Learning data mining with Python :: harness the power of Python to analyze data and create insightful predictive models /
If you are a programmer who wants to get started with data mining, then this book is for you.
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Birmingham, UK :
Packt Publishing,
2015.
|
Schriftenreihe: | Community experience distilled.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | If you are a programmer who wants to get started with data mining, then this book is for you. |
Beschreibung: | Includes index. |
Beschreibung: | 1 online resource (xiv, 317 pages) |
ISBN: | 9781784391201 1784391204 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn916530911 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr mn||||||||| | ||
008 | 150807t20152015enk o 001 0 eng d | ||
040 | |a IDEBK |b eng |e rda |e pn |c IDEBK |d EBLCP |d OSU |d DEBSZ |d COO |d TEFOD |d OCLCF |d N$T |d OCLCQ |d MERUC |d OCLCQ |d VT2 |d NLE |d UKMGB |d OCLCQ |d WYU |d S9I |d STF |d UKAHL |d RDF |d OCLCQ |d INARC |d OCLCO |d OCLCQ |d OCLCO |d OCLCL | ||
016 | 7 | |a 018007151 |2 Uk | |
020 | |a 9781784391201 |q (electronic bk.) | ||
020 | |a 1784391204 |q (electronic bk.) | ||
020 | |z 1784396052 | ||
020 | |z 9781784396053 | ||
035 | |a (OCoLC)916530911 | ||
037 | |a 818415 |b MIL | ||
037 | |a 01F43055-BCC2-44A6-89AF-31BE58483F0D |b OverDrive, Inc. |n http://www.overdrive.com | ||
050 | 4 | |a QA76.73.P98 | |
050 | 4 | |a T55.4-60.8 | |
072 | 7 | |a COM |x 051360 |2 bisacsh | |
072 | 7 | |a COM |x 021030 |2 bisacsh | |
082 | 7 | |a 005.13 | |
049 | |a MAIN | ||
100 | 1 | |a Layton, Robert, |e author. | |
245 | 1 | 0 | |a Learning data mining with Python : |b harness the power of Python to analyze data and create insightful predictive models / |c Robert Layton. |
246 | 3 | 0 | |a Harness the power of Python to analyze data and create insightful predictive models |
264 | 1 | |a Birmingham, UK : |b Packt Publishing, |c 2015. | |
264 | 4 | |c ©2015 | |
300 | |a 1 online resource (xiv, 317 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a data file | ||
490 | 1 | |a Community experience distilled | |
500 | |a Includes index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Cover -- Copyright -- Credits -- About the Author -- About the Reviewers -- www.PacktPub.com -- Table of Contents -- Preface -- Chapter 1: Getting Started with Data Mining -- Introducing data mining -- Using Python and the IPython notebook -- Installing Python -- Installing IPython -- Installing scikit-learn -- A simple affinity analysis example -- What is affinity analysis? -- Product recommendations -- Loading the dataset with NumPy -- Implementing a simple ranking of rules -- Ranking to find the best rules -- A simple classification example | |
505 | 8 | |a What is classification?Loading and preparing the dataset -- Implementing the OneR algorithm -- Testing the algorithm -- Summary -- Chapter 2: Classifying with scikit-learn -- scikit-learn estimators -- Nearest neighbors -- Distance metrics -- Loading the dataset -- Moving towards a standard workflow -- Running the algorithm -- Setting parameters -- Preprocessing using pipelines -- An example -- Standard preprocessing -- Putting it all together -- Pipelines -- Summary -- Chapter 3: Predicting Sports Winners with Decision Trees | |
505 | 8 | |a Loading the datasetCollecting the data -- Using pandas to load the dataset -- Cleaning up the dataset -- Extracting new features -- Decision trees -- Parameters in decision trees -- Using decision trees -- Sports outcome prediction -- Putting it all together -- Random forests -- How do ensembles work? -- Parameters in Random forests -- Applying Random forests -- Engineering new features -- Summary -- Chapter 4: Recommending Movies Using Affinity Analysis -- Affinity analysis -- Algorithms for affinity analysis -- Choosing parameters | |
505 | 8 | |a The movie recommendation problemObtaining the dataset -- Loading with pandas -- Sparse data formats -- The Apriori implementation -- The Apriori algorithm -- Implementation -- Extracting association rules -- Evaluation -- Summary -- Chapter 5: Extracting Features with Transformers -- Feature extraction -- Representing reality in models -- Common feature patterns -- Creating good features -- Feature selection -- Selecting the best individual features -- Feature creation -- Principal Component Analysis -- Creating your own transformer | |
505 | 8 | |a The transformer APIImplementation details -- Unit testing -- Putting it all together -- Summary -- Chapter 6: Social Media Insight Using Naive Bayes -- Disambiguation -- Downloading data from a social network -- Loading and classifying the dataset -- Creating a replicable dataset from Twitter -- Text transformers -- Bag-of-words -- N-grams -- Other features -- Naive Bayes -- Bayes' theorem -- Naive Bayes algorithm -- How it works -- Application -- Extracting word counts -- Converting dictionaries to a matrix | |
520 | |a If you are a programmer who wants to get started with data mining, then this book is for you. | ||
650 | 0 | |a Python (Computer program language) |0 http://id.loc.gov/authorities/subjects/sh96008834 | |
650 | 0 | |a Data mining. |0 http://id.loc.gov/authorities/subjects/sh97002073 | |
650 | 6 | |a Python (Langage de programmation) | |
650 | 6 | |a Exploration de données (Informatique) | |
650 | 7 | |a COMPUTERS |x Programming Languages |x Python. |2 bisacsh | |
650 | 7 | |a COMPUTERS |x Databases |x Data Mining. |2 bisacsh | |
650 | 7 | |a Data mining |2 fast | |
650 | 7 | |a Python (Computer program language) |2 fast | |
758 | |i has work: |a Learning data mining with Python (Text) |1 https://id.oclc.org/worldcat/entity/E39PCYyJbc8PfPfrQcF43VWfJC |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Layton, Robert. |t Learning data mining with Python : harness the power of Python to analyze data and create insightful predictive models. |d Birmingham, England ; Mumbai, [India] : Packt Publishing, ©2015 |h xiv, 317 pages |z 9781784396053 |
830 | 0 | |a Community experience distilled. |0 http://id.loc.gov/authorities/names/no2011030603 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1046540 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH29022851 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL2120251 | ||
938 | |a EBSCOhost |b EBSC |n 1046540 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis32252648 | ||
938 | |a Internet Archive |b INAR |n learningdatamini0000layt | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn916530911 |
---|---|
_version_ | 1816882320840327168 |
adam_text | |
any_adam_object | |
author | Layton, Robert |
author_facet | Layton, Robert |
author_role | aut |
author_sort | Layton, Robert |
author_variant | r l rl |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA76 |
callnumber-raw | QA76.73.P98 T55.4-60.8 |
callnumber-search | QA76.73.P98 T55.4-60.8 |
callnumber-sort | QA 276.73 P98 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Cover -- Copyright -- Credits -- About the Author -- About the Reviewers -- www.PacktPub.com -- Table of Contents -- Preface -- Chapter 1: Getting Started with Data Mining -- Introducing data mining -- Using Python and the IPython notebook -- Installing Python -- Installing IPython -- Installing scikit-learn -- A simple affinity analysis example -- What is affinity analysis? -- Product recommendations -- Loading the dataset with NumPy -- Implementing a simple ranking of rules -- Ranking to find the best rules -- A simple classification example What is classification?Loading and preparing the dataset -- Implementing the OneR algorithm -- Testing the algorithm -- Summary -- Chapter 2: Classifying with scikit-learn -- scikit-learn estimators -- Nearest neighbors -- Distance metrics -- Loading the dataset -- Moving towards a standard workflow -- Running the algorithm -- Setting parameters -- Preprocessing using pipelines -- An example -- Standard preprocessing -- Putting it all together -- Pipelines -- Summary -- Chapter 3: Predicting Sports Winners with Decision Trees Loading the datasetCollecting the data -- Using pandas to load the dataset -- Cleaning up the dataset -- Extracting new features -- Decision trees -- Parameters in decision trees -- Using decision trees -- Sports outcome prediction -- Putting it all together -- Random forests -- How do ensembles work? -- Parameters in Random forests -- Applying Random forests -- Engineering new features -- Summary -- Chapter 4: Recommending Movies Using Affinity Analysis -- Affinity analysis -- Algorithms for affinity analysis -- Choosing parameters The movie recommendation problemObtaining the dataset -- Loading with pandas -- Sparse data formats -- The Apriori implementation -- The Apriori algorithm -- Implementation -- Extracting association rules -- Evaluation -- Summary -- Chapter 5: Extracting Features with Transformers -- Feature extraction -- Representing reality in models -- Common feature patterns -- Creating good features -- Feature selection -- Selecting the best individual features -- Feature creation -- Principal Component Analysis -- Creating your own transformer The transformer APIImplementation details -- Unit testing -- Putting it all together -- Summary -- Chapter 6: Social Media Insight Using Naive Bayes -- Disambiguation -- Downloading data from a social network -- Loading and classifying the dataset -- Creating a replicable dataset from Twitter -- Text transformers -- Bag-of-words -- N-grams -- Other features -- Naive Bayes -- Bayes' theorem -- Naive Bayes algorithm -- How it works -- Application -- Extracting word counts -- Converting dictionaries to a matrix |
ctrlnum | (OCoLC)916530911 |
dewey-full | 005.13 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 005 - Computer programming, programs, data, security |
dewey-raw | 005.13 |
dewey-search | 005.13 |
dewey-sort | 15.13 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05959cam a2200721 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn916530911</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr mn|||||||||</controlfield><controlfield tag="008">150807t20152015enk o 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">IDEBK</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">IDEBK</subfield><subfield code="d">EBLCP</subfield><subfield code="d">OSU</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">COO</subfield><subfield code="d">TEFOD</subfield><subfield code="d">OCLCF</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VT2</subfield><subfield code="d">NLE</subfield><subfield code="d">UKMGB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">S9I</subfield><subfield code="d">STF</subfield><subfield code="d">UKAHL</subfield><subfield code="d">RDF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">INARC</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">018007151</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781784391201</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1784391204</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1784396052</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781784396053</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)916530911</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">818415</subfield><subfield code="b">MIL</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">01F43055-BCC2-44A6-89AF-31BE58483F0D</subfield><subfield code="b">OverDrive, Inc.</subfield><subfield code="n">http://www.overdrive.com</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA76.73.P98</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">T55.4-60.8</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">051360</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">021030</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">005.13</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Layton, Robert,</subfield><subfield code="e">author.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Learning data mining with Python :</subfield><subfield code="b">harness the power of Python to analyze data and create insightful predictive models /</subfield><subfield code="c">Robert Layton.</subfield></datafield><datafield tag="246" ind1="3" ind2="0"><subfield code="a">Harness the power of Python to analyze data and create insightful predictive models</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Birmingham, UK :</subfield><subfield code="b">Packt Publishing,</subfield><subfield code="c">2015.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiv, 317 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">data file</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Community experience distilled</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover -- Copyright -- Credits -- About the Author -- About the Reviewers -- www.PacktPub.com -- Table of Contents -- Preface -- Chapter 1: Getting Started with Data Mining -- Introducing data mining -- Using Python and the IPython notebook -- Installing Python -- Installing IPython -- Installing scikit-learn -- A simple affinity analysis example -- What is affinity analysis? -- Product recommendations -- Loading the dataset with NumPy -- Implementing a simple ranking of rules -- Ranking to find the best rules -- A simple classification example</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">What is classification?Loading and preparing the dataset -- Implementing the OneR algorithm -- Testing the algorithm -- Summary -- Chapter 2: Classifying with scikit-learn -- scikit-learn estimators -- Nearest neighbors -- Distance metrics -- Loading the dataset -- Moving towards a standard workflow -- Running the algorithm -- Setting parameters -- Preprocessing using pipelines -- An example -- Standard preprocessing -- Putting it all together -- Pipelines -- Summary -- Chapter 3: Predicting Sports Winners with Decision Trees</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Loading the datasetCollecting the data -- Using pandas to load the dataset -- Cleaning up the dataset -- Extracting new features -- Decision trees -- Parameters in decision trees -- Using decision trees -- Sports outcome prediction -- Putting it all together -- Random forests -- How do ensembles work? -- Parameters in Random forests -- Applying Random forests -- Engineering new features -- Summary -- Chapter 4: Recommending Movies Using Affinity Analysis -- Affinity analysis -- Algorithms for affinity analysis -- Choosing parameters</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">The movie recommendation problemObtaining the dataset -- Loading with pandas -- Sparse data formats -- The Apriori implementation -- The Apriori algorithm -- Implementation -- Extracting association rules -- Evaluation -- Summary -- Chapter 5: Extracting Features with Transformers -- Feature extraction -- Representing reality in models -- Common feature patterns -- Creating good features -- Feature selection -- Selecting the best individual features -- Feature creation -- Principal Component Analysis -- Creating your own transformer</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">The transformer APIImplementation details -- Unit testing -- Putting it all together -- Summary -- Chapter 6: Social Media Insight Using Naive Bayes -- Disambiguation -- Downloading data from a social network -- Loading and classifying the dataset -- Creating a replicable dataset from Twitter -- Text transformers -- Bag-of-words -- N-grams -- Other features -- Naive Bayes -- Bayes' theorem -- Naive Bayes algorithm -- How it works -- Application -- Extracting word counts -- Converting dictionaries to a matrix</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">If you are a programmer who wants to get started with data mining, then this book is for you.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Python (Computer program language)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh96008834</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Data mining.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh97002073</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Python (Langage de programmation)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Exploration de données (Informatique)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">Programming Languages</subfield><subfield code="x">Python.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">Databases</subfield><subfield code="x">Data Mining.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Data mining</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Python (Computer program language)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Learning data mining with Python (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCYyJbc8PfPfrQcF43VWfJC</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Layton, Robert.</subfield><subfield code="t">Learning data mining with Python : harness the power of Python to analyze data and create insightful predictive models.</subfield><subfield code="d">Birmingham, England ; Mumbai, [India] : Packt Publishing, ©2015</subfield><subfield code="h">xiv, 317 pages</subfield><subfield code="z">9781784396053</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Community experience distilled.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2011030603</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1046540</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH29022851</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL2120251</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">1046540</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis32252648</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Internet Archive</subfield><subfield code="b">INAR</subfield><subfield code="n">learningdatamini0000layt</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn916530911 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:26:44Z |
institution | BVB |
isbn | 9781784391201 1784391204 |
language | English |
oclc_num | 916530911 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xiv, 317 pages) |
psigel | ZDB-4-EBA |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | Packt Publishing, |
record_format | marc |
series | Community experience distilled. |
series2 | Community experience distilled |
spelling | Layton, Robert, author. Learning data mining with Python : harness the power of Python to analyze data and create insightful predictive models / Robert Layton. Harness the power of Python to analyze data and create insightful predictive models Birmingham, UK : Packt Publishing, 2015. ©2015 1 online resource (xiv, 317 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier data file Community experience distilled Includes index. Print version record. Cover -- Copyright -- Credits -- About the Author -- About the Reviewers -- www.PacktPub.com -- Table of Contents -- Preface -- Chapter 1: Getting Started with Data Mining -- Introducing data mining -- Using Python and the IPython notebook -- Installing Python -- Installing IPython -- Installing scikit-learn -- A simple affinity analysis example -- What is affinity analysis? -- Product recommendations -- Loading the dataset with NumPy -- Implementing a simple ranking of rules -- Ranking to find the best rules -- A simple classification example What is classification?Loading and preparing the dataset -- Implementing the OneR algorithm -- Testing the algorithm -- Summary -- Chapter 2: Classifying with scikit-learn -- scikit-learn estimators -- Nearest neighbors -- Distance metrics -- Loading the dataset -- Moving towards a standard workflow -- Running the algorithm -- Setting parameters -- Preprocessing using pipelines -- An example -- Standard preprocessing -- Putting it all together -- Pipelines -- Summary -- Chapter 3: Predicting Sports Winners with Decision Trees Loading the datasetCollecting the data -- Using pandas to load the dataset -- Cleaning up the dataset -- Extracting new features -- Decision trees -- Parameters in decision trees -- Using decision trees -- Sports outcome prediction -- Putting it all together -- Random forests -- How do ensembles work? -- Parameters in Random forests -- Applying Random forests -- Engineering new features -- Summary -- Chapter 4: Recommending Movies Using Affinity Analysis -- Affinity analysis -- Algorithms for affinity analysis -- Choosing parameters The movie recommendation problemObtaining the dataset -- Loading with pandas -- Sparse data formats -- The Apriori implementation -- The Apriori algorithm -- Implementation -- Extracting association rules -- Evaluation -- Summary -- Chapter 5: Extracting Features with Transformers -- Feature extraction -- Representing reality in models -- Common feature patterns -- Creating good features -- Feature selection -- Selecting the best individual features -- Feature creation -- Principal Component Analysis -- Creating your own transformer The transformer APIImplementation details -- Unit testing -- Putting it all together -- Summary -- Chapter 6: Social Media Insight Using Naive Bayes -- Disambiguation -- Downloading data from a social network -- Loading and classifying the dataset -- Creating a replicable dataset from Twitter -- Text transformers -- Bag-of-words -- N-grams -- Other features -- Naive Bayes -- Bayes' theorem -- Naive Bayes algorithm -- How it works -- Application -- Extracting word counts -- Converting dictionaries to a matrix If you are a programmer who wants to get started with data mining, then this book is for you. Python (Computer program language) http://id.loc.gov/authorities/subjects/sh96008834 Data mining. http://id.loc.gov/authorities/subjects/sh97002073 Python (Langage de programmation) Exploration de données (Informatique) COMPUTERS Programming Languages Python. bisacsh COMPUTERS Databases Data Mining. bisacsh Data mining fast Python (Computer program language) fast has work: Learning data mining with Python (Text) https://id.oclc.org/worldcat/entity/E39PCYyJbc8PfPfrQcF43VWfJC https://id.oclc.org/worldcat/ontology/hasWork Print version: Layton, Robert. Learning data mining with Python : harness the power of Python to analyze data and create insightful predictive models. Birmingham, England ; Mumbai, [India] : Packt Publishing, ©2015 xiv, 317 pages 9781784396053 Community experience distilled. http://id.loc.gov/authorities/names/no2011030603 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1046540 Volltext |
spellingShingle | Layton, Robert Learning data mining with Python : harness the power of Python to analyze data and create insightful predictive models / Community experience distilled. Cover -- Copyright -- Credits -- About the Author -- About the Reviewers -- www.PacktPub.com -- Table of Contents -- Preface -- Chapter 1: Getting Started with Data Mining -- Introducing data mining -- Using Python and the IPython notebook -- Installing Python -- Installing IPython -- Installing scikit-learn -- A simple affinity analysis example -- What is affinity analysis? -- Product recommendations -- Loading the dataset with NumPy -- Implementing a simple ranking of rules -- Ranking to find the best rules -- A simple classification example What is classification?Loading and preparing the dataset -- Implementing the OneR algorithm -- Testing the algorithm -- Summary -- Chapter 2: Classifying with scikit-learn -- scikit-learn estimators -- Nearest neighbors -- Distance metrics -- Loading the dataset -- Moving towards a standard workflow -- Running the algorithm -- Setting parameters -- Preprocessing using pipelines -- An example -- Standard preprocessing -- Putting it all together -- Pipelines -- Summary -- Chapter 3: Predicting Sports Winners with Decision Trees Loading the datasetCollecting the data -- Using pandas to load the dataset -- Cleaning up the dataset -- Extracting new features -- Decision trees -- Parameters in decision trees -- Using decision trees -- Sports outcome prediction -- Putting it all together -- Random forests -- How do ensembles work? -- Parameters in Random forests -- Applying Random forests -- Engineering new features -- Summary -- Chapter 4: Recommending Movies Using Affinity Analysis -- Affinity analysis -- Algorithms for affinity analysis -- Choosing parameters The movie recommendation problemObtaining the dataset -- Loading with pandas -- Sparse data formats -- The Apriori implementation -- The Apriori algorithm -- Implementation -- Extracting association rules -- Evaluation -- Summary -- Chapter 5: Extracting Features with Transformers -- Feature extraction -- Representing reality in models -- Common feature patterns -- Creating good features -- Feature selection -- Selecting the best individual features -- Feature creation -- Principal Component Analysis -- Creating your own transformer The transformer APIImplementation details -- Unit testing -- Putting it all together -- Summary -- Chapter 6: Social Media Insight Using Naive Bayes -- Disambiguation -- Downloading data from a social network -- Loading and classifying the dataset -- Creating a replicable dataset from Twitter -- Text transformers -- Bag-of-words -- N-grams -- Other features -- Naive Bayes -- Bayes' theorem -- Naive Bayes algorithm -- How it works -- Application -- Extracting word counts -- Converting dictionaries to a matrix Python (Computer program language) http://id.loc.gov/authorities/subjects/sh96008834 Data mining. http://id.loc.gov/authorities/subjects/sh97002073 Python (Langage de programmation) Exploration de données (Informatique) COMPUTERS Programming Languages Python. bisacsh COMPUTERS Databases Data Mining. bisacsh Data mining fast Python (Computer program language) fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh96008834 http://id.loc.gov/authorities/subjects/sh97002073 |
title | Learning data mining with Python : harness the power of Python to analyze data and create insightful predictive models / |
title_alt | Harness the power of Python to analyze data and create insightful predictive models |
title_auth | Learning data mining with Python : harness the power of Python to analyze data and create insightful predictive models / |
title_exact_search | Learning data mining with Python : harness the power of Python to analyze data and create insightful predictive models / |
title_full | Learning data mining with Python : harness the power of Python to analyze data and create insightful predictive models / Robert Layton. |
title_fullStr | Learning data mining with Python : harness the power of Python to analyze data and create insightful predictive models / Robert Layton. |
title_full_unstemmed | Learning data mining with Python : harness the power of Python to analyze data and create insightful predictive models / Robert Layton. |
title_short | Learning data mining with Python : |
title_sort | learning data mining with python harness the power of python to analyze data and create insightful predictive models |
title_sub | harness the power of Python to analyze data and create insightful predictive models / |
topic | Python (Computer program language) http://id.loc.gov/authorities/subjects/sh96008834 Data mining. http://id.loc.gov/authorities/subjects/sh97002073 Python (Langage de programmation) Exploration de données (Informatique) COMPUTERS Programming Languages Python. bisacsh COMPUTERS Databases Data Mining. bisacsh Data mining fast Python (Computer program language) fast |
topic_facet | Python (Computer program language) Data mining. Python (Langage de programmation) Exploration de données (Informatique) COMPUTERS Programming Languages Python. COMPUTERS Databases Data Mining. Data mining |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1046540 |
work_keys_str_mv | AT laytonrobert learningdataminingwithpythonharnessthepowerofpythontoanalyzedataandcreateinsightfulpredictivemodels AT laytonrobert harnessthepowerofpythontoanalyzedataandcreateinsightfulpredictivemodels |