Solving polynomial equation systems.: Volume IV, Buchberger theory and beyond /

In this fourth and final volume the author extends Buchberger's Algorithm in three different directions. First, he extends the theory to group rings and other Ore-like extensions, and provides an operative scheme that allows one to set a Buchberger theory over any effective associative ring. Se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Mora, Teo (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Cambridge : Cambridge University Press, 2016.
Schriftenreihe:Encyclopedia of mathematics and its applications ; 158.
Schlagworte:
Online-Zugang:DE-862
DE-863
Zusammenfassung:In this fourth and final volume the author extends Buchberger's Algorithm in three different directions. First, he extends the theory to group rings and other Ore-like extensions, and provides an operative scheme that allows one to set a Buchberger theory over any effective associative ring. Second, he covers similar extensions as tools for discussing parametric polynomial systems, the notion of SAGBI-bases, Gröbner bases over invariant rings and Hironaka's theory. Finally, Mora shows how Hilbert's followers - notably Janet, Gunther and Macaulay - anticipated Buchberger's ideas and discusses the most promising recent alternatives by Gerdt (involutive bases) and Faugère (F4 and F5). This comprehensive treatment in four volumes is a significant contribution to algorithmic commutative algebra that will be essential reading for algebraists and algebraic geometers.
Beschreibung:1 online resource (xi, 820 pages)
Bibliographie:Includes bibliographical references (pages 803-812) and index.
ISBN:9781316271902
1316271900
9781316384985
1316384985

Es ist kein Print-Exemplar vorhanden.

Volltext öffnen