Groups of prime power order.: Volume 4 /
This is the fourth volume of a comprehensive and elementary treatment of finite p-group theory. As in the previous volumes, minimal nonabelian p-groups play an important role. Topics covered in this volume include: subgroup structure of metacyclic p-groups Ishikawa's theorem on p-groups with tw...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin ; Boston :
De Gruyter,
©2016.
|
Schriftenreihe: | De Gruyter expositions in mathematics ;
61. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This is the fourth volume of a comprehensive and elementary treatment of finite p-group theory. As in the previous volumes, minimal nonabelian p-groups play an important role. Topics covered in this volume include: subgroup structure of metacyclic p-groups Ishikawa's theorem on p-groups with two sizes of conjugate classes p-central p-groups theorem of Kegel on nilpotence of H p-groups partitions of p-groups characterizations of Dedekindian groups norm of p-groups p-groups with 2-uniserial subgroups of small order The book also contains hundreds of original exercises and solutions and a comprehensive list of more than 500 open problems. This work is suitable for researchers and graduate students with a modest background in algebra. |
Beschreibung: | 165 p-groups G all of whose subgroups containing ∅G) as a subgroup of index p are minimal nonabelian |
Beschreibung: | 1 online resource (476 pages) |
Bibliographie: | Includes bibliographical references and indexes. |
ISBN: | 9783110281477 3110281473 9783110281484 3110281481 9783110381559 3110381559 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn945718242 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr |n||||||||| | ||
008 | 160123s2016 gw ob 001 0 eng d | ||
040 | |a YDXCP |b eng |e pn |c YDXCP |d OCLCO |d EBLCP |d OCLCF |d IDEBK |d MERUC |d DEBBG |d YDX |d N$T |d UIU |d DEBSZ |d OCLCQ |d SNK |d DKU |d AUW |d INTCL |d BTN |d IGB |d D6H |d VTS |d AGLDB |d G3B |d S8J |d S9I |d STF |d M8D |d OCLCQ |d QGK |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d NUI |d OCLCQ | ||
019 | |a 933442959 |a 935254304 |a 936867664 |a 961244081 |a 961811254 |a 964608953 |a 992855540 |a 1023499114 |a 1264773763 | ||
020 | |a 9783110281477 |q (electronic bk.) | ||
020 | |a 3110281473 | ||
020 | |a 9783110281484 | ||
020 | |a 3110281481 | ||
020 | |a 9783110381559 | ||
020 | |a 3110381559 | ||
020 | |z 3110381559 | ||
020 | |z 3110281481 | ||
035 | |a (OCoLC)945718242 |z (OCoLC)933442959 |z (OCoLC)935254304 |z (OCoLC)936867664 |z (OCoLC)961244081 |z (OCoLC)961811254 |z (OCoLC)964608953 |z (OCoLC)992855540 |z (OCoLC)1023499114 |z (OCoLC)1264773763 | ||
037 | |a 881769 |b MIL | ||
050 | 4 | |a QA177 |b .B469 2008 vol. 4 | |
072 | 7 | |a MAT |x 002040 |2 bisacsh | |
082 | 7 | |a 512/.23 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Berkovich, I︠A︡. G., |d 1938- |0 http://id.loc.gov/authorities/names/n97085489 | |
245 | 1 | 0 | |a Groups of prime power order. |n Volume 4 / |c Yakov Berkovich and Zvonimir Janko ; edited by Victor P. Maslov [and 4 others]. |
260 | |a Berlin ; |a Boston : |b De Gruyter, |c ©2016. | ||
300 | |a 1 online resource (476 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a De Gruyter Expositions in Mathematics ; |v volume 61 | |
504 | |a Includes bibliographical references and indexes. | ||
588 | 0 | |a Online resource; title from digital title page (viewed on March 30, 2016). | |
500 | |a 165 p-groups G all of whose subgroups containing ∅G) as a subgroup of index p are minimal nonabelian | ||
505 | 0 | |a Content ; List of definitions and notations ; Preface ; 145 p-groups all of whose maximal subgroups, except one, have derived subgroup of order ≤ p; 146 p-groups all of whose maximal subgroups, except one, have cyclic derived subgroups ; 147 p-groups with exactly two sizes of conjugate classes | |
505 | 8 | |a 148 Maximal abelian and minimal nonabelian subgroups of some finite two-generator p-groups especially metacyclic 149 p-groups with many minimal nonabelian subgroups ; 150 The exponents of finite p-groups and their automorphism groups | |
505 | 8 | |a 151 p-groups all of whose nonabelian maximal subgroups have the largest possible center 152 p-central p-groups ; 153 Some generalizations of 2-central 2-groups ; 154 Metacyclic p-groups covered by minimal nonabelian subgroups ; 155 A new type of Thompson subgroup | |
505 | 8 | |a 156 Minimal number of generators of a p-group, p> 2 157 Some further properties of p-central p-groups ; 158 On extraspecial normal subgroups of p-groups ; 159 2-groups all of whose cyclic subgroups A, B with A Â"B `"{1} generate an abelian subgroup; 160 p-groups, p> 2, all of whose cyclic subgroups A, B with A Â"B `"{1} generate an abelian subgroup | |
505 | 8 | |a 161 p-groups where all subgroups not contained in the Frattini subgroup are quasinormal 162 The centralizer equality subgroup in a p-group ; 163 Macdonald's theorem on p-groups all of whose proper subgroups are of class at most 2 ; 164 Partitions and Hp-subgroups of a p-group | |
520 | |a This is the fourth volume of a comprehensive and elementary treatment of finite p-group theory. As in the previous volumes, minimal nonabelian p-groups play an important role. Topics covered in this volume include: subgroup structure of metacyclic p-groups Ishikawa's theorem on p-groups with two sizes of conjugate classes p-central p-groups theorem of Kegel on nilpotence of H p-groups partitions of p-groups characterizations of Dedekindian groups norm of p-groups p-groups with 2-uniserial subgroups of small order The book also contains hundreds of original exercises and solutions and a comprehensive list of more than 500 open problems. This work is suitable for researchers and graduate students with a modest background in algebra. | ||
650 | 0 | |a Finite groups. |0 http://id.loc.gov/authorities/subjects/sh85048354 | |
650 | 0 | |a Group theory. |0 http://id.loc.gov/authorities/subjects/sh85057512 | |
650 | 6 | |a Groupes finis. | |
650 | 6 | |a Théorie des groupes. | |
650 | 7 | |a MATHEMATICS |x Algebra |x Intermediate. |2 bisacsh | |
650 | 7 | |a Finite groups |2 fast | |
650 | 7 | |a Group theory |2 fast | |
653 | |a Group Theory. | ||
653 | |a Order. | ||
653 | |a Primes. | ||
700 | 1 | |a Janko, Zvonimir, |d 1932- |0 http://id.loc.gov/authorities/names/n2011014887 | |
776 | 0 | 8 | |i Print version: |a Berkovich, Yakov G. |t Groups of Prime Power Order 4 : Volume 4. |d Berlin/Boston : De Gruyter, ©2015 |z 9783110281453 |
830 | 0 | |a De Gruyter expositions in mathematics ; |v 61. |0 http://id.loc.gov/authorities/names/n90653843 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1131257 |3 Volltext |
936 | |a BATCHLOAD | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL4229725 | ||
938 | |a EBSCOhost |b EBSC |n 1131257 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis33316298 | ||
938 | |a YBP Library Services |b YANK |n 10817660 | ||
938 | |a YBP Library Services |b YANK |n 10817874 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn945718242 |
---|---|
_version_ | 1816882344005468160 |
adam_text | |
any_adam_object | |
author | Berkovich, I︠A︡. G., 1938- |
author2 | Janko, Zvonimir, 1932- |
author2_role | |
author2_variant | z j zj |
author_GND | http://id.loc.gov/authorities/names/n97085489 http://id.loc.gov/authorities/names/n2011014887 |
author_facet | Berkovich, I︠A︡. G., 1938- Janko, Zvonimir, 1932- |
author_role | |
author_sort | Berkovich, I︠A︡. G., 1938- |
author_variant | i g b ig igb |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA177 |
callnumber-raw | QA177 .B469 2008 vol. 4 |
callnumber-search | QA177 .B469 2008 vol. 4 |
callnumber-sort | QA 3177 B469 42008 VOL 14 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Content ; List of definitions and notations ; Preface ; 145 p-groups all of whose maximal subgroups, except one, have derived subgroup of order ≤ p; 146 p-groups all of whose maximal subgroups, except one, have cyclic derived subgroups ; 147 p-groups with exactly two sizes of conjugate classes 148 Maximal abelian and minimal nonabelian subgroups of some finite two-generator p-groups especially metacyclic 149 p-groups with many minimal nonabelian subgroups ; 150 The exponents of finite p-groups and their automorphism groups 151 p-groups all of whose nonabelian maximal subgroups have the largest possible center 152 p-central p-groups ; 153 Some generalizations of 2-central 2-groups ; 154 Metacyclic p-groups covered by minimal nonabelian subgroups ; 155 A new type of Thompson subgroup 156 Minimal number of generators of a p-group, p> 2 157 Some further properties of p-central p-groups ; 158 On extraspecial normal subgroups of p-groups ; 159 2-groups all of whose cyclic subgroups A, B with A Â"B `"{1} generate an abelian subgroup; 160 p-groups, p> 2, all of whose cyclic subgroups A, B with A Â"B `"{1} generate an abelian subgroup 161 p-groups where all subgroups not contained in the Frattini subgroup are quasinormal 162 The centralizer equality subgroup in a p-group ; 163 Macdonald's theorem on p-groups all of whose proper subgroups are of class at most 2 ; 164 Partitions and Hp-subgroups of a p-group |
ctrlnum | (OCoLC)945718242 |
dewey-full | 512/.23 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.23 |
dewey-search | 512/.23 |
dewey-sort | 3512 223 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05441cam a2200745 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn945718242</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |n|||||||||</controlfield><controlfield tag="008">160123s2016 gw ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">YDXCP</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">YDXCP</subfield><subfield code="d">OCLCO</subfield><subfield code="d">EBLCP</subfield><subfield code="d">OCLCF</subfield><subfield code="d">IDEBK</subfield><subfield code="d">MERUC</subfield><subfield code="d">DEBBG</subfield><subfield code="d">YDX</subfield><subfield code="d">N$T</subfield><subfield code="d">UIU</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">SNK</subfield><subfield code="d">DKU</subfield><subfield code="d">AUW</subfield><subfield code="d">INTCL</subfield><subfield code="d">BTN</subfield><subfield code="d">IGB</subfield><subfield code="d">D6H</subfield><subfield code="d">VTS</subfield><subfield code="d">AGLDB</subfield><subfield code="d">G3B</subfield><subfield code="d">S8J</subfield><subfield code="d">S9I</subfield><subfield code="d">STF</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">QGK</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">NUI</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">933442959</subfield><subfield code="a">935254304</subfield><subfield code="a">936867664</subfield><subfield code="a">961244081</subfield><subfield code="a">961811254</subfield><subfield code="a">964608953</subfield><subfield code="a">992855540</subfield><subfield code="a">1023499114</subfield><subfield code="a">1264773763</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110281477</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110281473</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110281484</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110281481</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110381559</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110381559</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">3110381559</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">3110281481</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)945718242</subfield><subfield code="z">(OCoLC)933442959</subfield><subfield code="z">(OCoLC)935254304</subfield><subfield code="z">(OCoLC)936867664</subfield><subfield code="z">(OCoLC)961244081</subfield><subfield code="z">(OCoLC)961811254</subfield><subfield code="z">(OCoLC)964608953</subfield><subfield code="z">(OCoLC)992855540</subfield><subfield code="z">(OCoLC)1023499114</subfield><subfield code="z">(OCoLC)1264773763</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">881769</subfield><subfield code="b">MIL</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA177</subfield><subfield code="b">.B469 2008 vol. 4</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">002040</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512/.23</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Berkovich, I︠A︡. G.,</subfield><subfield code="d">1938-</subfield><subfield code="0">http://id.loc.gov/authorities/names/n97085489</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Groups of prime power order.</subfield><subfield code="n">Volume 4 /</subfield><subfield code="c">Yakov Berkovich and Zvonimir Janko ; edited by Victor P. Maslov [and 4 others].</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Berlin ;</subfield><subfield code="a">Boston :</subfield><subfield code="b">De Gruyter,</subfield><subfield code="c">©2016.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (476 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">De Gruyter Expositions in Mathematics ;</subfield><subfield code="v">volume 61</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and indexes.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Online resource; title from digital title page (viewed on March 30, 2016).</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">165 p-groups G all of whose subgroups containing ∅G) as a subgroup of index p are minimal nonabelian</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Content ; List of definitions and notations ; Preface ; 145 p-groups all of whose maximal subgroups, except one, have derived subgroup of order ≤ p; 146 p-groups all of whose maximal subgroups, except one, have cyclic derived subgroups ; 147 p-groups with exactly two sizes of conjugate classes</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">148 Maximal abelian and minimal nonabelian subgroups of some finite two-generator p-groups especially metacyclic 149 p-groups with many minimal nonabelian subgroups ; 150 The exponents of finite p-groups and their automorphism groups</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">151 p-groups all of whose nonabelian maximal subgroups have the largest possible center 152 p-central p-groups ; 153 Some generalizations of 2-central 2-groups ; 154 Metacyclic p-groups covered by minimal nonabelian subgroups ; 155 A new type of Thompson subgroup</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">156 Minimal number of generators of a p-group, p> 2 157 Some further properties of p-central p-groups ; 158 On extraspecial normal subgroups of p-groups ; 159 2-groups all of whose cyclic subgroups A, B with A Â"B `"{1} generate an abelian subgroup; 160 p-groups, p> 2, all of whose cyclic subgroups A, B with A Â"B `"{1} generate an abelian subgroup</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">161 p-groups where all subgroups not contained in the Frattini subgroup are quasinormal 162 The centralizer equality subgroup in a p-group ; 163 Macdonald's theorem on p-groups all of whose proper subgroups are of class at most 2 ; 164 Partitions and Hp-subgroups of a p-group</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This is the fourth volume of a comprehensive and elementary treatment of finite p-group theory. As in the previous volumes, minimal nonabelian p-groups play an important role. Topics covered in this volume include: subgroup structure of metacyclic p-groups Ishikawa's theorem on p-groups with two sizes of conjugate classes p-central p-groups theorem of Kegel on nilpotence of H p-groups partitions of p-groups characterizations of Dedekindian groups norm of p-groups p-groups with 2-uniserial subgroups of small order The book also contains hundreds of original exercises and solutions and a comprehensive list of more than 500 open problems. This work is suitable for researchers and graduate students with a modest background in algebra.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Finite groups.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85048354</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Group theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85057512</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Groupes finis.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie des groupes.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Algebra</subfield><subfield code="x">Intermediate.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Finite groups</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Group theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Group Theory.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Order.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Primes.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Janko, Zvonimir,</subfield><subfield code="d">1932-</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2011014887</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Berkovich, Yakov G.</subfield><subfield code="t">Groups of Prime Power Order 4 : Volume 4.</subfield><subfield code="d">Berlin/Boston : De Gruyter, ©2015</subfield><subfield code="z">9783110281453</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">De Gruyter expositions in mathematics ;</subfield><subfield code="v">61.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n90653843</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1131257</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="936" ind1=" " ind2=" "><subfield code="a">BATCHLOAD</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL4229725</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">1131257</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis33316298</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10817660</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10817874</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn945718242 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:27:07Z |
institution | BVB |
isbn | 9783110281477 3110281473 9783110281484 3110281481 9783110381559 3110381559 |
language | English |
oclc_num | 945718242 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (476 pages) |
psigel | ZDB-4-EBA |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | De Gruyter, |
record_format | marc |
series | De Gruyter expositions in mathematics ; |
series2 | De Gruyter Expositions in Mathematics ; |
spelling | Berkovich, I︠A︡. G., 1938- http://id.loc.gov/authorities/names/n97085489 Groups of prime power order. Volume 4 / Yakov Berkovich and Zvonimir Janko ; edited by Victor P. Maslov [and 4 others]. Berlin ; Boston : De Gruyter, ©2016. 1 online resource (476 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier De Gruyter Expositions in Mathematics ; volume 61 Includes bibliographical references and indexes. Online resource; title from digital title page (viewed on March 30, 2016). 165 p-groups G all of whose subgroups containing ∅G) as a subgroup of index p are minimal nonabelian Content ; List of definitions and notations ; Preface ; 145 p-groups all of whose maximal subgroups, except one, have derived subgroup of order ≤ p; 146 p-groups all of whose maximal subgroups, except one, have cyclic derived subgroups ; 147 p-groups with exactly two sizes of conjugate classes 148 Maximal abelian and minimal nonabelian subgroups of some finite two-generator p-groups especially metacyclic 149 p-groups with many minimal nonabelian subgroups ; 150 The exponents of finite p-groups and their automorphism groups 151 p-groups all of whose nonabelian maximal subgroups have the largest possible center 152 p-central p-groups ; 153 Some generalizations of 2-central 2-groups ; 154 Metacyclic p-groups covered by minimal nonabelian subgroups ; 155 A new type of Thompson subgroup 156 Minimal number of generators of a p-group, p> 2 157 Some further properties of p-central p-groups ; 158 On extraspecial normal subgroups of p-groups ; 159 2-groups all of whose cyclic subgroups A, B with A Â"B `"{1} generate an abelian subgroup; 160 p-groups, p> 2, all of whose cyclic subgroups A, B with A Â"B `"{1} generate an abelian subgroup 161 p-groups where all subgroups not contained in the Frattini subgroup are quasinormal 162 The centralizer equality subgroup in a p-group ; 163 Macdonald's theorem on p-groups all of whose proper subgroups are of class at most 2 ; 164 Partitions and Hp-subgroups of a p-group This is the fourth volume of a comprehensive and elementary treatment of finite p-group theory. As in the previous volumes, minimal nonabelian p-groups play an important role. Topics covered in this volume include: subgroup structure of metacyclic p-groups Ishikawa's theorem on p-groups with two sizes of conjugate classes p-central p-groups theorem of Kegel on nilpotence of H p-groups partitions of p-groups characterizations of Dedekindian groups norm of p-groups p-groups with 2-uniserial subgroups of small order The book also contains hundreds of original exercises and solutions and a comprehensive list of more than 500 open problems. This work is suitable for researchers and graduate students with a modest background in algebra. Finite groups. http://id.loc.gov/authorities/subjects/sh85048354 Group theory. http://id.loc.gov/authorities/subjects/sh85057512 Groupes finis. Théorie des groupes. MATHEMATICS Algebra Intermediate. bisacsh Finite groups fast Group theory fast Group Theory. Order. Primes. Janko, Zvonimir, 1932- http://id.loc.gov/authorities/names/n2011014887 Print version: Berkovich, Yakov G. Groups of Prime Power Order 4 : Volume 4. Berlin/Boston : De Gruyter, ©2015 9783110281453 De Gruyter expositions in mathematics ; 61. http://id.loc.gov/authorities/names/n90653843 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1131257 Volltext |
spellingShingle | Berkovich, I︠A︡. G., 1938- Groups of prime power order. De Gruyter expositions in mathematics ; Content ; List of definitions and notations ; Preface ; 145 p-groups all of whose maximal subgroups, except one, have derived subgroup of order ≤ p; 146 p-groups all of whose maximal subgroups, except one, have cyclic derived subgroups ; 147 p-groups with exactly two sizes of conjugate classes 148 Maximal abelian and minimal nonabelian subgroups of some finite two-generator p-groups especially metacyclic 149 p-groups with many minimal nonabelian subgroups ; 150 The exponents of finite p-groups and their automorphism groups 151 p-groups all of whose nonabelian maximal subgroups have the largest possible center 152 p-central p-groups ; 153 Some generalizations of 2-central 2-groups ; 154 Metacyclic p-groups covered by minimal nonabelian subgroups ; 155 A new type of Thompson subgroup 156 Minimal number of generators of a p-group, p> 2 157 Some further properties of p-central p-groups ; 158 On extraspecial normal subgroups of p-groups ; 159 2-groups all of whose cyclic subgroups A, B with A Â"B `"{1} generate an abelian subgroup; 160 p-groups, p> 2, all of whose cyclic subgroups A, B with A Â"B `"{1} generate an abelian subgroup 161 p-groups where all subgroups not contained in the Frattini subgroup are quasinormal 162 The centralizer equality subgroup in a p-group ; 163 Macdonald's theorem on p-groups all of whose proper subgroups are of class at most 2 ; 164 Partitions and Hp-subgroups of a p-group Finite groups. http://id.loc.gov/authorities/subjects/sh85048354 Group theory. http://id.loc.gov/authorities/subjects/sh85057512 Groupes finis. Théorie des groupes. MATHEMATICS Algebra Intermediate. bisacsh Finite groups fast Group theory fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85048354 http://id.loc.gov/authorities/subjects/sh85057512 |
title | Groups of prime power order. |
title_auth | Groups of prime power order. |
title_exact_search | Groups of prime power order. |
title_full | Groups of prime power order. Volume 4 / Yakov Berkovich and Zvonimir Janko ; edited by Victor P. Maslov [and 4 others]. |
title_fullStr | Groups of prime power order. Volume 4 / Yakov Berkovich and Zvonimir Janko ; edited by Victor P. Maslov [and 4 others]. |
title_full_unstemmed | Groups of prime power order. Volume 4 / Yakov Berkovich and Zvonimir Janko ; edited by Victor P. Maslov [and 4 others]. |
title_short | Groups of prime power order. |
title_sort | groups of prime power order |
topic | Finite groups. http://id.loc.gov/authorities/subjects/sh85048354 Group theory. http://id.loc.gov/authorities/subjects/sh85057512 Groupes finis. Théorie des groupes. MATHEMATICS Algebra Intermediate. bisacsh Finite groups fast Group theory fast |
topic_facet | Finite groups. Group theory. Groupes finis. Théorie des groupes. MATHEMATICS Algebra Intermediate. Finite groups Group theory |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1131257 |
work_keys_str_mv | AT berkovichiag groupsofprimepowerordervolume4 AT jankozvonimir groupsofprimepowerordervolume4 |