Materials characterization using nondestructive evaluation methods /:
Materials Characterization Using Nondestructive Evaluation (NDE) Methods discusses NDT methods and how they are highly desirable for both long-term monitoring and short-term assessment of materials, providing crucial early warning that the fatigue life of a material has elapsed, thus helping to prev...
Gespeichert in:
Weitere Verfasser: | , , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge, MA :
Woodhead Publishing, an imprint of Elsevier,
2016.
|
Schriftenreihe: | Woodhead Publishing series in electronic and optical materials ;
88. |
Schlagworte: | |
Online-Zugang: | Volltext Volltext |
Zusammenfassung: | Materials Characterization Using Nondestructive Evaluation (NDE) Methods discusses NDT methods and how they are highly desirable for both long-term monitoring and short-term assessment of materials, providing crucial early warning that the fatigue life of a material has elapsed, thus helping to prevent service failures. Materials Characterization Using Nondestructive Evaluation (NDE) Methods gives an overview of established and new NDT techniques for the characterization of materials, with a focus on materials used in the automotive, aerospace, power plants, and infrastructure construction industries. Each chapter focuses on a different NDT technique and indicates the potential of the method by selected examples of applications. Methods covered include scanning and transmission electron microscopy, X-ray microtomography and diffraction, ultrasonic, electromagnetic, microwave, and hybrid techniques. The authors review both the determination of microstructure properties, including phase content and grain size, and the determination of mechanical properties, such as hardness, toughness, yield strength, texture, and residual stress. |
Beschreibung: | 1 online resource |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9780081000571 008100057X |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn945731751 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 160331s2016 mau ob 001 0 eng d | ||
040 | |a N$T |b eng |e rda |e pn |c N$T |d YDXCP |d OPELS |d CDX |d IDEBK |d OCLCF |d EBLCP |d DEBSZ |d OCLCQ |d U3W |d D6H |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d SXB |d OCLCQ | ||
019 | |a 945752080 |a 945874578 | ||
020 | |a 9780081000571 |q (electronic bk.) | ||
020 | |a 008100057X |q (electronic bk.) | ||
020 | |z 9780081000403 | ||
035 | |a (OCoLC)945731751 |z (OCoLC)945752080 |z (OCoLC)945874578 | ||
050 | 4 | |a QD131 | |
072 | 7 | |a TEC |x 023000 |2 bisacsh | |
082 | 7 | |a 669.92 |2 23 | |
049 | |a MAIN | ||
245 | 0 | 0 | |a Materials characterization using nondestructive evaluation methods / |c edited by Gerhard Hübscen, Iris Altpeter, Ralf Tschuncky, Hans-Georg Herrmann. |
264 | 1 | |a Cambridge, MA : |b Woodhead Publishing, an imprint of Elsevier, |c 2016. | |
300 | |a 1 online resource | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Woodhead publishing series in electronic and optical materials ; |v 88 | |
588 | 0 | |a Online resource; title from PDF title page (EBSCO, viewed March 31, 2016). | |
504 | |a Includes bibliographical references and index. | ||
520 | |a Materials Characterization Using Nondestructive Evaluation (NDE) Methods discusses NDT methods and how they are highly desirable for both long-term monitoring and short-term assessment of materials, providing crucial early warning that the fatigue life of a material has elapsed, thus helping to prevent service failures. Materials Characterization Using Nondestructive Evaluation (NDE) Methods gives an overview of established and new NDT techniques for the characterization of materials, with a focus on materials used in the automotive, aerospace, power plants, and infrastructure construction industries. Each chapter focuses on a different NDT technique and indicates the potential of the method by selected examples of applications. Methods covered include scanning and transmission electron microscopy, X-ray microtomography and diffraction, ultrasonic, electromagnetic, microwave, and hybrid techniques. The authors review both the determination of microstructure properties, including phase content and grain size, and the determination of mechanical properties, such as hardness, toughness, yield strength, texture, and residual stress. | ||
505 | 0 | |a Front Cover; Materials Characterization Using Nondestructive Evaluation (NDE) Methods#; Related titles; Materials Characterization Using Nondestructive Evaluation (NDE) Methods; Copyright; Contents; List of contributors; Woodhead Publishing Series in Electronic and Optical Materials; 1 -- Atomic force microscopy (AFM) for materials characterization; 1.1 Introduction; 1.2 Comparison of AFM with other microscopy techniques; 1.3 Principles of AFM technique; 1.4 Construction and basic components of AFM; 1.5 Working modes of AFM; 1.5.1 Contact mode; 1.5.2 Noncontact mode; 1.5.3 Tapping mode | |
505 | 8 | |a 1.6 Application of AFM for material characterization1.6.1 Surface properties measurement; 1.6.2 AFM measurements for hardness and modulus measurements; 1.6.3 AFM measurements for damage characterizations; 1.6.4 AFM measurements for characterizations of surface treatment effects; 1.7 Conclusions; Acknowledgments; References; 2 -- Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characterization; 2.1 Introduction; 2.2 Why electron microscopy?; 2.2.1 Key advantages of imaging with electrons; 2.2.2 Key disadvantages of imaging with electrons | |
505 | 8 | |a 2.3 Types of microscopes2.4 Interaction of electrons with materials; 2.4.1 Elastic versus inelastic electron scattering; 2.4.2 Signals from the specimen; 2.5 What material features can we analyze using electron microscopy?; 2.5.1 Practical electron microscopy; 2.6 Scanning electron microscopy; 2.6.1 Key features of the SEM microscope; 2.6.2 Specimen preparation; 2.6.3 SEM detectors; 2.7 Key microstructural features analyzed by SEM; 2.7.1 Specimen shape; 2.7.2 Specimen composition; 2.7.3 Surface crystallography; 2.8 Transmission electron microscopy; 2.8.1 Key features of the TEM microscope | |
505 | 8 | |a 2.8.2 TEM specimen preparation2.9 TEM imaging modes; 2.10 TEM spectroscopy; 2.10.1 X-ray analysis in TEM (EDX); 2.10.2 Electron energy loss spectrometry; 2.11 Key applications of TEM; 2.12 Is electron microscopy a nondestructive technique?; 2.12.1 Specimen preparation; 2.12.2 Specimen changes during imaging; 2.12.3 Strategies for minimizing specimen damage; 2.13 Outlook for SEM and TEM; References; 3 -- X-ray microtomography for materials characterization; 3.1 Introduction; 3.2 Imaging physics; 3.2.1 X-ray microfocus tubes; 3.2.2 Interaction of hard X-rays with materials | |
505 | 8 | |a 3.2.2.1 X-ray attenuationPhoton absorption; Compton scattering; 3.2.2.2 Phase contrast imaging; 3.2.3 X-ray detectors and imaging devices: principles, features, and common systems; 3.3 Principles of microcomputed tomography; 3.4 Geometrical considerations and data acquisition; 3.5 System design (CT methods); 3.6 Image reconstruction; 3.7 Image quality; 3.8 Radiation exposure; 3.9 Examples of important and/or frequent applications for materials characterization; 3.10 Conclusions and future trends; 3.11 Further literature; References | |
505 | 8 | |a 4 -- X-ray diffraction (XRD) techniques for materials characterization | |
650 | 0 | |a Materials |x Analysis. |0 http://id.loc.gov/authorities/subjects/sh85082066 | |
650 | 6 | |a Matériaux |x Analyse. | |
650 | 7 | |a TECHNOLOGY & ENGINEERING |x Metallurgy. |2 bisacsh | |
650 | 7 | |a Materials |x Analysis |2 fast | |
700 | 1 | |a Hübschen, Gerhard, |e editor. | |
700 | 1 | |a Altpeter, Iris, |e editor. | |
700 | 1 | |a Tschuncky, Ralf, |e editor. | |
700 | 1 | |a Herrmann, Hans-Georg, |e editor. | |
758 | |i has work: |a Materials characterization using nondestructive evaluation methods (Text) |1 https://id.oclc.org/worldcat/entity/E39PCY87pDHDCX984wK6jM9PMd |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Huebschen, Gerhard. |t Materials Characterization Using Nondestructive Evaluation (NDE) Methods. |d : Elsevier Science, ©2016 |z 9780081000403 |
830 | 0 | |a Woodhead Publishing series in electronic and optical materials ; |v 88. |0 http://id.loc.gov/authorities/names/no2013009353 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1151261 |3 Volltext |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://www.sciencedirect.com/science/book/9780081000403 |3 Volltext |
938 | |a Coutts Information Services |b COUT |n 34239337 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL4458822 | ||
938 | |a EBSCOhost |b EBSC |n 1151261 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis34239337 | ||
938 | |a YBP Library Services |b YANK |n 12908643 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn945731751 |
---|---|
_version_ | 1816882344094597120 |
adam_text | |
any_adam_object | |
author2 | Hübschen, Gerhard Altpeter, Iris Tschuncky, Ralf Herrmann, Hans-Georg |
author2_role | edt edt edt edt |
author2_variant | g h gh i a ia r t rt h g h hgh |
author_facet | Hübschen, Gerhard Altpeter, Iris Tschuncky, Ralf Herrmann, Hans-Georg |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QD131 |
callnumber-raw | QD131 |
callnumber-search | QD131 |
callnumber-sort | QD 3131 |
callnumber-subject | QD - Chemistry |
collection | ZDB-4-EBA |
contents | Front Cover; Materials Characterization Using Nondestructive Evaluation (NDE) Methods#; Related titles; Materials Characterization Using Nondestructive Evaluation (NDE) Methods; Copyright; Contents; List of contributors; Woodhead Publishing Series in Electronic and Optical Materials; 1 -- Atomic force microscopy (AFM) for materials characterization; 1.1 Introduction; 1.2 Comparison of AFM with other microscopy techniques; 1.3 Principles of AFM technique; 1.4 Construction and basic components of AFM; 1.5 Working modes of AFM; 1.5.1 Contact mode; 1.5.2 Noncontact mode; 1.5.3 Tapping mode 1.6 Application of AFM for material characterization1.6.1 Surface properties measurement; 1.6.2 AFM measurements for hardness and modulus measurements; 1.6.3 AFM measurements for damage characterizations; 1.6.4 AFM measurements for characterizations of surface treatment effects; 1.7 Conclusions; Acknowledgments; References; 2 -- Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characterization; 2.1 Introduction; 2.2 Why electron microscopy?; 2.2.1 Key advantages of imaging with electrons; 2.2.2 Key disadvantages of imaging with electrons 2.3 Types of microscopes2.4 Interaction of electrons with materials; 2.4.1 Elastic versus inelastic electron scattering; 2.4.2 Signals from the specimen; 2.5 What material features can we analyze using electron microscopy?; 2.5.1 Practical electron microscopy; 2.6 Scanning electron microscopy; 2.6.1 Key features of the SEM microscope; 2.6.2 Specimen preparation; 2.6.3 SEM detectors; 2.7 Key microstructural features analyzed by SEM; 2.7.1 Specimen shape; 2.7.2 Specimen composition; 2.7.3 Surface crystallography; 2.8 Transmission electron microscopy; 2.8.1 Key features of the TEM microscope 2.8.2 TEM specimen preparation2.9 TEM imaging modes; 2.10 TEM spectroscopy; 2.10.1 X-ray analysis in TEM (EDX); 2.10.2 Electron energy loss spectrometry; 2.11 Key applications of TEM; 2.12 Is electron microscopy a nondestructive technique?; 2.12.1 Specimen preparation; 2.12.2 Specimen changes during imaging; 2.12.3 Strategies for minimizing specimen damage; 2.13 Outlook for SEM and TEM; References; 3 -- X-ray microtomography for materials characterization; 3.1 Introduction; 3.2 Imaging physics; 3.2.1 X-ray microfocus tubes; 3.2.2 Interaction of hard X-rays with materials 3.2.2.1 X-ray attenuationPhoton absorption; Compton scattering; 3.2.2.2 Phase contrast imaging; 3.2.3 X-ray detectors and imaging devices: principles, features, and common systems; 3.3 Principles of microcomputed tomography; 3.4 Geometrical considerations and data acquisition; 3.5 System design (CT methods); 3.6 Image reconstruction; 3.7 Image quality; 3.8 Radiation exposure; 3.9 Examples of important and/or frequent applications for materials characterization; 3.10 Conclusions and future trends; 3.11 Further literature; References 4 -- X-ray diffraction (XRD) techniques for materials characterization |
ctrlnum | (OCoLC)945731751 |
dewey-full | 669.92 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 669 - Metallurgy |
dewey-raw | 669.92 |
dewey-search | 669.92 |
dewey-sort | 3669.92 |
dewey-tens | 660 - Chemical engineering |
discipline | Chemie / Pharmazie |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06980cam a2200637 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn945731751</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">160331s2016 mau ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OPELS</subfield><subfield code="d">CDX</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCF</subfield><subfield code="d">EBLCP</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">D6H</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SXB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">945752080</subfield><subfield code="a">945874578</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780081000571</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">008100057X</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780081000403</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)945731751</subfield><subfield code="z">(OCoLC)945752080</subfield><subfield code="z">(OCoLC)945874578</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QD131</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">TEC</subfield><subfield code="x">023000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">669.92</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Materials characterization using nondestructive evaluation methods /</subfield><subfield code="c">edited by Gerhard Hübscen, Iris Altpeter, Ralf Tschuncky, Hans-Georg Herrmann.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, MA :</subfield><subfield code="b">Woodhead Publishing, an imprint of Elsevier,</subfield><subfield code="c">2016.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Woodhead publishing series in electronic and optical materials ;</subfield><subfield code="v">88</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Online resource; title from PDF title page (EBSCO, viewed March 31, 2016).</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Materials Characterization Using Nondestructive Evaluation (NDE) Methods discusses NDT methods and how they are highly desirable for both long-term monitoring and short-term assessment of materials, providing crucial early warning that the fatigue life of a material has elapsed, thus helping to prevent service failures. Materials Characterization Using Nondestructive Evaluation (NDE) Methods gives an overview of established and new NDT techniques for the characterization of materials, with a focus on materials used in the automotive, aerospace, power plants, and infrastructure construction industries. Each chapter focuses on a different NDT technique and indicates the potential of the method by selected examples of applications. Methods covered include scanning and transmission electron microscopy, X-ray microtomography and diffraction, ultrasonic, electromagnetic, microwave, and hybrid techniques. The authors review both the determination of microstructure properties, including phase content and grain size, and the determination of mechanical properties, such as hardness, toughness, yield strength, texture, and residual stress.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Front Cover; Materials Characterization Using Nondestructive Evaluation (NDE) Methods#; Related titles; Materials Characterization Using Nondestructive Evaluation (NDE) Methods; Copyright; Contents; List of contributors; Woodhead Publishing Series in Electronic and Optical Materials; 1 -- Atomic force microscopy (AFM) for materials characterization; 1.1 Introduction; 1.2 Comparison of AFM with other microscopy techniques; 1.3 Principles of AFM technique; 1.4 Construction and basic components of AFM; 1.5 Working modes of AFM; 1.5.1 Contact mode; 1.5.2 Noncontact mode; 1.5.3 Tapping mode</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1.6 Application of AFM for material characterization1.6.1 Surface properties measurement; 1.6.2 AFM measurements for hardness and modulus measurements; 1.6.3 AFM measurements for damage characterizations; 1.6.4 AFM measurements for characterizations of surface treatment effects; 1.7 Conclusions; Acknowledgments; References; 2 -- Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characterization; 2.1 Introduction; 2.2 Why electron microscopy?; 2.2.1 Key advantages of imaging with electrons; 2.2.2 Key disadvantages of imaging with electrons</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.3 Types of microscopes2.4 Interaction of electrons with materials; 2.4.1 Elastic versus inelastic electron scattering; 2.4.2 Signals from the specimen; 2.5 What material features can we analyze using electron microscopy?; 2.5.1 Practical electron microscopy; 2.6 Scanning electron microscopy; 2.6.1 Key features of the SEM microscope; 2.6.2 Specimen preparation; 2.6.3 SEM detectors; 2.7 Key microstructural features analyzed by SEM; 2.7.1 Specimen shape; 2.7.2 Specimen composition; 2.7.3 Surface crystallography; 2.8 Transmission electron microscopy; 2.8.1 Key features of the TEM microscope</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.8.2 TEM specimen preparation2.9 TEM imaging modes; 2.10 TEM spectroscopy; 2.10.1 X-ray analysis in TEM (EDX); 2.10.2 Electron energy loss spectrometry; 2.11 Key applications of TEM; 2.12 Is electron microscopy a nondestructive technique?; 2.12.1 Specimen preparation; 2.12.2 Specimen changes during imaging; 2.12.3 Strategies for minimizing specimen damage; 2.13 Outlook for SEM and TEM; References; 3 -- X-ray microtomography for materials characterization; 3.1 Introduction; 3.2 Imaging physics; 3.2.1 X-ray microfocus tubes; 3.2.2 Interaction of hard X-rays with materials</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.2.2.1 X-ray attenuationPhoton absorption; Compton scattering; 3.2.2.2 Phase contrast imaging; 3.2.3 X-ray detectors and imaging devices: principles, features, and common systems; 3.3 Principles of microcomputed tomography; 3.4 Geometrical considerations and data acquisition; 3.5 System design (CT methods); 3.6 Image reconstruction; 3.7 Image quality; 3.8 Radiation exposure; 3.9 Examples of important and/or frequent applications for materials characterization; 3.10 Conclusions and future trends; 3.11 Further literature; References</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4 -- X-ray diffraction (XRD) techniques for materials characterization</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Materials</subfield><subfield code="x">Analysis.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85082066</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Matériaux</subfield><subfield code="x">Analyse.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING</subfield><subfield code="x">Metallurgy.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Materials</subfield><subfield code="x">Analysis</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hübschen, Gerhard,</subfield><subfield code="e">editor.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Altpeter, Iris,</subfield><subfield code="e">editor.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tschuncky, Ralf,</subfield><subfield code="e">editor.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Herrmann, Hans-Georg,</subfield><subfield code="e">editor.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Materials characterization using nondestructive evaluation methods (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCY87pDHDCX984wK6jM9PMd</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Huebschen, Gerhard.</subfield><subfield code="t">Materials Characterization Using Nondestructive Evaluation (NDE) Methods.</subfield><subfield code="d">: Elsevier Science, ©2016</subfield><subfield code="z">9780081000403</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Woodhead Publishing series in electronic and optical materials ;</subfield><subfield code="v">88.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2013009353</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1151261</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://www.sciencedirect.com/science/book/9780081000403</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">34239337</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL4458822</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">1151261</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis34239337</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">12908643</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn945731751 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:27:07Z |
institution | BVB |
isbn | 9780081000571 008100057X |
language | English |
oclc_num | 945731751 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource |
psigel | ZDB-4-EBA |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | Woodhead Publishing, an imprint of Elsevier, |
record_format | marc |
series | Woodhead Publishing series in electronic and optical materials ; |
series2 | Woodhead publishing series in electronic and optical materials ; |
spelling | Materials characterization using nondestructive evaluation methods / edited by Gerhard Hübscen, Iris Altpeter, Ralf Tschuncky, Hans-Georg Herrmann. Cambridge, MA : Woodhead Publishing, an imprint of Elsevier, 2016. 1 online resource text txt rdacontent computer c rdamedia online resource cr rdacarrier Woodhead publishing series in electronic and optical materials ; 88 Online resource; title from PDF title page (EBSCO, viewed March 31, 2016). Includes bibliographical references and index. Materials Characterization Using Nondestructive Evaluation (NDE) Methods discusses NDT methods and how they are highly desirable for both long-term monitoring and short-term assessment of materials, providing crucial early warning that the fatigue life of a material has elapsed, thus helping to prevent service failures. Materials Characterization Using Nondestructive Evaluation (NDE) Methods gives an overview of established and new NDT techniques for the characterization of materials, with a focus on materials used in the automotive, aerospace, power plants, and infrastructure construction industries. Each chapter focuses on a different NDT technique and indicates the potential of the method by selected examples of applications. Methods covered include scanning and transmission electron microscopy, X-ray microtomography and diffraction, ultrasonic, electromagnetic, microwave, and hybrid techniques. The authors review both the determination of microstructure properties, including phase content and grain size, and the determination of mechanical properties, such as hardness, toughness, yield strength, texture, and residual stress. Front Cover; Materials Characterization Using Nondestructive Evaluation (NDE) Methods#; Related titles; Materials Characterization Using Nondestructive Evaluation (NDE) Methods; Copyright; Contents; List of contributors; Woodhead Publishing Series in Electronic and Optical Materials; 1 -- Atomic force microscopy (AFM) for materials characterization; 1.1 Introduction; 1.2 Comparison of AFM with other microscopy techniques; 1.3 Principles of AFM technique; 1.4 Construction and basic components of AFM; 1.5 Working modes of AFM; 1.5.1 Contact mode; 1.5.2 Noncontact mode; 1.5.3 Tapping mode 1.6 Application of AFM for material characterization1.6.1 Surface properties measurement; 1.6.2 AFM measurements for hardness and modulus measurements; 1.6.3 AFM measurements for damage characterizations; 1.6.4 AFM measurements for characterizations of surface treatment effects; 1.7 Conclusions; Acknowledgments; References; 2 -- Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characterization; 2.1 Introduction; 2.2 Why electron microscopy?; 2.2.1 Key advantages of imaging with electrons; 2.2.2 Key disadvantages of imaging with electrons 2.3 Types of microscopes2.4 Interaction of electrons with materials; 2.4.1 Elastic versus inelastic electron scattering; 2.4.2 Signals from the specimen; 2.5 What material features can we analyze using electron microscopy?; 2.5.1 Practical electron microscopy; 2.6 Scanning electron microscopy; 2.6.1 Key features of the SEM microscope; 2.6.2 Specimen preparation; 2.6.3 SEM detectors; 2.7 Key microstructural features analyzed by SEM; 2.7.1 Specimen shape; 2.7.2 Specimen composition; 2.7.3 Surface crystallography; 2.8 Transmission electron microscopy; 2.8.1 Key features of the TEM microscope 2.8.2 TEM specimen preparation2.9 TEM imaging modes; 2.10 TEM spectroscopy; 2.10.1 X-ray analysis in TEM (EDX); 2.10.2 Electron energy loss spectrometry; 2.11 Key applications of TEM; 2.12 Is electron microscopy a nondestructive technique?; 2.12.1 Specimen preparation; 2.12.2 Specimen changes during imaging; 2.12.3 Strategies for minimizing specimen damage; 2.13 Outlook for SEM and TEM; References; 3 -- X-ray microtomography for materials characterization; 3.1 Introduction; 3.2 Imaging physics; 3.2.1 X-ray microfocus tubes; 3.2.2 Interaction of hard X-rays with materials 3.2.2.1 X-ray attenuationPhoton absorption; Compton scattering; 3.2.2.2 Phase contrast imaging; 3.2.3 X-ray detectors and imaging devices: principles, features, and common systems; 3.3 Principles of microcomputed tomography; 3.4 Geometrical considerations and data acquisition; 3.5 System design (CT methods); 3.6 Image reconstruction; 3.7 Image quality; 3.8 Radiation exposure; 3.9 Examples of important and/or frequent applications for materials characterization; 3.10 Conclusions and future trends; 3.11 Further literature; References 4 -- X-ray diffraction (XRD) techniques for materials characterization Materials Analysis. http://id.loc.gov/authorities/subjects/sh85082066 Matériaux Analyse. TECHNOLOGY & ENGINEERING Metallurgy. bisacsh Materials Analysis fast Hübschen, Gerhard, editor. Altpeter, Iris, editor. Tschuncky, Ralf, editor. Herrmann, Hans-Georg, editor. has work: Materials characterization using nondestructive evaluation methods (Text) https://id.oclc.org/worldcat/entity/E39PCY87pDHDCX984wK6jM9PMd https://id.oclc.org/worldcat/ontology/hasWork Print version: Huebschen, Gerhard. Materials Characterization Using Nondestructive Evaluation (NDE) Methods. : Elsevier Science, ©2016 9780081000403 Woodhead Publishing series in electronic and optical materials ; 88. http://id.loc.gov/authorities/names/no2013009353 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1151261 Volltext FWS01 ZDB-4-EBA FWS_PDA_EBA https://www.sciencedirect.com/science/book/9780081000403 Volltext |
spellingShingle | Materials characterization using nondestructive evaluation methods / Woodhead Publishing series in electronic and optical materials ; Front Cover; Materials Characterization Using Nondestructive Evaluation (NDE) Methods#; Related titles; Materials Characterization Using Nondestructive Evaluation (NDE) Methods; Copyright; Contents; List of contributors; Woodhead Publishing Series in Electronic and Optical Materials; 1 -- Atomic force microscopy (AFM) for materials characterization; 1.1 Introduction; 1.2 Comparison of AFM with other microscopy techniques; 1.3 Principles of AFM technique; 1.4 Construction and basic components of AFM; 1.5 Working modes of AFM; 1.5.1 Contact mode; 1.5.2 Noncontact mode; 1.5.3 Tapping mode 1.6 Application of AFM for material characterization1.6.1 Surface properties measurement; 1.6.2 AFM measurements for hardness and modulus measurements; 1.6.3 AFM measurements for damage characterizations; 1.6.4 AFM measurements for characterizations of surface treatment effects; 1.7 Conclusions; Acknowledgments; References; 2 -- Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characterization; 2.1 Introduction; 2.2 Why electron microscopy?; 2.2.1 Key advantages of imaging with electrons; 2.2.2 Key disadvantages of imaging with electrons 2.3 Types of microscopes2.4 Interaction of electrons with materials; 2.4.1 Elastic versus inelastic electron scattering; 2.4.2 Signals from the specimen; 2.5 What material features can we analyze using electron microscopy?; 2.5.1 Practical electron microscopy; 2.6 Scanning electron microscopy; 2.6.1 Key features of the SEM microscope; 2.6.2 Specimen preparation; 2.6.3 SEM detectors; 2.7 Key microstructural features analyzed by SEM; 2.7.1 Specimen shape; 2.7.2 Specimen composition; 2.7.3 Surface crystallography; 2.8 Transmission electron microscopy; 2.8.1 Key features of the TEM microscope 2.8.2 TEM specimen preparation2.9 TEM imaging modes; 2.10 TEM spectroscopy; 2.10.1 X-ray analysis in TEM (EDX); 2.10.2 Electron energy loss spectrometry; 2.11 Key applications of TEM; 2.12 Is electron microscopy a nondestructive technique?; 2.12.1 Specimen preparation; 2.12.2 Specimen changes during imaging; 2.12.3 Strategies for minimizing specimen damage; 2.13 Outlook for SEM and TEM; References; 3 -- X-ray microtomography for materials characterization; 3.1 Introduction; 3.2 Imaging physics; 3.2.1 X-ray microfocus tubes; 3.2.2 Interaction of hard X-rays with materials 3.2.2.1 X-ray attenuationPhoton absorption; Compton scattering; 3.2.2.2 Phase contrast imaging; 3.2.3 X-ray detectors and imaging devices: principles, features, and common systems; 3.3 Principles of microcomputed tomography; 3.4 Geometrical considerations and data acquisition; 3.5 System design (CT methods); 3.6 Image reconstruction; 3.7 Image quality; 3.8 Radiation exposure; 3.9 Examples of important and/or frequent applications for materials characterization; 3.10 Conclusions and future trends; 3.11 Further literature; References 4 -- X-ray diffraction (XRD) techniques for materials characterization Materials Analysis. http://id.loc.gov/authorities/subjects/sh85082066 Matériaux Analyse. TECHNOLOGY & ENGINEERING Metallurgy. bisacsh Materials Analysis fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85082066 |
title | Materials characterization using nondestructive evaluation methods / |
title_auth | Materials characterization using nondestructive evaluation methods / |
title_exact_search | Materials characterization using nondestructive evaluation methods / |
title_full | Materials characterization using nondestructive evaluation methods / edited by Gerhard Hübscen, Iris Altpeter, Ralf Tschuncky, Hans-Georg Herrmann. |
title_fullStr | Materials characterization using nondestructive evaluation methods / edited by Gerhard Hübscen, Iris Altpeter, Ralf Tschuncky, Hans-Georg Herrmann. |
title_full_unstemmed | Materials characterization using nondestructive evaluation methods / edited by Gerhard Hübscen, Iris Altpeter, Ralf Tschuncky, Hans-Georg Herrmann. |
title_short | Materials characterization using nondestructive evaluation methods / |
title_sort | materials characterization using nondestructive evaluation methods |
topic | Materials Analysis. http://id.loc.gov/authorities/subjects/sh85082066 Matériaux Analyse. TECHNOLOGY & ENGINEERING Metallurgy. bisacsh Materials Analysis fast |
topic_facet | Materials Analysis. Matériaux Analyse. TECHNOLOGY & ENGINEERING Metallurgy. Materials Analysis |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1151261 https://www.sciencedirect.com/science/book/9780081000403 |
work_keys_str_mv | AT hubschengerhard materialscharacterizationusingnondestructiveevaluationmethods AT altpeteriris materialscharacterizationusingnondestructiveevaluationmethods AT tschunckyralf materialscharacterizationusingnondestructiveevaluationmethods AT herrmannhansgeorg materialscharacterizationusingnondestructiveevaluationmethods |