Groups of prime power order.: Volume 5 /
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin ; Boston :
De Gruyter,
©2016.
|
Schriftenreihe: | De Gruyter expositions in mathematics ;
62. |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | 206 p-groups all of whose minimal nonabelian subgroups are pairwise nonisomorphic. |
Beschreibung: | 1 online resource (434 pages). |
ISBN: | 9783110295368 3110295369 9783110295351 3110295350 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn945718243 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 160201s2016 gw o 000 0 eng d | ||
040 | |a YDXCP |b eng |e pn |c YDXCP |d OCLCO |d EBLCP |d IDEBK |d MERUC |d DEBBG |d OCLCQ |d YDX |d OCLCO |d OCLCF |d N$T |d OCLCQ |d OCLCO |d OCLCQ |d SNK |d DKU |d AUW |d IGB |d D6H |d OCLCQ |d VTS |d G3B |d S8J |d S9I |d STF |d UKAHL |d OCLCQ |d UIU |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ | ||
019 | |a 935640255 |a 935921750 |a 961245328 |a 961820808 |a 992840968 | ||
020 | |a 9783110295368 |q (electronic bk.) | ||
020 | |a 3110295369 |q (electronic bk.) | ||
020 | |a 9783110295351 |q (electronic bk.) | ||
020 | |a 3110295350 |q (electronic bk.) | ||
020 | |z 3110295350 | ||
020 | |z 3110295342 | ||
035 | |a (OCoLC)945718243 |z (OCoLC)935640255 |z (OCoLC)935921750 |z (OCoLC)961245328 |z (OCoLC)961820808 |z (OCoLC)992840968 | ||
050 | 4 | |a QA177 |b .B469 2008 vol. 5 | |
072 | 7 | |a MAT |x 002040 |2 bisacsh | |
082 | 7 | |a 512/.23 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Berkovich, I︠A︡. G., |d 1938- |1 https://id.oclc.org/worldcat/entity/E39PCjCrW6hTDygx3j7wTWPgmm |0 http://id.loc.gov/authorities/names/n97085489 | |
245 | 1 | 0 | |a Groups of prime power order. |n Volume 5 / |c Yakov Berkovich and Zvonimir Janko ; edited by Victor P. Maslov [and 4 others]. |
260 | |a Berlin ; |a Boston : |b De Gruyter, |c ©2016. | ||
300 | |a 1 online resource (434 pages). | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a De Gruyter Expositions in Mathematics ; |v volume 62 | |
588 | 0 | |a Online resource; title from digital title page (viewed on Mar. 30, 2016). | |
500 | |a 206 p-groups all of whose minimal nonabelian subgroups are pairwise nonisomorphic. | ||
505 | 0 | |a List of definitions and notations ; Preface ; 190 On p-groups containing a subgroup of maximal class and index p ; 191 p-groups G all of whose nonnormal subgroups contain G` in its normal closure; 192 p-groups with all subgroups isomorphic to quotient groups. | |
505 | 8 | |a 193 Classification of p-groups all of whose proper subgroups are s-self-dual 194 p-groups all of whose maximal subgroups, except one, are s-self-dual ; 195 Nonabelian p-groups all of whose subgroups are q-self-dual ; 196 A p-group with absolutely regular normalizer of some subgroup. | |
505 | 8 | |a 197 Minimal non-q-self-dual 2-groups 198 Nonmetacyclic p-groups with metacyclic centralizer of an element of order p ; 199 p-groups with minimal nonabelian closures of all nonnormal abelian subgroups. | |
505 | 8 | |a 200 The nonexistence of p-groups G all of whose minimal nonabelian subgroups intersect Z(G) trivially 201 Subgroups of order pp and exponent p in p-groups with an irregular subgroup of maximal class and index> p ; 202 p-groups all of whoseA2-subgroups are metacyclic. | |
505 | 8 | |a 203 Nonabelian p-groups G in which the center of each nonabelian subgroup is contained in Z(G) 204 Theorem of R. van der Waal on p-groups with cyclic derived subgroup, p> 2 ; 205 Maximal subgroups ofA2-groups. | |
588 | 0 | |a Print version record. | |
650 | 0 | |a Finite groups. |0 http://id.loc.gov/authorities/subjects/sh85048354 | |
650 | 6 | |a Groupes finis. | |
650 | 7 | |a MATHEMATICS |x Algebra |x Intermediate. |2 bisacsh | |
650 | 7 | |a Finite groups |2 fast | |
700 | 1 | |a Janko, Zvonimir, |d 1932- |1 https://id.oclc.org/worldcat/entity/E39PBJrGwd49wjWFDwdVGKH3cP |0 http://id.loc.gov/authorities/names/n2011014887 | |
776 | 0 | 8 | |i Print version: |a Berkovich, I︠A︡. G., 1938- |t Groups of prime power order. Volume 5. |d Berlin ; Boston : De Gruyter, ©2016 |z 9783110295351 |
830 | 0 | |a De Gruyter expositions in mathematics ; |v 62. |0 http://id.loc.gov/authorities/names/n90653843 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1157973 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH29675666 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH35069010 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL4338524 | ||
938 | |a EBSCOhost |b EBSC |n 1157973 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis33316308 | ||
938 | |a YBP Library Services |b YANK |n 10817874 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn945718243 |
---|---|
_version_ | 1816882344009662464 |
adam_text | |
any_adam_object | |
author | Berkovich, I︠A︡. G., 1938- |
author2 | Janko, Zvonimir, 1932- |
author2_role | |
author2_variant | z j zj |
author_GND | http://id.loc.gov/authorities/names/n97085489 http://id.loc.gov/authorities/names/n2011014887 |
author_facet | Berkovich, I︠A︡. G., 1938- Janko, Zvonimir, 1932- |
author_role | |
author_sort | Berkovich, I︠A︡. G., 1938- |
author_variant | i g b ig igb |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA177 |
callnumber-raw | QA177 .B469 2008 vol. 5 |
callnumber-search | QA177 .B469 2008 vol. 5 |
callnumber-sort | QA 3177 B469 42008 VOL 15 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | List of definitions and notations ; Preface ; 190 On p-groups containing a subgroup of maximal class and index p ; 191 p-groups G all of whose nonnormal subgroups contain G` in its normal closure; 192 p-groups with all subgroups isomorphic to quotient groups. 193 Classification of p-groups all of whose proper subgroups are s-self-dual 194 p-groups all of whose maximal subgroups, except one, are s-self-dual ; 195 Nonabelian p-groups all of whose subgroups are q-self-dual ; 196 A p-group with absolutely regular normalizer of some subgroup. 197 Minimal non-q-self-dual 2-groups 198 Nonmetacyclic p-groups with metacyclic centralizer of an element of order p ; 199 p-groups with minimal nonabelian closures of all nonnormal abelian subgroups. 200 The nonexistence of p-groups G all of whose minimal nonabelian subgroups intersect Z(G) trivially 201 Subgroups of order pp and exponent p in p-groups with an irregular subgroup of maximal class and index> p ; 202 p-groups all of whoseA2-subgroups are metacyclic. 203 Nonabelian p-groups G in which the center of each nonabelian subgroup is contained in Z(G) 204 Theorem of R. van der Waal on p-groups with cyclic derived subgroup, p> 2 ; 205 Maximal subgroups ofA2-groups. |
ctrlnum | (OCoLC)945718243 |
dewey-full | 512/.23 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.23 |
dewey-search | 512/.23 |
dewey-sort | 3512 223 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04246cam a2200625 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn945718243</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">160201s2016 gw o 000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">YDXCP</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">YDXCP</subfield><subfield code="d">OCLCO</subfield><subfield code="d">EBLCP</subfield><subfield code="d">IDEBK</subfield><subfield code="d">MERUC</subfield><subfield code="d">DEBBG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDX</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCF</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">SNK</subfield><subfield code="d">DKU</subfield><subfield code="d">AUW</subfield><subfield code="d">IGB</subfield><subfield code="d">D6H</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">G3B</subfield><subfield code="d">S8J</subfield><subfield code="d">S9I</subfield><subfield code="d">STF</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UIU</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">935640255</subfield><subfield code="a">935921750</subfield><subfield code="a">961245328</subfield><subfield code="a">961820808</subfield><subfield code="a">992840968</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110295368</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110295369</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110295351</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110295350</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">3110295350</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">3110295342</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)945718243</subfield><subfield code="z">(OCoLC)935640255</subfield><subfield code="z">(OCoLC)935921750</subfield><subfield code="z">(OCoLC)961245328</subfield><subfield code="z">(OCoLC)961820808</subfield><subfield code="z">(OCoLC)992840968</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA177</subfield><subfield code="b">.B469 2008 vol. 5</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">002040</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512/.23</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Berkovich, I︠A︡. G.,</subfield><subfield code="d">1938-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjCrW6hTDygx3j7wTWPgmm</subfield><subfield code="0">http://id.loc.gov/authorities/names/n97085489</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Groups of prime power order.</subfield><subfield code="n">Volume 5 /</subfield><subfield code="c">Yakov Berkovich and Zvonimir Janko ; edited by Victor P. Maslov [and 4 others].</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Berlin ;</subfield><subfield code="a">Boston :</subfield><subfield code="b">De Gruyter,</subfield><subfield code="c">©2016.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (434 pages).</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">De Gruyter Expositions in Mathematics ;</subfield><subfield code="v">volume 62</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Online resource; title from digital title page (viewed on Mar. 30, 2016).</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">206 p-groups all of whose minimal nonabelian subgroups are pairwise nonisomorphic.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">List of definitions and notations ; Preface ; 190 On p-groups containing a subgroup of maximal class and index p ; 191 p-groups G all of whose nonnormal subgroups contain G` in its normal closure; 192 p-groups with all subgroups isomorphic to quotient groups.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">193 Classification of p-groups all of whose proper subgroups are s-self-dual 194 p-groups all of whose maximal subgroups, except one, are s-self-dual ; 195 Nonabelian p-groups all of whose subgroups are q-self-dual ; 196 A p-group with absolutely regular normalizer of some subgroup.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">197 Minimal non-q-self-dual 2-groups 198 Nonmetacyclic p-groups with metacyclic centralizer of an element of order p ; 199 p-groups with minimal nonabelian closures of all nonnormal abelian subgroups.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">200 The nonexistence of p-groups G all of whose minimal nonabelian subgroups intersect Z(G) trivially 201 Subgroups of order pp and exponent p in p-groups with an irregular subgroup of maximal class and index> p ; 202 p-groups all of whoseA2-subgroups are metacyclic.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">203 Nonabelian p-groups G in which the center of each nonabelian subgroup is contained in Z(G) 204 Theorem of R. van der Waal on p-groups with cyclic derived subgroup, p> 2 ; 205 Maximal subgroups ofA2-groups.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Finite groups.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85048354</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Groupes finis.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Algebra</subfield><subfield code="x">Intermediate.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Finite groups</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Janko, Zvonimir,</subfield><subfield code="d">1932-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJrGwd49wjWFDwdVGKH3cP</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2011014887</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Berkovich, I︠A︡. G., 1938-</subfield><subfield code="t">Groups of prime power order. Volume 5.</subfield><subfield code="d">Berlin ; Boston : De Gruyter, ©2016</subfield><subfield code="z">9783110295351</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">De Gruyter expositions in mathematics ;</subfield><subfield code="v">62.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n90653843</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1157973</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH29675666</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH35069010</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL4338524</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">1157973</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis33316308</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10817874</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn945718243 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:27:07Z |
institution | BVB |
isbn | 9783110295368 3110295369 9783110295351 3110295350 |
language | English |
oclc_num | 945718243 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (434 pages). |
psigel | ZDB-4-EBA |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | De Gruyter, |
record_format | marc |
series | De Gruyter expositions in mathematics ; |
series2 | De Gruyter Expositions in Mathematics ; |
spelling | Berkovich, I︠A︡. G., 1938- https://id.oclc.org/worldcat/entity/E39PCjCrW6hTDygx3j7wTWPgmm http://id.loc.gov/authorities/names/n97085489 Groups of prime power order. Volume 5 / Yakov Berkovich and Zvonimir Janko ; edited by Victor P. Maslov [and 4 others]. Berlin ; Boston : De Gruyter, ©2016. 1 online resource (434 pages). text txt rdacontent computer c rdamedia online resource cr rdacarrier De Gruyter Expositions in Mathematics ; volume 62 Online resource; title from digital title page (viewed on Mar. 30, 2016). 206 p-groups all of whose minimal nonabelian subgroups are pairwise nonisomorphic. List of definitions and notations ; Preface ; 190 On p-groups containing a subgroup of maximal class and index p ; 191 p-groups G all of whose nonnormal subgroups contain G` in its normal closure; 192 p-groups with all subgroups isomorphic to quotient groups. 193 Classification of p-groups all of whose proper subgroups are s-self-dual 194 p-groups all of whose maximal subgroups, except one, are s-self-dual ; 195 Nonabelian p-groups all of whose subgroups are q-self-dual ; 196 A p-group with absolutely regular normalizer of some subgroup. 197 Minimal non-q-self-dual 2-groups 198 Nonmetacyclic p-groups with metacyclic centralizer of an element of order p ; 199 p-groups with minimal nonabelian closures of all nonnormal abelian subgroups. 200 The nonexistence of p-groups G all of whose minimal nonabelian subgroups intersect Z(G) trivially 201 Subgroups of order pp and exponent p in p-groups with an irregular subgroup of maximal class and index> p ; 202 p-groups all of whoseA2-subgroups are metacyclic. 203 Nonabelian p-groups G in which the center of each nonabelian subgroup is contained in Z(G) 204 Theorem of R. van der Waal on p-groups with cyclic derived subgroup, p> 2 ; 205 Maximal subgroups ofA2-groups. Print version record. Finite groups. http://id.loc.gov/authorities/subjects/sh85048354 Groupes finis. MATHEMATICS Algebra Intermediate. bisacsh Finite groups fast Janko, Zvonimir, 1932- https://id.oclc.org/worldcat/entity/E39PBJrGwd49wjWFDwdVGKH3cP http://id.loc.gov/authorities/names/n2011014887 Print version: Berkovich, I︠A︡. G., 1938- Groups of prime power order. Volume 5. Berlin ; Boston : De Gruyter, ©2016 9783110295351 De Gruyter expositions in mathematics ; 62. http://id.loc.gov/authorities/names/n90653843 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1157973 Volltext |
spellingShingle | Berkovich, I︠A︡. G., 1938- Groups of prime power order. De Gruyter expositions in mathematics ; List of definitions and notations ; Preface ; 190 On p-groups containing a subgroup of maximal class and index p ; 191 p-groups G all of whose nonnormal subgroups contain G` in its normal closure; 192 p-groups with all subgroups isomorphic to quotient groups. 193 Classification of p-groups all of whose proper subgroups are s-self-dual 194 p-groups all of whose maximal subgroups, except one, are s-self-dual ; 195 Nonabelian p-groups all of whose subgroups are q-self-dual ; 196 A p-group with absolutely regular normalizer of some subgroup. 197 Minimal non-q-self-dual 2-groups 198 Nonmetacyclic p-groups with metacyclic centralizer of an element of order p ; 199 p-groups with minimal nonabelian closures of all nonnormal abelian subgroups. 200 The nonexistence of p-groups G all of whose minimal nonabelian subgroups intersect Z(G) trivially 201 Subgroups of order pp and exponent p in p-groups with an irregular subgroup of maximal class and index> p ; 202 p-groups all of whoseA2-subgroups are metacyclic. 203 Nonabelian p-groups G in which the center of each nonabelian subgroup is contained in Z(G) 204 Theorem of R. van der Waal on p-groups with cyclic derived subgroup, p> 2 ; 205 Maximal subgroups ofA2-groups. Finite groups. http://id.loc.gov/authorities/subjects/sh85048354 Groupes finis. MATHEMATICS Algebra Intermediate. bisacsh Finite groups fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85048354 |
title | Groups of prime power order. |
title_auth | Groups of prime power order. |
title_exact_search | Groups of prime power order. |
title_full | Groups of prime power order. Volume 5 / Yakov Berkovich and Zvonimir Janko ; edited by Victor P. Maslov [and 4 others]. |
title_fullStr | Groups of prime power order. Volume 5 / Yakov Berkovich and Zvonimir Janko ; edited by Victor P. Maslov [and 4 others]. |
title_full_unstemmed | Groups of prime power order. Volume 5 / Yakov Berkovich and Zvonimir Janko ; edited by Victor P. Maslov [and 4 others]. |
title_short | Groups of prime power order. |
title_sort | groups of prime power order |
topic | Finite groups. http://id.loc.gov/authorities/subjects/sh85048354 Groupes finis. MATHEMATICS Algebra Intermediate. bisacsh Finite groups fast |
topic_facet | Finite groups. Groupes finis. MATHEMATICS Algebra Intermediate. Finite groups |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1157973 |
work_keys_str_mv | AT berkovichiag groupsofprimepowerordervolume5 AT jankozvonimir groupsofprimepowerordervolume5 |