Gas dynamics of explosions /:
Explosions, and the non-steady shock propagation associated with them, continue to interest researchers working in different fields of physics and engineering (such as astrophysics and fusion). Based on the author's course in shock dynamics, this book describes the various analytical methods de...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge :
Cambridge University Press,
2016.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Explosions, and the non-steady shock propagation associated with them, continue to interest researchers working in different fields of physics and engineering (such as astrophysics and fusion). Based on the author's course in shock dynamics, this book describes the various analytical methods developed to determine non-steady shock propagation. These methods offer a simple alternative to the direct numerical integration of the Euler equations and offer a better insight into the physics of the problem. Professor Lee presents the subject systematically and in a style that is accessible to graduate students and researchers working in shock dynamics, combustion, high-speed aerodynamics, propulsion and related topics. |
Beschreibung: | 1 online resource (vii, 205 pages) : illustrations |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9781316226926 1316226921 9781316593783 1316593789 9781523103997 152310399X |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn951646091 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu|||||||| | ||
008 | 160613s2016 enka ob 001 0 eng d | ||
040 | |a YDXCP |b eng |e rda |e pn |c YDXCP |d LGG |d UIU |d OTZ |d N$T |d IDEBK |d OCLCF |d N$T |d COO |d KNOVL |d MYG |d DEBSZ |d IDB |d STF |d OCLCQ |d WAU |d VT2 |d S4S |d OCLCQ |d VGM |d OCLCQ |d UAB |d U3W |d REB |d YDX |d GILDS |d ZCU |d OCLCQ |d MERER |d OCLCQ |d INT |d AU@ |d WYU |d OCLCQ |d LEAUB |d UKAHL |d OCLCQ |d K6U |d OCLCO |d OCLCQ |d UPM |d OCLCO |d OCLCQ |d OCLCO |d OCLCL | ||
066 | |c (S | ||
019 | |a 967618354 |a 999517863 |a 1039443055 |a 1167481036 |a 1233262152 |a 1237625777 | ||
020 | |a 9781316226926 |q (electronic bk.) | ||
020 | |a 1316226921 |q (electronic bk.) | ||
020 | |a 9781316593783 |q (electronic bk.) | ||
020 | |a 1316593789 |q (electronic bk.) | ||
020 | |a 9781523103997 |q (electronic bk.) | ||
020 | |a 152310399X |q (electronic bk.) | ||
020 | |z 1107106303 | ||
020 | |z 9781107106307 | ||
020 | |z 9781316593615 | ||
020 | |z 1316593614 | ||
035 | |a (OCoLC)951646091 |z (OCoLC)967618354 |z (OCoLC)999517863 |z (OCoLC)1039443055 |z (OCoLC)1167481036 |z (OCoLC)1233262152 |z (OCoLC)1237625777 | ||
050 | 4 | |a TP270 | |
072 | 7 | |a TEC |x 009010 |2 bisacsh | |
082 | 7 | |a 662.2 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Lee, John H. S., |d 1938- |e author. |1 https://id.oclc.org/worldcat/entity/E39PCjw9rtVXm6gvwf3wKYPPPP |0 http://id.loc.gov/authorities/names/n2008001674 | |
245 | 1 | 0 | |a Gas dynamics of explosions / |c John H.S. Lee, McGill University, Montreal, Canada. |
264 | 4 | |c ©20 | |
264 | 1 | |a Cambridge : |b Cambridge University Press, |c 2016. | |
300 | |a 1 online resource (vii, 205 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
520 | |a Explosions, and the non-steady shock propagation associated with them, continue to interest researchers working in different fields of physics and engineering (such as astrophysics and fusion). Based on the author's course in shock dynamics, this book describes the various analytical methods developed to determine non-steady shock propagation. These methods offer a simple alternative to the direct numerical integration of the Euler equations and offer a better insight into the physics of the problem. Professor Lee presents the subject systematically and in a style that is accessible to graduate students and researchers working in shock dynamics, combustion, high-speed aerodynamics, propulsion and related topics. | ||
504 | |a Includes bibliographical references and index. | ||
505 | 0 | |6 880-01 |a Base equations -- Weak shock theory -- Shock propagation in a non-uniform cross-sectional area tube -- Blast wave theory -- Homentropic explosions -- The snow-plow approximation -- The Brinkley-Kirkwood theory -- Non-similar solutions for finite strength blast waves -- Implosions. | |
588 | 0 | |a Print version record. | |
650 | 0 | |a Explosions. |0 http://id.loc.gov/authorities/subjects/sh85046465 | |
650 | 0 | |a Gas dynamics. |0 http://id.loc.gov/authorities/subjects/sh85053291 | |
650 | 2 | |a Explosions |0 https://id.nlm.nih.gov/mesh/D005107 | |
650 | 6 | |a Explosions. | |
650 | 6 | |a Dynamique des gaz. | |
650 | 7 | |a explosions. |2 aat | |
650 | 7 | |a TECHNOLOGY & ENGINEERING |x Chemical & Biochemical. |2 bisacsh | |
650 | 7 | |a Explosions |2 fast | |
650 | 7 | |a Gas dynamics |2 fast | |
758 | |i has work: |a Gas dynamics of explosions (Text) |1 https://id.oclc.org/worldcat/entity/E39PCG997cdvqBQWWKfjqXC7tq |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Lee, John H.S., 1938- |t Gas dynamics of explosions. |d New York, NY : Cambridge University Press, 2016 |z 1107106303 |w (DLC) 2016285330 |w (OCoLC)929782960 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1230544 |3 Volltext |
880 | 0 | 0 | |6 505-01/(S |g Machine generated contents note: |g 1. |t Basic Equations -- |g 1.1. |t Introduction -- |g 1.2. |t Thermodynamics -- |g 1.3. |t Conservation Equations -- |g 1.4. |t Characteristic Equations -- |g 1.5. |t Acoustic Waves -- |g 1.6. |t Acoustic Radiation from a Spherical Expanding Piston -- |g 1.7. |t Waves of Finite Amplitude -- |g 1.8. |t Piston Problem -- |g 1.9. |t Shock Waves -- |g 1.10. |t Detonation and Deflagration Waves -- |g 2. |t Weak Shock Theory -- |g 2.1. |t Introduction -- |g 2.2. |t Properties of Weak Shocks -- |g 2.3. |t Chandrasekhar's Solution -- |g 2.4. |t Oswatitsch's Solution -- |g 2.5. |t Friedrichs' Theory -- |g 2.6. |t Decay of a Piston Driven Shock -- |g 2.7. |t Whitham's Theory -- |g 3. |t Shock Propagation in a Non-uniform Cross-sectional Area Tube -- |g 3.1. |t Introduction -- |g 3.2. |t Chester's Theory -- |g 3.3. |t Chisnell's Theory -- |g 3.4. |t Whitham's Theory -- |g 4. |t Blast Wave Theory -- |g 4.1. |t Introduction -- |g 4.2. |t Basic Equations -- |g 4.3. |t Energy Integral -- |g 4.4. |t Integrals of the Similarity Equations -- |g 4.5. |t Closed Form Solution for Blasts -- |g 4.6. |t Properties of the Constant Energy Solution -- |g 4.7. |t Variable Energy Blasts -- |g 5. |t Homentropic Explosions -- |g 5.1. |t Introduction -- |g 5.2. |t Shock Tube Problem -- |g 5.3. |t Propagation of Chapman--Jouguet Detonations -- |g 5.4. |t Piston Driven Explosion -- |g 6. |t Snow-Plow Approximation -- |g 6.1. |t Introduction -- |g 6.2. |t Basic Equations -- |g 6.3. |t Constant Energy Blast Waves -- |g 6.4. |t Explosion of a Finite Spherical Charge -- |g 6.5. |t Piston Driven Explosions -- |g 7. |t Brinkley--Kirkwood Theory -- |g 7.1. |t Introduction -- |g 7.2. |t Basic Equations -- |g 7.3. |t Energy Integral -- |g 7.4. |t Fourth Equation -- |g 7.5. |t Shock Decay Equation -- |g 7.6. |t Asymptotic Weak Shock Regime -- |g 7.7. |t Explosion of a Pressurized Sphere -- |g 8. |t Non-similar Solutions for Finite Strength Blast Waves -- |g 8.1. |t Introduction -- |g 8.2. |t Basic Formulation -- |g 8.3. |t Perturbation Solution -- |g 8.4. |t Quasi-similar Solution -- |g 8.5. |t Integral Method -- |g 9. |t Implosions -- |g 9.1. |t Introduction -- |g 9.2. |t Implosions -- |g 9.3. |t Solution in the State Plane -- |g 9.4. |t Shock Propagation in a Non-uniform Density Medium -- |g 9.5. |t Sharp Blow Problem -- |g 9.6. |t Exact Solution for γ = 1.4 -- |g 9.7. |t Determination of A -- |g 9.8. |t Converging Blast Waves. |
938 | |a Askews and Holts Library Services |b ASKH |n AH33404579 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH34209845 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH31091134 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL4522454 | ||
938 | |a EBSCOhost |b EBSC |n 1230544 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis35291662 | ||
938 | |a YBP Library Services |b YANK |n 13034192 | ||
938 | |a YBP Library Services |b YANK |n 13076224 | ||
938 | |a YBP Library Services |b YANK |n 13077406 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn951646091 |
---|---|
_version_ | 1816882351448260609 |
adam_text | |
any_adam_object | |
author | Lee, John H. S., 1938- |
author_GND | http://id.loc.gov/authorities/names/n2008001674 |
author_facet | Lee, John H. S., 1938- |
author_role | aut |
author_sort | Lee, John H. S., 1938- |
author_variant | j h s l jhs jhsl |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | T - Technology |
callnumber-label | TP270 |
callnumber-raw | TP270 |
callnumber-search | TP270 |
callnumber-sort | TP 3270 |
callnumber-subject | TP - Chemical Technology |
collection | ZDB-4-EBA |
contents | Base equations -- Weak shock theory -- Shock propagation in a non-uniform cross-sectional area tube -- Blast wave theory -- Homentropic explosions -- The snow-plow approximation -- The Brinkley-Kirkwood theory -- Non-similar solutions for finite strength blast waves -- Implosions. |
ctrlnum | (OCoLC)951646091 |
dewey-full | 662.2 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 662 - Explosives, fuels & related products |
dewey-raw | 662.2 |
dewey-search | 662.2 |
dewey-sort | 3662.2 |
dewey-tens | 660 - Chemical engineering |
discipline | Chemie / Pharmazie |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06654cam a2200733 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn951646091</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu||||||||</controlfield><controlfield tag="008">160613s2016 enka ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">YDXCP</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">YDXCP</subfield><subfield code="d">LGG</subfield><subfield code="d">UIU</subfield><subfield code="d">OTZ</subfield><subfield code="d">N$T</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCF</subfield><subfield code="d">N$T</subfield><subfield code="d">COO</subfield><subfield code="d">KNOVL</subfield><subfield code="d">MYG</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">IDB</subfield><subfield code="d">STF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WAU</subfield><subfield code="d">VT2</subfield><subfield code="d">S4S</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VGM</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UAB</subfield><subfield code="d">U3W</subfield><subfield code="d">REB</subfield><subfield code="d">YDX</subfield><subfield code="d">GILDS</subfield><subfield code="d">ZCU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MERER</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">INT</subfield><subfield code="d">AU@</subfield><subfield code="d">WYU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LEAUB</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UPM</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="066" ind1=" " ind2=" "><subfield code="c">(S</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">967618354</subfield><subfield code="a">999517863</subfield><subfield code="a">1039443055</subfield><subfield code="a">1167481036</subfield><subfield code="a">1233262152</subfield><subfield code="a">1237625777</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781316226926</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1316226921</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781316593783</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1316593789</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781523103997</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">152310399X</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1107106303</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781107106307</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781316593615</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1316593614</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)951646091</subfield><subfield code="z">(OCoLC)967618354</subfield><subfield code="z">(OCoLC)999517863</subfield><subfield code="z">(OCoLC)1039443055</subfield><subfield code="z">(OCoLC)1167481036</subfield><subfield code="z">(OCoLC)1233262152</subfield><subfield code="z">(OCoLC)1237625777</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">TP270</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">TEC</subfield><subfield code="x">009010</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">662.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lee, John H. S.,</subfield><subfield code="d">1938-</subfield><subfield code="e">author.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjw9rtVXm6gvwf3wKYPPPP</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2008001674</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Gas dynamics of explosions /</subfield><subfield code="c">John H.S. Lee, McGill University, Montreal, Canada.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©20</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2016.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (vii, 205 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Explosions, and the non-steady shock propagation associated with them, continue to interest researchers working in different fields of physics and engineering (such as astrophysics and fusion). Based on the author's course in shock dynamics, this book describes the various analytical methods developed to determine non-steady shock propagation. These methods offer a simple alternative to the direct numerical integration of the Euler equations and offer a better insight into the physics of the problem. Professor Lee presents the subject systematically and in a style that is accessible to graduate students and researchers working in shock dynamics, combustion, high-speed aerodynamics, propulsion and related topics.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="6">880-01</subfield><subfield code="a">Base equations -- Weak shock theory -- Shock propagation in a non-uniform cross-sectional area tube -- Blast wave theory -- Homentropic explosions -- The snow-plow approximation -- The Brinkley-Kirkwood theory -- Non-similar solutions for finite strength blast waves -- Implosions.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Explosions.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85046465</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Gas dynamics.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85053291</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Explosions</subfield><subfield code="0">https://id.nlm.nih.gov/mesh/D005107</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Explosions.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Dynamique des gaz.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">explosions.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING</subfield><subfield code="x">Chemical & Biochemical.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Explosions</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Gas dynamics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Gas dynamics of explosions (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCG997cdvqBQWWKfjqXC7tq</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Lee, John H.S., 1938-</subfield><subfield code="t">Gas dynamics of explosions.</subfield><subfield code="d">New York, NY : Cambridge University Press, 2016</subfield><subfield code="z">1107106303</subfield><subfield code="w">(DLC) 2016285330</subfield><subfield code="w">(OCoLC)929782960</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1230544</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="880" ind1="0" ind2="0"><subfield code="6">505-01/(S</subfield><subfield code="g">Machine generated contents note:</subfield><subfield code="g">1.</subfield><subfield code="t">Basic Equations --</subfield><subfield code="g">1.1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">1.2.</subfield><subfield code="t">Thermodynamics --</subfield><subfield code="g">1.3.</subfield><subfield code="t">Conservation Equations --</subfield><subfield code="g">1.4.</subfield><subfield code="t">Characteristic Equations --</subfield><subfield code="g">1.5.</subfield><subfield code="t">Acoustic Waves --</subfield><subfield code="g">1.6.</subfield><subfield code="t">Acoustic Radiation from a Spherical Expanding Piston --</subfield><subfield code="g">1.7.</subfield><subfield code="t">Waves of Finite Amplitude --</subfield><subfield code="g">1.8.</subfield><subfield code="t">Piston Problem --</subfield><subfield code="g">1.9.</subfield><subfield code="t">Shock Waves --</subfield><subfield code="g">1.10.</subfield><subfield code="t">Detonation and Deflagration Waves --</subfield><subfield code="g">2.</subfield><subfield code="t">Weak Shock Theory --</subfield><subfield code="g">2.1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">2.2.</subfield><subfield code="t">Properties of Weak Shocks --</subfield><subfield code="g">2.3.</subfield><subfield code="t">Chandrasekhar's Solution --</subfield><subfield code="g">2.4.</subfield><subfield code="t">Oswatitsch's Solution --</subfield><subfield code="g">2.5.</subfield><subfield code="t">Friedrichs' Theory --</subfield><subfield code="g">2.6.</subfield><subfield code="t">Decay of a Piston Driven Shock --</subfield><subfield code="g">2.7.</subfield><subfield code="t">Whitham's Theory --</subfield><subfield code="g">3.</subfield><subfield code="t">Shock Propagation in a Non-uniform Cross-sectional Area Tube --</subfield><subfield code="g">3.1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">3.2.</subfield><subfield code="t">Chester's Theory --</subfield><subfield code="g">3.3.</subfield><subfield code="t">Chisnell's Theory --</subfield><subfield code="g">3.4.</subfield><subfield code="t">Whitham's Theory --</subfield><subfield code="g">4.</subfield><subfield code="t">Blast Wave Theory --</subfield><subfield code="g">4.1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">4.2.</subfield><subfield code="t">Basic Equations --</subfield><subfield code="g">4.3.</subfield><subfield code="t">Energy Integral --</subfield><subfield code="g">4.4.</subfield><subfield code="t">Integrals of the Similarity Equations --</subfield><subfield code="g">4.5.</subfield><subfield code="t">Closed Form Solution for Blasts --</subfield><subfield code="g">4.6.</subfield><subfield code="t">Properties of the Constant Energy Solution --</subfield><subfield code="g">4.7.</subfield><subfield code="t">Variable Energy Blasts --</subfield><subfield code="g">5.</subfield><subfield code="t">Homentropic Explosions --</subfield><subfield code="g">5.1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">5.2.</subfield><subfield code="t">Shock Tube Problem --</subfield><subfield code="g">5.3.</subfield><subfield code="t">Propagation of Chapman--Jouguet Detonations --</subfield><subfield code="g">5.4.</subfield><subfield code="t">Piston Driven Explosion --</subfield><subfield code="g">6.</subfield><subfield code="t">Snow-Plow Approximation --</subfield><subfield code="g">6.1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">6.2.</subfield><subfield code="t">Basic Equations --</subfield><subfield code="g">6.3.</subfield><subfield code="t">Constant Energy Blast Waves --</subfield><subfield code="g">6.4.</subfield><subfield code="t">Explosion of a Finite Spherical Charge --</subfield><subfield code="g">6.5.</subfield><subfield code="t">Piston Driven Explosions --</subfield><subfield code="g">7.</subfield><subfield code="t">Brinkley--Kirkwood Theory --</subfield><subfield code="g">7.1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">7.2.</subfield><subfield code="t">Basic Equations --</subfield><subfield code="g">7.3.</subfield><subfield code="t">Energy Integral --</subfield><subfield code="g">7.4.</subfield><subfield code="t">Fourth Equation --</subfield><subfield code="g">7.5.</subfield><subfield code="t">Shock Decay Equation --</subfield><subfield code="g">7.6.</subfield><subfield code="t">Asymptotic Weak Shock Regime --</subfield><subfield code="g">7.7.</subfield><subfield code="t">Explosion of a Pressurized Sphere --</subfield><subfield code="g">8.</subfield><subfield code="t">Non-similar Solutions for Finite Strength Blast Waves --</subfield><subfield code="g">8.1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">8.2.</subfield><subfield code="t">Basic Formulation --</subfield><subfield code="g">8.3.</subfield><subfield code="t">Perturbation Solution --</subfield><subfield code="g">8.4.</subfield><subfield code="t">Quasi-similar Solution --</subfield><subfield code="g">8.5.</subfield><subfield code="t">Integral Method --</subfield><subfield code="g">9.</subfield><subfield code="t">Implosions --</subfield><subfield code="g">9.1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">9.2.</subfield><subfield code="t">Implosions --</subfield><subfield code="g">9.3.</subfield><subfield code="t">Solution in the State Plane --</subfield><subfield code="g">9.4.</subfield><subfield code="t">Shock Propagation in a Non-uniform Density Medium --</subfield><subfield code="g">9.5.</subfield><subfield code="t">Sharp Blow Problem --</subfield><subfield code="g">9.6.</subfield><subfield code="t">Exact Solution for γ = 1.4 --</subfield><subfield code="g">9.7.</subfield><subfield code="t">Determination of A --</subfield><subfield code="g">9.8.</subfield><subfield code="t">Converging Blast Waves.</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH33404579</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH34209845</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH31091134</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL4522454</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">1230544</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis35291662</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">13034192</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">13076224</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">13077406</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn951646091 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:27:14Z |
institution | BVB |
isbn | 9781316226926 1316226921 9781316593783 1316593789 9781523103997 152310399X |
language | English |
oclc_num | 951646091 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (vii, 205 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | Cambridge University Press, |
record_format | marc |
spelling | Lee, John H. S., 1938- author. https://id.oclc.org/worldcat/entity/E39PCjw9rtVXm6gvwf3wKYPPPP http://id.loc.gov/authorities/names/n2008001674 Gas dynamics of explosions / John H.S. Lee, McGill University, Montreal, Canada. ©20 Cambridge : Cambridge University Press, 2016. 1 online resource (vii, 205 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Explosions, and the non-steady shock propagation associated with them, continue to interest researchers working in different fields of physics and engineering (such as astrophysics and fusion). Based on the author's course in shock dynamics, this book describes the various analytical methods developed to determine non-steady shock propagation. These methods offer a simple alternative to the direct numerical integration of the Euler equations and offer a better insight into the physics of the problem. Professor Lee presents the subject systematically and in a style that is accessible to graduate students and researchers working in shock dynamics, combustion, high-speed aerodynamics, propulsion and related topics. Includes bibliographical references and index. 880-01 Base equations -- Weak shock theory -- Shock propagation in a non-uniform cross-sectional area tube -- Blast wave theory -- Homentropic explosions -- The snow-plow approximation -- The Brinkley-Kirkwood theory -- Non-similar solutions for finite strength blast waves -- Implosions. Print version record. Explosions. http://id.loc.gov/authorities/subjects/sh85046465 Gas dynamics. http://id.loc.gov/authorities/subjects/sh85053291 Explosions https://id.nlm.nih.gov/mesh/D005107 Explosions. Dynamique des gaz. explosions. aat TECHNOLOGY & ENGINEERING Chemical & Biochemical. bisacsh Explosions fast Gas dynamics fast has work: Gas dynamics of explosions (Text) https://id.oclc.org/worldcat/entity/E39PCG997cdvqBQWWKfjqXC7tq https://id.oclc.org/worldcat/ontology/hasWork Print version: Lee, John H.S., 1938- Gas dynamics of explosions. New York, NY : Cambridge University Press, 2016 1107106303 (DLC) 2016285330 (OCoLC)929782960 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1230544 Volltext 505-01/(S Machine generated contents note: 1. Basic Equations -- 1.1. Introduction -- 1.2. Thermodynamics -- 1.3. Conservation Equations -- 1.4. Characteristic Equations -- 1.5. Acoustic Waves -- 1.6. Acoustic Radiation from a Spherical Expanding Piston -- 1.7. Waves of Finite Amplitude -- 1.8. Piston Problem -- 1.9. Shock Waves -- 1.10. Detonation and Deflagration Waves -- 2. Weak Shock Theory -- 2.1. Introduction -- 2.2. Properties of Weak Shocks -- 2.3. Chandrasekhar's Solution -- 2.4. Oswatitsch's Solution -- 2.5. Friedrichs' Theory -- 2.6. Decay of a Piston Driven Shock -- 2.7. Whitham's Theory -- 3. Shock Propagation in a Non-uniform Cross-sectional Area Tube -- 3.1. Introduction -- 3.2. Chester's Theory -- 3.3. Chisnell's Theory -- 3.4. Whitham's Theory -- 4. Blast Wave Theory -- 4.1. Introduction -- 4.2. Basic Equations -- 4.3. Energy Integral -- 4.4. Integrals of the Similarity Equations -- 4.5. Closed Form Solution for Blasts -- 4.6. Properties of the Constant Energy Solution -- 4.7. Variable Energy Blasts -- 5. Homentropic Explosions -- 5.1. Introduction -- 5.2. Shock Tube Problem -- 5.3. Propagation of Chapman--Jouguet Detonations -- 5.4. Piston Driven Explosion -- 6. Snow-Plow Approximation -- 6.1. Introduction -- 6.2. Basic Equations -- 6.3. Constant Energy Blast Waves -- 6.4. Explosion of a Finite Spherical Charge -- 6.5. Piston Driven Explosions -- 7. Brinkley--Kirkwood Theory -- 7.1. Introduction -- 7.2. Basic Equations -- 7.3. Energy Integral -- 7.4. Fourth Equation -- 7.5. Shock Decay Equation -- 7.6. Asymptotic Weak Shock Regime -- 7.7. Explosion of a Pressurized Sphere -- 8. Non-similar Solutions for Finite Strength Blast Waves -- 8.1. Introduction -- 8.2. Basic Formulation -- 8.3. Perturbation Solution -- 8.4. Quasi-similar Solution -- 8.5. Integral Method -- 9. Implosions -- 9.1. Introduction -- 9.2. Implosions -- 9.3. Solution in the State Plane -- 9.4. Shock Propagation in a Non-uniform Density Medium -- 9.5. Sharp Blow Problem -- 9.6. Exact Solution for γ = 1.4 -- 9.7. Determination of A -- 9.8. Converging Blast Waves. |
spellingShingle | Lee, John H. S., 1938- Gas dynamics of explosions / Base equations -- Weak shock theory -- Shock propagation in a non-uniform cross-sectional area tube -- Blast wave theory -- Homentropic explosions -- The snow-plow approximation -- The Brinkley-Kirkwood theory -- Non-similar solutions for finite strength blast waves -- Implosions. Explosions. http://id.loc.gov/authorities/subjects/sh85046465 Gas dynamics. http://id.loc.gov/authorities/subjects/sh85053291 Explosions https://id.nlm.nih.gov/mesh/D005107 Explosions. Dynamique des gaz. explosions. aat TECHNOLOGY & ENGINEERING Chemical & Biochemical. bisacsh Explosions fast Gas dynamics fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85046465 http://id.loc.gov/authorities/subjects/sh85053291 https://id.nlm.nih.gov/mesh/D005107 |
title | Gas dynamics of explosions / |
title_auth | Gas dynamics of explosions / |
title_exact_search | Gas dynamics of explosions / |
title_full | Gas dynamics of explosions / John H.S. Lee, McGill University, Montreal, Canada. |
title_fullStr | Gas dynamics of explosions / John H.S. Lee, McGill University, Montreal, Canada. |
title_full_unstemmed | Gas dynamics of explosions / John H.S. Lee, McGill University, Montreal, Canada. |
title_short | Gas dynamics of explosions / |
title_sort | gas dynamics of explosions |
topic | Explosions. http://id.loc.gov/authorities/subjects/sh85046465 Gas dynamics. http://id.loc.gov/authorities/subjects/sh85053291 Explosions https://id.nlm.nih.gov/mesh/D005107 Explosions. Dynamique des gaz. explosions. aat TECHNOLOGY & ENGINEERING Chemical & Biochemical. bisacsh Explosions fast Gas dynamics fast |
topic_facet | Explosions. Gas dynamics. Explosions Dynamique des gaz. explosions. TECHNOLOGY & ENGINEERING Chemical & Biochemical. Gas dynamics |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1230544 |
work_keys_str_mv | AT leejohnhs gasdynamicsofexplosions |