques, and privacy and ethical issues. | ||
588 | 0 | |a Online resource; title from PDF title page (ScienceDirect, viewed July 11, 2016). | |
504 | |a Includes bibliographical references and index. | ||
505 | 0 | |a Part I. Big data science -- part II. Big data infrastructures and platforms -- part III. Big data security and privacy -- part IV. Big data applications. | |
650 | 0 | |a Big data. |0 http://id.loc.gov/authorities/subjects/sh2012003227 | |
650 | 6 | |a Données volumineuses. | |
650 | 7 | |a COMPUTERS |x Data Processing. |2 bisacsh | |
650 | 7 | |a Big data |2 fast | |
655 | 7 | |a dissertations. |2 aat | |
655 | 7 | |a Academic theses |2 fast | |
655 | 7 | |a Academic theses. |2 lcgft |0 http://id.loc.gov/authorities/genreForms/gf2014026039 | |
655 | 7 | |a Thèses et écrits académiques. |2 rvmgf | |
700 | 1 | |a Buyya, Rajkumar, |d 1970- |e editor. |1 https://id.oclc.org/worldcat/entity/E39PBJxRDCwvFrpPwp6Whbf6rq | |
700 | 1 | |a Calheiros, Rodrigo N., |e editor. | |
700 | 1 | |a Vahid Dastjerdi, Amir, |e editor. | |
758 | |i has work: |a Big data (Text) |1 https://id.oclc.org/worldcat/entity/E39PCFxpJDBjQBW9xXqHQy64mb |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |t Big data. |d Cambridge, MA : Morgan Kaufmann is an imprint of Elsevier, [2016] |z 0128053941 |z 9780128053942 |w (OCoLC)946605551 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1145031 |3 Volltext |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://www.sciencedirect.com/science/book/9780128053942 |3 Volltext |
938 | |a EBL - Ebook Library |b EBLB |n EBL4544734 | ||
938 | |a EBSCOhost |b EBSC |n 1145031 | ||
938 | |a Gale Cengage Learning |b GVRL |n GVRL9JUH | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis34808335 | ||
938 | |a YBP Library Services |b YANK |n 13035547 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn953411916 |
---|---|
_version_ | 1816882353875714048 |
adam_text | |
any_adam_object | |
author2 | Buyya, Rajkumar, 1970- Calheiros, Rodrigo N. Vahid Dastjerdi, Amir |
author2_role | edt edt edt |
author2_variant | r b rb r n c rn rnc d a v da dav |
author_facet | Buyya, Rajkumar, 1970- Calheiros, Rodrigo N. Vahid Dastjerdi, Amir |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA76 |
callnumber-raw | QA76.9.B45 |
callnumber-search | QA76.9.B45 |
callnumber-sort | QA 276.9 B45 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Part I. Big data science -- part II. Big data infrastructures and platforms -- part III. Big data security and privacy -- part IV. Big data applications. |
ctrlnum | (OCoLC)953411916 |
dewey-full | 005.7 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 005 - Computer programming, programs, data, security |
dewey-raw | 005.7 |
dewey-search | 005.7 |
dewey-sort | 15.7 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04004cam a2200637 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn953411916</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">160711s2016 maua ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">OPELS</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">OPELS</subfield><subfield code="d">UIU</subfield><subfield code="d">OCLCF</subfield><subfield code="d">IDEBK</subfield><subfield code="d">N$T</subfield><subfield code="d">COO</subfield><subfield code="d">YDXCP</subfield><subfield code="d">EBLCP</subfield><subfield code="d">TEFOD</subfield><subfield code="d">GGVRL</subfield><subfield code="d">NAM</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">IDB</subfield><subfield code="d">Z5A</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MERER</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">UUM</subfield><subfield code="d">WRM</subfield><subfield code="d">D6H</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">NLE</subfield><subfield code="d">NRC</subfield><subfield code="d">RRP</subfield><subfield code="d">TKN</subfield><subfield code="d">LQU</subfield><subfield code="d">UKMGB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UMI</subfield><subfield code="d">S2H</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">EZC</subfield><subfield code="d">OCLCO</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBB684814</subfield><subfield code="2">bnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">017889118</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">951712429</subfield><subfield code="a">951977580</subfield><subfield code="a">953602489</subfield><subfield code="a">956735857</subfield><subfield code="a">957324594</subfield><subfield code="a">1034982200</subfield><subfield code="a">1105172441</subfield><subfield code="a">1105569651</subfield><subfield code="a">1202816427</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780128093467</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0128093463</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780128053942</subfield><subfield code="q">(print)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0128053941</subfield><subfield code="q">(print)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)953411916</subfield><subfield code="z">(OCoLC)951712429</subfield><subfield code="z">(OCoLC)951977580</subfield><subfield code="z">(OCoLC)953602489</subfield><subfield code="z">(OCoLC)956735857</subfield><subfield code="z">(OCoLC)957324594</subfield><subfield code="z">(OCoLC)1034982200</subfield><subfield code="z">(OCoLC)1105172441</subfield><subfield code="z">(OCoLC)1105569651</subfield><subfield code="z">(OCoLC)1202816427</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">938707</subfield><subfield code="b">MIL</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA76.9.B45</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">018000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">005.7</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Big data :</subfield><subfield code="b">principles and paradigms /</subfield><subfield code="c">edited by Rajkumar Buyya, Rodrigo N. Calheiros, Amir Vahid Dastjerdi.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, MA :</subfield><subfield code="b">Morgan Kaufmann is an imprint of Elsevier,</subfield><subfield code="c">[2016]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xxv, 468 pages) :</subfield><subfield code="b">illustrations (some color)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Big Data: Principles and Paradigms captures the state-of-the-art research on the architectural aspects, technologies, and applications of Big Data. The book identifies potential future directions and technologies that facilitate insight into numerous scientific, business, and consumer applications. To help realize Big Data's full potential, the book addresses numerous challenges, offering the conceptual and technological solutions for tackling them. These challenges include life-cycle data management, large-scale storage, flexible processing infrastructure, data modeling, scalable machine learning, data analysis algorithms, sampling techniques, and privacy and ethical issues.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Online resource; title from PDF title page (ScienceDirect, viewed July 11, 2016).</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Part I. Big data science -- part II. Big data infrastructures and platforms -- part III. Big data security and privacy -- part IV. Big data applications.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Big data.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh2012003227</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Données volumineuses.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">Data Processing.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Big data</subfield><subfield code="2">fast</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="a">dissertations.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="a">Academic theses</subfield><subfield code="2">fast</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="a">Academic theses.</subfield><subfield code="2">lcgft</subfield><subfield code="0">http://id.loc.gov/authorities/genreForms/gf2014026039</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="a">Thèses et écrits académiques.</subfield><subfield code="2">rvmgf</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Buyya, Rajkumar,</subfield><subfield code="d">1970-</subfield><subfield code="e">editor.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJxRDCwvFrpPwp6Whbf6rq</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Calheiros, Rodrigo N.,</subfield><subfield code="e">editor.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vahid Dastjerdi, Amir,</subfield><subfield code="e">editor.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Big data (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCFxpJDBjQBW9xXqHQy64mb</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="t">Big data.</subfield><subfield code="d">Cambridge, MA : Morgan Kaufmann is an imprint of Elsevier, [2016]</subfield><subfield code="z">0128053941</subfield><subfield code="z">9780128053942</subfield><subfield code="w">(OCoLC)946605551</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1145031</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://www.sciencedirect.com/science/book/9780128053942</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL4544734</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">1145031</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Gale Cengage Learning</subfield><subfield code="b">GVRL</subfield><subfield code="n">GVRL9JUH</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis34808335</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">13035547</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
genre | dissertations. aat Academic theses fast Academic theses. lcgft http://id.loc.gov/authorities/genreForms/gf2014026039 Thèses et écrits académiques. rvmgf |
genre_facet | dissertations. Academic theses Academic theses. Thèses et écrits académiques. |
id | ZDB-4-EBA-ocn953411916 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:27:16Z |
institution | BVB |
isbn | 9780128093467 0128093463 |
language | English |
oclc_num | 953411916 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xxv, 468 pages) : illustrations (some color) |
psigel | ZDB-4-EBA |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | Morgan Kaufmann is an imprint of Elsevier, |
record_format | marc |
spelling | Big data : principles and paradigms / edited by Rajkumar Buyya, Rodrigo N. Calheiros, Amir Vahid Dastjerdi. Cambridge, MA : Morgan Kaufmann is an imprint of Elsevier, [2016] 1 online resource (xxv, 468 pages) : illustrations (some color) text txt rdacontent computer c rdamedia online resource cr rdacarrier Big Data: Principles and Paradigms captures the state-of-the-art research on the architectural aspects, technologies, and applications of Big Data. The book identifies potential future directions and technologies that facilitate insight into numerous scientific, business, and consumer applications. To help realize Big Data's full potential, the book addresses numerous challenges, offering the conceptual and technological solutions for tackling them. These challenges include life-cycle data management, large-scale storage, flexible processing infrastructure, data modeling, scalable machine learning, data analysis algorithms, sampling techniques, and privacy and ethical issues. Online resource; title from PDF title page (ScienceDirect, viewed July 11, 2016). Includes bibliographical references and index. Part I. Big data science -- part II. Big data infrastructures and platforms -- part III. Big data security and privacy -- part IV. Big data applications. Big data. http://id.loc.gov/authorities/subjects/sh2012003227 Données volumineuses. COMPUTERS Data Processing. bisacsh Big data fast dissertations. aat Academic theses fast Academic theses. lcgft http://id.loc.gov/authorities/genreForms/gf2014026039 Thèses et écrits académiques. rvmgf Buyya, Rajkumar, 1970- editor. https://id.oclc.org/worldcat/entity/E39PBJxRDCwvFrpPwp6Whbf6rq Calheiros, Rodrigo N., editor. Vahid Dastjerdi, Amir, editor. has work: Big data (Text) https://id.oclc.org/worldcat/entity/E39PCFxpJDBjQBW9xXqHQy64mb https://id.oclc.org/worldcat/ontology/hasWork Print version: Big data. Cambridge, MA : Morgan Kaufmann is an imprint of Elsevier, [2016] 0128053941 9780128053942 (OCoLC)946605551 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1145031 Volltext FWS01 ZDB-4-EBA FWS_PDA_EBA https://www.sciencedirect.com/science/book/9780128053942 Volltext |
spellingShingle | Big data : principles and paradigms / Part I. Big data science -- part II. Big data infrastructures and platforms -- part III. Big data security and privacy -- part IV. Big data applications. Big data. http://id.loc.gov/authorities/subjects/sh2012003227 Données volumineuses. COMPUTERS Data Processing. bisacsh Big data fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh2012003227 http://id.loc.gov/authorities/genreForms/gf2014026039 |
title | Big data : principles and paradigms / |
title_auth | Big data : principles and paradigms / |
title_exact_search | Big data : principles and paradigms / |
title_full | Big data : principles and paradigms / edited by Rajkumar Buyya, Rodrigo N. Calheiros, Amir Vahid Dastjerdi. |
title_fullStr | Big data : principles and paradigms / edited by Rajkumar Buyya, Rodrigo N. Calheiros, Amir Vahid Dastjerdi. |
title_full_unstemmed | Big data : principles and paradigms / edited by Rajkumar Buyya, Rodrigo N. Calheiros, Amir Vahid Dastjerdi. |
title_short | Big data : |
title_sort | big data principles and paradigms |
title_sub | principles and paradigms / |
topic | Big data. http://id.loc.gov/authorities/subjects/sh2012003227 Données volumineuses. COMPUTERS Data Processing. bisacsh Big data fast |
topic_facet | Big data. Données volumineuses. COMPUTERS Data Processing. Big data dissertations. Academic theses Academic theses. Thèses et écrits académiques. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1145031 https://www.sciencedirect.com/science/book/9780128053942 |
work_keys_str_mv | AT buyyarajkumar bigdataprinciplesandparadigms AT calheirosrodrigon bigdataprinciplesandparadigms AT vahiddastjerdiamir bigdataprinciplesandparadigms |