Solving polynomial equation systems.: Volume IV, Buchberger theory and beyond /
In this fourth and final volume the author extends Buchberger's Algorithm in three different directions. First, he extends the theory to group rings and other Ore-like extensions, and provides an operative scheme that allows one to set a Buchberger theory over any effective associative ring. Se...
Saved in:
Main Author: | |
---|---|
Format: | Electronic eBook |
Language: | English |
Published: |
Cambridge :
Cambridge University Press,
2016.
|
Series: | Encyclopedia of mathematics and its applications ;
158. |
Subjects: | |
Online Access: | DE-862 DE-863 |
Summary: | In this fourth and final volume the author extends Buchberger's Algorithm in three different directions. First, he extends the theory to group rings and other Ore-like extensions, and provides an operative scheme that allows one to set a Buchberger theory over any effective associative ring. Second, he covers similar extensions as tools for discussing parametric polynomial systems, the notion of SAGBI-bases, Gröbner bases over invariant rings and Hironaka's theory. Finally, Mora shows how Hilbert's followers - notably Janet, Gunther and Macaulay - anticipated Buchberger's ideas and discusses the most promising recent alternatives by Gerdt (involutive bases) and Faugère (F4 and F5). This comprehensive treatment in four volumes is a significant contribution to algorithmic commutative algebra that will be essential reading for algebraists and algebraic geometers. |
Physical Description: | 1 online resource (xi, 820 pages) |
Bibliography: | Includes bibliographical references (pages 803-812) and index. |
ISBN: | 9781316271902 1316271900 9781316384985 1316384985 |
Staff View
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn946609910 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr mn||||||||| | ||
008 | 141119t20162016enk ob 001 0 eng d | ||
040 | |a UAB |b eng |e rda |e pn |c UAB |d N$T |d LGG |d N$T |d UIU |d OCLCF |d IDEBK |d OSU |d OCLCQ |d AU@ |d UKAHL |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d S9M |d OCLCQ |d SFB |d OCLCQ | ||
020 | |a 9781316271902 |q (electronic bk.) | ||
020 | |a 1316271900 |q (electronic bk.) | ||
020 | |a 9781316384985 |q (electronic bk.) | ||
020 | |a 1316384985 |q (electronic bk.) | ||
020 | |z 9781107109636 |q (hardback) | ||
020 | |z 1107109639 |q (hardback) | ||
035 | |a (OCoLC)946609910 | ||
050 | 4 | |a QA251.3 | |
072 | 7 | |a MAT |x 002040 |2 bisacsh | |
082 | 7 | |a 512.44 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Mora, Teo, |e author. |0 http://id.loc.gov/authorities/names/n78023685 | |
245 | 1 | 0 | |a Solving polynomial equation systems. |n Volume IV, |p Buchberger theory and beyond / |c Teo Mora. |
246 | 3 | 0 | |a Buchberger theory and beyond |
264 | 1 | |a Cambridge : |b Cambridge University Press, |c 2016. | |
264 | 4 | |c ©2016 | |
300 | |a 1 online resource (xi, 820 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Encyclopedia of mathematics and its applications ; |v 158 | |
520 | |a In this fourth and final volume the author extends Buchberger's Algorithm in three different directions. First, he extends the theory to group rings and other Ore-like extensions, and provides an operative scheme that allows one to set a Buchberger theory over any effective associative ring. Second, he covers similar extensions as tools for discussing parametric polynomial systems, the notion of SAGBI-bases, Gröbner bases over invariant rings and Hironaka's theory. Finally, Mora shows how Hilbert's followers - notably Janet, Gunther and Macaulay - anticipated Buchberger's ideas and discusses the most promising recent alternatives by Gerdt (involutive bases) and Faugère (F4 and F5). This comprehensive treatment in four volumes is a significant contribution to algorithmic commutative algebra that will be essential reading for algebraists and algebraic geometers. | ||
504 | |a Includes bibliographical references (pages 803-812) and index. | ||
505 | 0 | |a Zacharias -- Bergman -- Ufnarovski -- Weispfenning -- Spear 2 -- Weispfenning II -- Sweedler -- Hironaka -- Hironaka II -- Janet -- Macaulay V -- Gerdt and Faugere. | |
588 | 0 | |a Print version record. | |
650 | 0 | |a Commutative rings. |0 http://id.loc.gov/authorities/subjects/sh85029269 | |
650 | 0 | |a Commutative algebra. |0 http://id.loc.gov/authorities/subjects/sh85029267 | |
650 | 6 | |a Anneaux commutatifs. | |
650 | 6 | |a Algèbre commutative. | |
650 | 7 | |a MATHEMATICS |x Algebra |x Intermediate. |2 bisacsh | |
650 | 7 | |a Anillos conmutativos |2 embne | |
650 | 7 | |a Álgebra conmutativa |2 embne | |
650 | 7 | |a Commutative algebra |2 fast | |
650 | 7 | |a Commutative rings |2 fast | |
776 | 0 | 8 | |i Print version: |a Mora, Teo. |t Solving polynomial equation systems. Volume IV, Buchberger theory and beyond. |d Cambridge : Cambridge University Press, 2016 |z 1107109639 |w (OCoLC)945641191 |
830 | 0 | |a Encyclopedia of mathematics and its applications ; |v 158. |0 http://id.loc.gov/authorities/names/n42010632 | |
966 | 4 | 0 | |l DE-862 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1196925 |3 Volltext |
966 | 4 | 0 | |l DE-863 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1196925 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH33403751 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH34209945 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH30624693 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH29721415 | ||
938 | |a EBSCOhost |b EBSC |n 1196925 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis34577443 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-862 | ||
049 | |a DE-863 |
Record in the Search Index
DE-BY-FWS_katkey | ZDB-4-EBA-ocn946609910 |
---|---|
_version_ | 1826942111962890241 |
adam_text | |
any_adam_object | |
author | Mora, Teo |
author_GND | http://id.loc.gov/authorities/names/n78023685 |
author_facet | Mora, Teo |
author_role | aut |
author_sort | Mora, Teo |
author_variant | t m tm |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA251 |
callnumber-raw | QA251.3 |
callnumber-search | QA251.3 |
callnumber-sort | QA 3251.3 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Zacharias -- Bergman -- Ufnarovski -- Weispfenning -- Spear 2 -- Weispfenning II -- Sweedler -- Hironaka -- Hironaka II -- Janet -- Macaulay V -- Gerdt and Faugere. |
ctrlnum | (OCoLC)946609910 |
dewey-full | 512.44 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.44 |
dewey-search | 512.44 |
dewey-sort | 3512.44 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03845cam a2200637 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn946609910</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr mn|||||||||</controlfield><controlfield tag="008">141119t20162016enk ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">UAB</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">UAB</subfield><subfield code="d">N$T</subfield><subfield code="d">LGG</subfield><subfield code="d">N$T</subfield><subfield code="d">UIU</subfield><subfield code="d">OCLCF</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OSU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AU@</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">S9M</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781316271902</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1316271900</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781316384985</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1316384985</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781107109636</subfield><subfield code="q">(hardback)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1107109639</subfield><subfield code="q">(hardback)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)946609910</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA251.3</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">002040</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512.44</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mora, Teo,</subfield><subfield code="e">author.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n78023685</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Solving polynomial equation systems.</subfield><subfield code="n">Volume IV,</subfield><subfield code="p">Buchberger theory and beyond /</subfield><subfield code="c">Teo Mora.</subfield></datafield><datafield tag="246" ind1="3" ind2="0"><subfield code="a">Buchberger theory and beyond</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2016.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xi, 820 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Encyclopedia of mathematics and its applications ;</subfield><subfield code="v">158</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this fourth and final volume the author extends Buchberger's Algorithm in three different directions. First, he extends the theory to group rings and other Ore-like extensions, and provides an operative scheme that allows one to set a Buchberger theory over any effective associative ring. Second, he covers similar extensions as tools for discussing parametric polynomial systems, the notion of SAGBI-bases, Gröbner bases over invariant rings and Hironaka's theory. Finally, Mora shows how Hilbert's followers - notably Janet, Gunther and Macaulay - anticipated Buchberger's ideas and discusses the most promising recent alternatives by Gerdt (involutive bases) and Faugère (F4 and F5). This comprehensive treatment in four volumes is a significant contribution to algorithmic commutative algebra that will be essential reading for algebraists and algebraic geometers.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 803-812) and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Zacharias -- Bergman -- Ufnarovski -- Weispfenning -- Spear 2 -- Weispfenning II -- Sweedler -- Hironaka -- Hironaka II -- Janet -- Macaulay V -- Gerdt and Faugere.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Commutative rings.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85029269</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Commutative algebra.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85029267</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Anneaux commutatifs.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Algèbre commutative.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Algebra</subfield><subfield code="x">Intermediate.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Anillos conmutativos</subfield><subfield code="2">embne</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Álgebra conmutativa</subfield><subfield code="2">embne</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Commutative algebra</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Commutative rings</subfield><subfield code="2">fast</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Mora, Teo.</subfield><subfield code="t">Solving polynomial equation systems. Volume IV, Buchberger theory and beyond.</subfield><subfield code="d">Cambridge : Cambridge University Press, 2016</subfield><subfield code="z">1107109639</subfield><subfield code="w">(OCoLC)945641191</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Encyclopedia of mathematics and its applications ;</subfield><subfield code="v">158.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42010632</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-862</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1196925</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-863</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1196925</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH33403751</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH34209945</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH30624693</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH29721415</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">1196925</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis34577443</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-862</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn946609910 |
illustrated | Not Illustrated |
indexdate | 2025-03-18T14:22:49Z |
institution | BVB |
isbn | 9781316271902 1316271900 9781316384985 1316384985 |
language | English |
oclc_num | 946609910 |
open_access_boolean | |
owner | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
owner_facet | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
physical | 1 online resource (xi, 820 pages) |
psigel | ZDB-4-EBA FWS_PDA_EBA ZDB-4-EBA |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | Cambridge University Press, |
record_format | marc |
series | Encyclopedia of mathematics and its applications ; |
series2 | Encyclopedia of mathematics and its applications ; |
spelling | Mora, Teo, author. http://id.loc.gov/authorities/names/n78023685 Solving polynomial equation systems. Volume IV, Buchberger theory and beyond / Teo Mora. Buchberger theory and beyond Cambridge : Cambridge University Press, 2016. ©2016 1 online resource (xi, 820 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier Encyclopedia of mathematics and its applications ; 158 In this fourth and final volume the author extends Buchberger's Algorithm in three different directions. First, he extends the theory to group rings and other Ore-like extensions, and provides an operative scheme that allows one to set a Buchberger theory over any effective associative ring. Second, he covers similar extensions as tools for discussing parametric polynomial systems, the notion of SAGBI-bases, Gröbner bases over invariant rings and Hironaka's theory. Finally, Mora shows how Hilbert's followers - notably Janet, Gunther and Macaulay - anticipated Buchberger's ideas and discusses the most promising recent alternatives by Gerdt (involutive bases) and Faugère (F4 and F5). This comprehensive treatment in four volumes is a significant contribution to algorithmic commutative algebra that will be essential reading for algebraists and algebraic geometers. Includes bibliographical references (pages 803-812) and index. Zacharias -- Bergman -- Ufnarovski -- Weispfenning -- Spear 2 -- Weispfenning II -- Sweedler -- Hironaka -- Hironaka II -- Janet -- Macaulay V -- Gerdt and Faugere. Print version record. Commutative rings. http://id.loc.gov/authorities/subjects/sh85029269 Commutative algebra. http://id.loc.gov/authorities/subjects/sh85029267 Anneaux commutatifs. Algèbre commutative. MATHEMATICS Algebra Intermediate. bisacsh Anillos conmutativos embne Álgebra conmutativa embne Commutative algebra fast Commutative rings fast Print version: Mora, Teo. Solving polynomial equation systems. Volume IV, Buchberger theory and beyond. Cambridge : Cambridge University Press, 2016 1107109639 (OCoLC)945641191 Encyclopedia of mathematics and its applications ; 158. http://id.loc.gov/authorities/names/n42010632 |
spellingShingle | Mora, Teo Solving polynomial equation systems. Encyclopedia of mathematics and its applications ; Zacharias -- Bergman -- Ufnarovski -- Weispfenning -- Spear 2 -- Weispfenning II -- Sweedler -- Hironaka -- Hironaka II -- Janet -- Macaulay V -- Gerdt and Faugere. Commutative rings. http://id.loc.gov/authorities/subjects/sh85029269 Commutative algebra. http://id.loc.gov/authorities/subjects/sh85029267 Anneaux commutatifs. Algèbre commutative. MATHEMATICS Algebra Intermediate. bisacsh Anillos conmutativos embne Álgebra conmutativa embne Commutative algebra fast Commutative rings fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85029269 http://id.loc.gov/authorities/subjects/sh85029267 |
title | Solving polynomial equation systems. |
title_alt | Buchberger theory and beyond |
title_auth | Solving polynomial equation systems. |
title_exact_search | Solving polynomial equation systems. |
title_full | Solving polynomial equation systems. Volume IV, Buchberger theory and beyond / Teo Mora. |
title_fullStr | Solving polynomial equation systems. Volume IV, Buchberger theory and beyond / Teo Mora. |
title_full_unstemmed | Solving polynomial equation systems. Volume IV, Buchberger theory and beyond / Teo Mora. |
title_short | Solving polynomial equation systems. |
title_sort | solving polynomial equation systems buchberger theory and beyond |
topic | Commutative rings. http://id.loc.gov/authorities/subjects/sh85029269 Commutative algebra. http://id.loc.gov/authorities/subjects/sh85029267 Anneaux commutatifs. Algèbre commutative. MATHEMATICS Algebra Intermediate. bisacsh Anillos conmutativos embne Álgebra conmutativa embne Commutative algebra fast Commutative rings fast |
topic_facet | Commutative rings. Commutative algebra. Anneaux commutatifs. Algèbre commutative. MATHEMATICS Algebra Intermediate. Anillos conmutativos Álgebra conmutativa Commutative algebra Commutative rings |
work_keys_str_mv | AT morateo solvingpolynomialequationsystemsvolumeiv AT morateo buchbergertheoryandbeyond |