Non-archimedean tame topology and stably dominated types /:
Over the field of real numbers, analytic geometry has long been in deep interaction with algebraic geometry, bringing the latter subject many of its topological insights. In recent decades, model theory has joined this work through the theory of o-minimality, providing finiteness and uniformity stat...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton :
Princeton University Press,
2016.
|
Schriftenreihe: | Annals of mathematics studies ;
no. 192. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Over the field of real numbers, analytic geometry has long been in deep interaction with algebraic geometry, bringing the latter subject many of its topological insights. In recent decades, model theory has joined this work through the theory of o-minimality, providing finiteness and uniformity statements and new structural tools. For non-archimedean fields, such as the p-adics, the Berkovich analytification provides a connected topology with many thoroughgoing analogies to the real topology on the set of complex points, and it has become an important tool in algebraic dynamics and many other areas of geometry. This book lays down model-theoretic foundations for non-archimedean geometry. The methods combine o-minimality and stability theory. Definable types play a central role, serving first to define the notion of a point and then properties such as definable compactness. Beyond the foundations, the main theorem constructs a deformation retraction from the full non-archimedean space of an algebraic variety to a rational polytope. This generalizes previous results of V. Berkovich, who used resolution of singularities methods. No previous knowledge of non-archimedean geometry is assumed. Model-theoretic prerequisites are reviewed in the first sections. |
Beschreibung: | 1 online resource (vii, 216 pages) |
Bibliographie: | Includes bibliographical references (pages 207-210) and index. |
ISBN: | 9781400881222 1400881226 0691161682 9780691161686 0691161690 9780691161693 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn933388580 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu|||unuuu | ||
008 | 151223s2016 nju ob 001 0 eng d | ||
040 | |a N$T |b eng |e rda |e pn |c N$T |d IDEBK |d YDXCP |d N$T |d EBLCP |d JSTOR |d OCLCF |d CDX |d DEBBG |d COO |d CCO |d COCUF |d LOA |d MERUC |d AGLDB |d ICA |d PIFAG |d FVL |d YDX |d BAB |d ZCU |d OCLCQ |d CUY |d OCLCQ |d U3G |d NJR |d DEGRU |d B3G |d I9W |d I8H |d IL4I4 |d U3W |d OCLCQ |d D6H |d EZ9 |d OCLCQ |d WRM |d STF |d OCLCQ |d VTS |d ICG |d VT2 |d OCLCQ |d WYU |d TKN |d LEAUB |d DKC |d OCLCQ |d M8D |d UKAHL |d OCLCQ |d SFB |d OCLCQ |d AUD |d MM9 |d IEEEE |d CN6UV |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ | ||
066 | |c (S | ||
019 | |a 957614707 |a 979911327 |a 992820386 |a 1055393170 |a 1066453457 | ||
020 | |a 9781400881222 |q (electronic bk.) | ||
020 | |a 1400881226 |q (electronic bk.) | ||
020 | |a 0691161682 | ||
020 | |a 9780691161686 | ||
020 | |a 0691161690 | ||
020 | |a 9780691161693 | ||
024 | 7 | |a 10.1515/9781400881222 |2 doi | |
035 | |a (OCoLC)933388580 |z (OCoLC)957614707 |z (OCoLC)979911327 |z (OCoLC)992820386 |z (OCoLC)1055393170 |z (OCoLC)1066453457 | ||
037 | |a 22573/ctt193cj76 |b JSTOR | ||
037 | |a 9452405 |b IEEE | ||
050 | 4 | |a QA251.5 |b .H78 2016eb | |
072 | 7 | |a MAT |x 002040 |2 bisacsh | |
072 | 7 | |a MAT038000 |2 bisacsh | |
072 | 7 | |a MAT000000 |2 bisacsh | |
072 | 7 | |a MAT012010 |2 bisacsh | |
072 | 7 | |a MAT012020 |2 bisacsh | |
082 | 7 | |a 512./4 |2 23 | |
084 | |a SI 830 |2 rvk | ||
049 | |a MAIN | ||
100 | 1 | |a Hrushovski, Ehud, |d 1959- |e author. |1 https://id.oclc.org/worldcat/entity/E39PBJvCPykRCfpXQfXVH9rQbd |0 http://id.loc.gov/authorities/names/n2002014399 | |
245 | 1 | 0 | |a Non-archimedean tame topology and stably dominated types / |c Ehud Hrushovski, François Loeser. |
264 | 1 | |a Princeton : |b Princeton University Press, |c 2016. | |
264 | 4 | |c ©2016 | |
300 | |a 1 online resource (vii, 216 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a text file |b PDF |2 rda | ||
490 | 1 | |a Annals of mathematics studies ; |v number 192 | |
504 | |a Includes bibliographical references (pages 207-210) and index. | ||
588 | 0 | |a Vendor-supplied metadata. | |
520 | |a Over the field of real numbers, analytic geometry has long been in deep interaction with algebraic geometry, bringing the latter subject many of its topological insights. In recent decades, model theory has joined this work through the theory of o-minimality, providing finiteness and uniformity statements and new structural tools. For non-archimedean fields, such as the p-adics, the Berkovich analytification provides a connected topology with many thoroughgoing analogies to the real topology on the set of complex points, and it has become an important tool in algebraic dynamics and many other areas of geometry. This book lays down model-theoretic foundations for non-archimedean geometry. The methods combine o-minimality and stability theory. Definable types play a central role, serving first to define the notion of a point and then properties such as definable compactness. Beyond the foundations, the main theorem constructs a deformation retraction from the full non-archimedean space of an algebraic variety to a rational polytope. This generalizes previous results of V. Berkovich, who used resolution of singularities methods. No previous knowledge of non-archimedean geometry is assumed. Model-theoretic prerequisites are reviewed in the first sections. | ||
546 | |a In English. | ||
505 | 0 | 0 | |6 880-01 |t Frontmatter -- |t Contents -- |t 1. Introduction -- |t 2. Preliminaries -- |t 3. The space v̂ of stably dominated types -- |t 4. Definable compactness -- |t 5. A closer look at the stable completion -- |t 6. [Gamma]-internal spaces -- |t 7. Curves -- |t 8. Strongly stably dominated points -- |t 9. Specializations and ACV2F -- |t 10. Continuity of homotopies -- |t 11. The main theorem -- |t 12. The smooth case -- |t 13. An equivalence of categories -- |t 14. Applications to the topology of Berkovich spaces -- |t Bibliography -- |t Index -- |t List of notations. |
650 | 0 | |a Tame algebras. |0 http://id.loc.gov/authorities/subjects/sh86005677 | |
650 | 6 | |a Algèbres régulières. | |
650 | 7 | |a MATHEMATICS |x Algebra |x Intermediate. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Topology. |2 bisacsh | |
650 | 7 | |a Tame algebras |2 fast | |
700 | 1 | |a Loeser, François, |e author. |0 http://id.loc.gov/authorities/names/no98065663 | |
776 | 0 | 8 | |i Print version: |z 9780691161686 |
830 | 0 | |a Annals of mathematics studies ; |v no. 192. |0 http://id.loc.gov/authorities/names/n42002129 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1090926 |3 Volltext |
880 | 0 | 0 | |6 505-01/(S |t Frontmatter -- |t Contents -- |t 1. Introduction -- |t 2. Preliminaries -- |t 3. The space v̂ of stably dominated types -- |t 4. Definable compactness -- |t 5. A closer look at the stable completion -- |t 6. Γ-internal spaces -- |t 7. Curves -- |t 8. Strongly stably dominated points -- |t 9. Specializations and ACV2F -- |t 10. Continuity of homotopies -- |t 11. The main theorem -- |t 12. The smooth case -- |t 13. An equivalence of categories -- |t 14. Applications to the topology of Berkovich spaces -- |t Bibliography -- |t Index -- |t List of notations. |
938 | |a Askews and Holts Library Services |b ASKH |n AH29979686 | ||
938 | |a Coutts Information Services |b COUT |n 33383068 | ||
938 | |a De Gruyter |b DEGR |n 9781400881222 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL4198288 | ||
938 | |a EBSCOhost |b EBSC |n 1090926 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis33383068 | ||
938 | |a YBP Library Services |b YANK |n 12759013 | ||
938 | |a hoopla Digital |b HOPL |n MWT16343055 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn933388580 |
---|---|
_version_ | 1816882334018830336 |
adam_text | |
any_adam_object | |
author | Hrushovski, Ehud, 1959- Loeser, François |
author_GND | http://id.loc.gov/authorities/names/n2002014399 http://id.loc.gov/authorities/names/no98065663 |
author_facet | Hrushovski, Ehud, 1959- Loeser, François |
author_role | aut aut |
author_sort | Hrushovski, Ehud, 1959- |
author_variant | e h eh f l fl |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA251 |
callnumber-raw | QA251.5 .H78 2016eb |
callnumber-search | QA251.5 .H78 2016eb |
callnumber-sort | QA 3251.5 H78 42016EB |
callnumber-subject | QA - Mathematics |
classification_rvk | SI 830 |
collection | ZDB-4-EBA |
contents | Frontmatter -- Contents -- 1. Introduction -- 2. Preliminaries -- 3. The space v̂ of stably dominated types -- 4. Definable compactness -- 5. A closer look at the stable completion -- 6. [Gamma]-internal spaces -- 7. Curves -- 8. Strongly stably dominated points -- 9. Specializations and ACV2F -- 10. Continuity of homotopies -- 11. The main theorem -- 12. The smooth case -- 13. An equivalence of categories -- 14. Applications to the topology of Berkovich spaces -- Bibliography -- Index -- List of notations. |
ctrlnum | (OCoLC)933388580 |
dewey-full | 512./4 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512./4 |
dewey-search | 512./4 |
dewey-sort | 3512 14 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05712cam a2200769 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn933388580</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu|||unuuu</controlfield><controlfield tag="008">151223s2016 nju ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">IDEBK</subfield><subfield code="d">YDXCP</subfield><subfield code="d">N$T</subfield><subfield code="d">EBLCP</subfield><subfield code="d">JSTOR</subfield><subfield code="d">OCLCF</subfield><subfield code="d">CDX</subfield><subfield code="d">DEBBG</subfield><subfield code="d">COO</subfield><subfield code="d">CCO</subfield><subfield code="d">COCUF</subfield><subfield code="d">LOA</subfield><subfield code="d">MERUC</subfield><subfield code="d">AGLDB</subfield><subfield code="d">ICA</subfield><subfield code="d">PIFAG</subfield><subfield code="d">FVL</subfield><subfield code="d">YDX</subfield><subfield code="d">BAB</subfield><subfield code="d">ZCU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">CUY</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3G</subfield><subfield code="d">NJR</subfield><subfield code="d">DEGRU</subfield><subfield code="d">B3G</subfield><subfield code="d">I9W</subfield><subfield code="d">I8H</subfield><subfield code="d">IL4I4</subfield><subfield code="d">U3W</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">D6H</subfield><subfield code="d">EZ9</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WRM</subfield><subfield code="d">STF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">ICG</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">TKN</subfield><subfield code="d">LEAUB</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AUD</subfield><subfield code="d">MM9</subfield><subfield code="d">IEEEE</subfield><subfield code="d">CN6UV</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="066" ind1=" " ind2=" "><subfield code="c">(S</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">957614707</subfield><subfield code="a">979911327</subfield><subfield code="a">992820386</subfield><subfield code="a">1055393170</subfield><subfield code="a">1066453457</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400881222</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1400881226</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0691161682</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691161686</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0691161690</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691161693</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781400881222</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)933388580</subfield><subfield code="z">(OCoLC)957614707</subfield><subfield code="z">(OCoLC)979911327</subfield><subfield code="z">(OCoLC)992820386</subfield><subfield code="z">(OCoLC)1055393170</subfield><subfield code="z">(OCoLC)1066453457</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">22573/ctt193cj76</subfield><subfield code="b">JSTOR</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">9452405</subfield><subfield code="b">IEEE</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA251.5</subfield><subfield code="b">.H78 2016eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">002040</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT038000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT000000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT012010</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT012020</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512./4</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 830</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hrushovski, Ehud,</subfield><subfield code="d">1959-</subfield><subfield code="e">author.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJvCPykRCfpXQfXVH9rQbd</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2002014399</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Non-archimedean tame topology and stably dominated types /</subfield><subfield code="c">Ehud Hrushovski, François Loeser.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton :</subfield><subfield code="b">Princeton University Press,</subfield><subfield code="c">2016.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (vii, 216 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">text file</subfield><subfield code="b">PDF</subfield><subfield code="2">rda</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Annals of mathematics studies ;</subfield><subfield code="v">number 192</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 207-210) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Vendor-supplied metadata.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Over the field of real numbers, analytic geometry has long been in deep interaction with algebraic geometry, bringing the latter subject many of its topological insights. In recent decades, model theory has joined this work through the theory of o-minimality, providing finiteness and uniformity statements and new structural tools. For non-archimedean fields, such as the p-adics, the Berkovich analytification provides a connected topology with many thoroughgoing analogies to the real topology on the set of complex points, and it has become an important tool in algebraic dynamics and many other areas of geometry. This book lays down model-theoretic foundations for non-archimedean geometry. The methods combine o-minimality and stability theory. Definable types play a central role, serving first to define the notion of a point and then properties such as definable compactness. Beyond the foundations, the main theorem constructs a deformation retraction from the full non-archimedean space of an algebraic variety to a rational polytope. This generalizes previous results of V. Berkovich, who used resolution of singularities methods. No previous knowledge of non-archimedean geometry is assumed. Model-theoretic prerequisites are reviewed in the first sections.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English.</subfield></datafield><datafield tag="505" ind1="0" ind2="0"><subfield code="6">880-01</subfield><subfield code="t">Frontmatter --</subfield><subfield code="t">Contents --</subfield><subfield code="t">1. Introduction --</subfield><subfield code="t">2. Preliminaries --</subfield><subfield code="t">3. The space v̂ of stably dominated types --</subfield><subfield code="t">4. Definable compactness --</subfield><subfield code="t">5. A closer look at the stable completion --</subfield><subfield code="t">6. [Gamma]-internal spaces --</subfield><subfield code="t">7. Curves --</subfield><subfield code="t">8. Strongly stably dominated points --</subfield><subfield code="t">9. Specializations and ACV2F --</subfield><subfield code="t">10. Continuity of homotopies --</subfield><subfield code="t">11. The main theorem --</subfield><subfield code="t">12. The smooth case --</subfield><subfield code="t">13. An equivalence of categories --</subfield><subfield code="t">14. Applications to the topology of Berkovich spaces --</subfield><subfield code="t">Bibliography --</subfield><subfield code="t">Index --</subfield><subfield code="t">List of notations.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Tame algebras.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh86005677</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Algèbres régulières.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Algebra</subfield><subfield code="x">Intermediate.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Topology.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Tame algebras</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Loeser, François,</subfield><subfield code="e">author.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no98065663</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="z">9780691161686</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Annals of mathematics studies ;</subfield><subfield code="v">no. 192.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42002129</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1090926</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="880" ind1="0" ind2="0"><subfield code="6">505-01/(S</subfield><subfield code="t">Frontmatter --</subfield><subfield code="t">Contents --</subfield><subfield code="t">1. Introduction --</subfield><subfield code="t">2. Preliminaries --</subfield><subfield code="t">3. The space v̂ of stably dominated types --</subfield><subfield code="t">4. Definable compactness --</subfield><subfield code="t">5. A closer look at the stable completion --</subfield><subfield code="t">6. Γ-internal spaces --</subfield><subfield code="t">7. Curves --</subfield><subfield code="t">8. Strongly stably dominated points --</subfield><subfield code="t">9. Specializations and ACV2F --</subfield><subfield code="t">10. Continuity of homotopies --</subfield><subfield code="t">11. The main theorem --</subfield><subfield code="t">12. The smooth case --</subfield><subfield code="t">13. An equivalence of categories --</subfield><subfield code="t">14. Applications to the topology of Berkovich spaces --</subfield><subfield code="t">Bibliography --</subfield><subfield code="t">Index --</subfield><subfield code="t">List of notations.</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH29979686</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">33383068</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">De Gruyter</subfield><subfield code="b">DEGR</subfield><subfield code="n">9781400881222</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL4198288</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">1090926</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis33383068</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">12759013</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">hoopla Digital</subfield><subfield code="b">HOPL</subfield><subfield code="n">MWT16343055</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn933388580 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:26:57Z |
institution | BVB |
isbn | 9781400881222 1400881226 0691161682 9780691161686 0691161690 9780691161693 |
language | English |
oclc_num | 933388580 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (vii, 216 pages) |
psigel | ZDB-4-EBA |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | Princeton University Press, |
record_format | marc |
series | Annals of mathematics studies ; |
series2 | Annals of mathematics studies ; |
spelling | Hrushovski, Ehud, 1959- author. https://id.oclc.org/worldcat/entity/E39PBJvCPykRCfpXQfXVH9rQbd http://id.loc.gov/authorities/names/n2002014399 Non-archimedean tame topology and stably dominated types / Ehud Hrushovski, François Loeser. Princeton : Princeton University Press, 2016. ©2016 1 online resource (vii, 216 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier text file PDF rda Annals of mathematics studies ; number 192 Includes bibliographical references (pages 207-210) and index. Vendor-supplied metadata. Over the field of real numbers, analytic geometry has long been in deep interaction with algebraic geometry, bringing the latter subject many of its topological insights. In recent decades, model theory has joined this work through the theory of o-minimality, providing finiteness and uniformity statements and new structural tools. For non-archimedean fields, such as the p-adics, the Berkovich analytification provides a connected topology with many thoroughgoing analogies to the real topology on the set of complex points, and it has become an important tool in algebraic dynamics and many other areas of geometry. This book lays down model-theoretic foundations for non-archimedean geometry. The methods combine o-minimality and stability theory. Definable types play a central role, serving first to define the notion of a point and then properties such as definable compactness. Beyond the foundations, the main theorem constructs a deformation retraction from the full non-archimedean space of an algebraic variety to a rational polytope. This generalizes previous results of V. Berkovich, who used resolution of singularities methods. No previous knowledge of non-archimedean geometry is assumed. Model-theoretic prerequisites are reviewed in the first sections. In English. 880-01 Frontmatter -- Contents -- 1. Introduction -- 2. Preliminaries -- 3. The space v̂ of stably dominated types -- 4. Definable compactness -- 5. A closer look at the stable completion -- 6. [Gamma]-internal spaces -- 7. Curves -- 8. Strongly stably dominated points -- 9. Specializations and ACV2F -- 10. Continuity of homotopies -- 11. The main theorem -- 12. The smooth case -- 13. An equivalence of categories -- 14. Applications to the topology of Berkovich spaces -- Bibliography -- Index -- List of notations. Tame algebras. http://id.loc.gov/authorities/subjects/sh86005677 Algèbres régulières. MATHEMATICS Algebra Intermediate. bisacsh MATHEMATICS Topology. bisacsh Tame algebras fast Loeser, François, author. http://id.loc.gov/authorities/names/no98065663 Print version: 9780691161686 Annals of mathematics studies ; no. 192. http://id.loc.gov/authorities/names/n42002129 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1090926 Volltext 505-01/(S Frontmatter -- Contents -- 1. Introduction -- 2. Preliminaries -- 3. The space v̂ of stably dominated types -- 4. Definable compactness -- 5. A closer look at the stable completion -- 6. Γ-internal spaces -- 7. Curves -- 8. Strongly stably dominated points -- 9. Specializations and ACV2F -- 10. Continuity of homotopies -- 11. The main theorem -- 12. The smooth case -- 13. An equivalence of categories -- 14. Applications to the topology of Berkovich spaces -- Bibliography -- Index -- List of notations. |
spellingShingle | Hrushovski, Ehud, 1959- Loeser, François Non-archimedean tame topology and stably dominated types / Annals of mathematics studies ; Frontmatter -- Contents -- 1. Introduction -- 2. Preliminaries -- 3. The space v̂ of stably dominated types -- 4. Definable compactness -- 5. A closer look at the stable completion -- 6. [Gamma]-internal spaces -- 7. Curves -- 8. Strongly stably dominated points -- 9. Specializations and ACV2F -- 10. Continuity of homotopies -- 11. The main theorem -- 12. The smooth case -- 13. An equivalence of categories -- 14. Applications to the topology of Berkovich spaces -- Bibliography -- Index -- List of notations. Tame algebras. http://id.loc.gov/authorities/subjects/sh86005677 Algèbres régulières. MATHEMATICS Algebra Intermediate. bisacsh MATHEMATICS Topology. bisacsh Tame algebras fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh86005677 |
title | Non-archimedean tame topology and stably dominated types / |
title_alt | Frontmatter -- Contents -- 1. Introduction -- 2. Preliminaries -- 3. The space v̂ of stably dominated types -- 4. Definable compactness -- 5. A closer look at the stable completion -- 6. [Gamma]-internal spaces -- 7. Curves -- 8. Strongly stably dominated points -- 9. Specializations and ACV2F -- 10. Continuity of homotopies -- 11. The main theorem -- 12. The smooth case -- 13. An equivalence of categories -- 14. Applications to the topology of Berkovich spaces -- Bibliography -- Index -- List of notations. |
title_auth | Non-archimedean tame topology and stably dominated types / |
title_exact_search | Non-archimedean tame topology and stably dominated types / |
title_full | Non-archimedean tame topology and stably dominated types / Ehud Hrushovski, François Loeser. |
title_fullStr | Non-archimedean tame topology and stably dominated types / Ehud Hrushovski, François Loeser. |
title_full_unstemmed | Non-archimedean tame topology and stably dominated types / Ehud Hrushovski, François Loeser. |
title_short | Non-archimedean tame topology and stably dominated types / |
title_sort | non archimedean tame topology and stably dominated types |
topic | Tame algebras. http://id.loc.gov/authorities/subjects/sh86005677 Algèbres régulières. MATHEMATICS Algebra Intermediate. bisacsh MATHEMATICS Topology. bisacsh Tame algebras fast |
topic_facet | Tame algebras. Algèbres régulières. MATHEMATICS Algebra Intermediate. MATHEMATICS Topology. Tame algebras |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1090926 |
work_keys_str_mv | AT hrushovskiehud nonarchimedeantametopologyandstablydominatedtypes AT loeserfrancois nonarchimedeantametopologyandstablydominatedtypes |