Multivariable Calculus and Differential Geometry.:
This text is a modern in-depth study of the subject that includes all the material needed from linear algebra. It then goes on to investigate topics in differential geometry, such as manifolds in Euclidean space, curvature, and the generalization of the fundamental theorem of calculus known as Stoke...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin/Boston, Germany :
De Gruyter,
2015.
©2015 |
Schriftenreihe: | De Gruyter graduate.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This text is a modern in-depth study of the subject that includes all the material needed from linear algebra. It then goes on to investigate topics in differential geometry, such as manifolds in Euclidean space, curvature, and the generalization of the fundamental theorem of calculus known as Stokes' theorem. |
Beschreibung: | 1 online resource (366) |
Bibliographie: | Includes bibliographical references (page 349) and index. |
ISBN: | 3110369540 9783110369540 9783110392791 3110392798 |
Internformat
MARC
LEADER | 00000cam a2200000Ma 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn911847214 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr |n||||||||| | ||
008 | 150626s2015 xx ob 001 0 eng d | ||
040 | |a IDEBK |b eng |e pn |c IDEBK |d EBLCP |d YDXCP |d OCLCO |d OCLCF |d COO |d OCLCQ |d CCO |d LOA |d K6U |d MERUC |d PIFAG |d FVL |d ZCU |d OCLCQ |d IDB |d DEGRU |d U3W |d COCUF |d STF |d WRM |d OCLCQ |d ICG |d INT |d OCLCQ |d WYU |d OCLCO |d AU@ |d VT2 |d TKN |d OCLCQ |d UBY |d LEAUB |d DKC |d OCLCQ |d UKAHL |d CUY |d OCLCQ |d OCLCO |d COM |d N$T |d OCLCQ |d SFB |d OCLCO |d UEJ |d OCLCQ | ||
019 | |a 1013794952 |a 1055387727 |a 1058433974 |a 1081225898 |a 1311344642 | ||
020 | |a 3110369540 |q (ebk) | ||
020 | |a 9783110369540 |q (ebk) | ||
020 | |a 9783110392791 |q (electronic bk.) | ||
020 | |a 3110392798 |q (electronic bk.) | ||
020 | |z 9783110369496 | ||
020 | |z 3110369494 | ||
035 | |a (OCoLC)911847214 |z (OCoLC)1013794952 |z (OCoLC)1055387727 |z (OCoLC)1058433974 |z (OCoLC)1081225898 |z (OCoLC)1311344642 | ||
037 | |a 802032 |b MIL | ||
050 | 4 | |a QA641 | |
072 | 7 | |a QA |2 lcco | |
082 | 7 | |a 516.3/6 | |
049 | |a MAIN | ||
100 | 1 | |a Walschap, Gerard. | |
245 | 1 | 0 | |a Multivariable Calculus and Differential Geometry. |
260 | |a Berlin/Boston, Germany : |b De Gruyter, |c 2015. | ||
264 | 4 | |c ©2015 | |
300 | |a 1 online resource (366) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a De Gruyter graduate. | |
588 | 0 | |a Print version record. | |
504 | |a Includes bibliographical references (page 349) and index. | ||
505 | 0 | |a Preface -- 1 Euclidean Space -- 1.1 Vector spaces -- 1.2 Linear transformations -- 1.3 Determinants -- 1.4 Euclidean spaces -- 1.5 Subspaces of Euclidean space -- 1.6 Determinants as volume -- 1.7 Elementary topology of Euclidean spaces -- 1.8 Sequences -- 1.9 Limits and continuity -- 1.10 Exercises -- 2 Differentiation -- 2.1 The derivative -- 2.2 Basic properties of the derivative -- 2.3 Differentiation of integrals -- 2.4 Curves -- 2.5 The inverse and implicit function theorems -- 2.6 The spectral theorem and scalar products -- 2.7 Taylor polynomials and extreme values -- 2.8 Vector fields -- 2.9 Lie brackets -- 2.10 Partitions of unity -- 2.11 Exercises -- 3 Manifolds -- 3.1 Submanifolds of Euclidean space -- 3.2 Differentiablemaps on manifolds -- 3.3 Vector fields on manifolds -- 3.4 Lie groups -- 3.5 The tangent bundle -- 3.6 Covariant differentiation -- 3.7 Geodesics -- 3.8 The second fundamental tensor -- 3.9 Curvature -- 3.10 Sectional curvature -- 3.11 Isometries -- 3.12 Exercises -- 4 Integration on Euclidean space -- 4.1 The integral of a function over a box -- 4.2 Integrability and discontinuities -- 4.3 Fubini's theorem -- 4.4 Sard's theorem -- 4.5 The change of variables theorem -- 4.6 Cylindrical and spherical coordinates -- 4.6.1 Cylindrical coordinates -- 4.6.2 Spherical coordinates -- 4.7 Some applications -- 4.7.1 Mass -- 4.7.2 Center ofmass -- 4.7.3 Moment of inertia -- 4.8 Exercises -- 5 Differential Forms -- 5.1 Tensors and tensor fields -- 5.2 Alternating tensors and forms -- 5.3 Differential forms -- 5.4 Integration on manifolds -- 5.5 Manifolds with boundary -- 5.6 Stokes' theorem -- 5.7 Classical versions of Stokes' theorem -- 5.7.1 An application: the polar planimeter -- 5.8 Closed forms and exact forms -- 5.9 Exercises -- 6 Manifolds as metric spaces. | |
505 | 8 | |a 6.1 Extremal properties of geodesics -- 6.2 Jacobi fields -- 6.3 The length function of a variation -- 6.4 The index formof a geodesic -- 6.5 The distance function -- 6.6 The Hopf-Rinow theorem -- 6.7 Curvature comparison -- 6.8 Exercises -- 7 Hypersurfaces -- 7.1 Hypersurfaces and orientation -- 7.2 The Gaussmap -- 7.3 Curvature of hypersurfaces -- 7.4 The fundamental theorem for hypersurfaces -- 7.5 Curvature in local coordinates -- 7.6 Convexity and curvature -- 7.7 Ruled surfaces -- 7.8 Surfaces of revolution -- 7.9 Exercises -- Appendix A -- Appendix B -- Index. | |
520 | |a This text is a modern in-depth study of the subject that includes all the material needed from linear algebra. It then goes on to investigate topics in differential geometry, such as manifolds in Euclidean space, curvature, and the generalization of the fundamental theorem of calculus known as Stokes' theorem. | ||
650 | 0 | |a Geometry, Differential. |0 http://id.loc.gov/authorities/subjects/sh85054146 | |
650 | 0 | |a Calculus. |0 http://id.loc.gov/authorities/subjects/sh85018802 | |
650 | 6 | |a Géométrie différentielle. | |
650 | 6 | |a Calcul infinitésimal. | |
650 | 7 | |a calculus. |2 aat | |
650 | 7 | |a MATHEMATICS |x Geometry |x General. |2 bisacsh | |
650 | 7 | |a Geometry, Differential |2 fast | |
653 | |a Differential geometry. | ||
653 | |a Riemannian geometry. | ||
776 | 0 | 8 | |i Print version: |a Walschap, Gerard, 1954- |t Multivariable calculus and differential geometry. |d Berlin : De Gruyter, [2015] |z 3110369494 |w (DLC) 2015458315 |w (OCoLC)904420460 |
830 | 0 | |a De Gruyter graduate. |0 http://id.loc.gov/authorities/names/no2011117424 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1017025 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH27004433 | ||
938 | |a De Gruyter |b DEGR |n 9783110369540 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL1787110 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis29825411 | ||
938 | |a YBP Library Services |b YANK |n 11722142 | ||
938 | |a EBSCOhost |b EBSC |n 1017025 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn911847214 |
---|---|
_version_ | 1816882316150046720 |
adam_text | |
any_adam_object | |
author | Walschap, Gerard |
author_facet | Walschap, Gerard |
author_role | |
author_sort | Walschap, Gerard |
author_variant | g w gw |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA641 |
callnumber-raw | QA641 |
callnumber-search | QA641 |
callnumber-sort | QA 3641 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Preface -- 1 Euclidean Space -- 1.1 Vector spaces -- 1.2 Linear transformations -- 1.3 Determinants -- 1.4 Euclidean spaces -- 1.5 Subspaces of Euclidean space -- 1.6 Determinants as volume -- 1.7 Elementary topology of Euclidean spaces -- 1.8 Sequences -- 1.9 Limits and continuity -- 1.10 Exercises -- 2 Differentiation -- 2.1 The derivative -- 2.2 Basic properties of the derivative -- 2.3 Differentiation of integrals -- 2.4 Curves -- 2.5 The inverse and implicit function theorems -- 2.6 The spectral theorem and scalar products -- 2.7 Taylor polynomials and extreme values -- 2.8 Vector fields -- 2.9 Lie brackets -- 2.10 Partitions of unity -- 2.11 Exercises -- 3 Manifolds -- 3.1 Submanifolds of Euclidean space -- 3.2 Differentiablemaps on manifolds -- 3.3 Vector fields on manifolds -- 3.4 Lie groups -- 3.5 The tangent bundle -- 3.6 Covariant differentiation -- 3.7 Geodesics -- 3.8 The second fundamental tensor -- 3.9 Curvature -- 3.10 Sectional curvature -- 3.11 Isometries -- 3.12 Exercises -- 4 Integration on Euclidean space -- 4.1 The integral of a function over a box -- 4.2 Integrability and discontinuities -- 4.3 Fubini's theorem -- 4.4 Sard's theorem -- 4.5 The change of variables theorem -- 4.6 Cylindrical and spherical coordinates -- 4.6.1 Cylindrical coordinates -- 4.6.2 Spherical coordinates -- 4.7 Some applications -- 4.7.1 Mass -- 4.7.2 Center ofmass -- 4.7.3 Moment of inertia -- 4.8 Exercises -- 5 Differential Forms -- 5.1 Tensors and tensor fields -- 5.2 Alternating tensors and forms -- 5.3 Differential forms -- 5.4 Integration on manifolds -- 5.5 Manifolds with boundary -- 5.6 Stokes' theorem -- 5.7 Classical versions of Stokes' theorem -- 5.7.1 An application: the polar planimeter -- 5.8 Closed forms and exact forms -- 5.9 Exercises -- 6 Manifolds as metric spaces. 6.1 Extremal properties of geodesics -- 6.2 Jacobi fields -- 6.3 The length function of a variation -- 6.4 The index formof a geodesic -- 6.5 The distance function -- 6.6 The Hopf-Rinow theorem -- 6.7 Curvature comparison -- 6.8 Exercises -- 7 Hypersurfaces -- 7.1 Hypersurfaces and orientation -- 7.2 The Gaussmap -- 7.3 Curvature of hypersurfaces -- 7.4 The fundamental theorem for hypersurfaces -- 7.5 Curvature in local coordinates -- 7.6 Convexity and curvature -- 7.7 Ruled surfaces -- 7.8 Surfaces of revolution -- 7.9 Exercises -- Appendix A -- Appendix B -- Index. |
ctrlnum | (OCoLC)911847214 |
dewey-full | 516.3/6 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.3/6 |
dewey-search | 516.3/6 |
dewey-sort | 3516.3 16 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05511cam a2200661Ma 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn911847214</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |n|||||||||</controlfield><controlfield tag="008">150626s2015 xx ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">IDEBK</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">IDEBK</subfield><subfield code="d">EBLCP</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCF</subfield><subfield code="d">COO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">CCO</subfield><subfield code="d">LOA</subfield><subfield code="d">K6U</subfield><subfield code="d">MERUC</subfield><subfield code="d">PIFAG</subfield><subfield code="d">FVL</subfield><subfield code="d">ZCU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">IDB</subfield><subfield code="d">DEGRU</subfield><subfield code="d">U3W</subfield><subfield code="d">COCUF</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">ICG</subfield><subfield code="d">INT</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">OCLCO</subfield><subfield code="d">AU@</subfield><subfield code="d">VT2</subfield><subfield code="d">TKN</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UBY</subfield><subfield code="d">LEAUB</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKAHL</subfield><subfield code="d">CUY</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">COM</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCO</subfield><subfield code="d">UEJ</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1013794952</subfield><subfield code="a">1055387727</subfield><subfield code="a">1058433974</subfield><subfield code="a">1081225898</subfield><subfield code="a">1311344642</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110369540</subfield><subfield code="q">(ebk)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110369540</subfield><subfield code="q">(ebk)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110392791</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110392798</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783110369496</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">3110369494</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)911847214</subfield><subfield code="z">(OCoLC)1013794952</subfield><subfield code="z">(OCoLC)1055387727</subfield><subfield code="z">(OCoLC)1058433974</subfield><subfield code="z">(OCoLC)1081225898</subfield><subfield code="z">(OCoLC)1311344642</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">802032</subfield><subfield code="b">MIL</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA641</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">QA</subfield><subfield code="2">lcco</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">516.3/6</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Walschap, Gerard.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multivariable Calculus and Differential Geometry.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Berlin/Boston, Germany :</subfield><subfield code="b">De Gruyter,</subfield><subfield code="c">2015.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (366)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">De Gruyter graduate.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (page 349) and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Preface -- 1 Euclidean Space -- 1.1 Vector spaces -- 1.2 Linear transformations -- 1.3 Determinants -- 1.4 Euclidean spaces -- 1.5 Subspaces of Euclidean space -- 1.6 Determinants as volume -- 1.7 Elementary topology of Euclidean spaces -- 1.8 Sequences -- 1.9 Limits and continuity -- 1.10 Exercises -- 2 Differentiation -- 2.1 The derivative -- 2.2 Basic properties of the derivative -- 2.3 Differentiation of integrals -- 2.4 Curves -- 2.5 The inverse and implicit function theorems -- 2.6 The spectral theorem and scalar products -- 2.7 Taylor polynomials and extreme values -- 2.8 Vector fields -- 2.9 Lie brackets -- 2.10 Partitions of unity -- 2.11 Exercises -- 3 Manifolds -- 3.1 Submanifolds of Euclidean space -- 3.2 Differentiablemaps on manifolds -- 3.3 Vector fields on manifolds -- 3.4 Lie groups -- 3.5 The tangent bundle -- 3.6 Covariant differentiation -- 3.7 Geodesics -- 3.8 The second fundamental tensor -- 3.9 Curvature -- 3.10 Sectional curvature -- 3.11 Isometries -- 3.12 Exercises -- 4 Integration on Euclidean space -- 4.1 The integral of a function over a box -- 4.2 Integrability and discontinuities -- 4.3 Fubini's theorem -- 4.4 Sard's theorem -- 4.5 The change of variables theorem -- 4.6 Cylindrical and spherical coordinates -- 4.6.1 Cylindrical coordinates -- 4.6.2 Spherical coordinates -- 4.7 Some applications -- 4.7.1 Mass -- 4.7.2 Center ofmass -- 4.7.3 Moment of inertia -- 4.8 Exercises -- 5 Differential Forms -- 5.1 Tensors and tensor fields -- 5.2 Alternating tensors and forms -- 5.3 Differential forms -- 5.4 Integration on manifolds -- 5.5 Manifolds with boundary -- 5.6 Stokes' theorem -- 5.7 Classical versions of Stokes' theorem -- 5.7.1 An application: the polar planimeter -- 5.8 Closed forms and exact forms -- 5.9 Exercises -- 6 Manifolds as metric spaces.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6.1 Extremal properties of geodesics -- 6.2 Jacobi fields -- 6.3 The length function of a variation -- 6.4 The index formof a geodesic -- 6.5 The distance function -- 6.6 The Hopf-Rinow theorem -- 6.7 Curvature comparison -- 6.8 Exercises -- 7 Hypersurfaces -- 7.1 Hypersurfaces and orientation -- 7.2 The Gaussmap -- 7.3 Curvature of hypersurfaces -- 7.4 The fundamental theorem for hypersurfaces -- 7.5 Curvature in local coordinates -- 7.6 Convexity and curvature -- 7.7 Ruled surfaces -- 7.8 Surfaces of revolution -- 7.9 Exercises -- Appendix A -- Appendix B -- Index.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This text is a modern in-depth study of the subject that includes all the material needed from linear algebra. It then goes on to investigate topics in differential geometry, such as manifolds in Euclidean space, curvature, and the generalization of the fundamental theorem of calculus known as Stokes' theorem.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Geometry, Differential.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85054146</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Calculus.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85018802</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Géométrie différentielle.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Calcul infinitésimal.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">calculus.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Geometry</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Geometry, Differential</subfield><subfield code="2">fast</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Differential geometry.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Riemannian geometry.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Walschap, Gerard, 1954-</subfield><subfield code="t">Multivariable calculus and differential geometry.</subfield><subfield code="d">Berlin : De Gruyter, [2015]</subfield><subfield code="z">3110369494</subfield><subfield code="w">(DLC) 2015458315</subfield><subfield code="w">(OCoLC)904420460</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">De Gruyter graduate.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2011117424</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1017025</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH27004433</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">De Gruyter</subfield><subfield code="b">DEGR</subfield><subfield code="n">9783110369540</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL1787110</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis29825411</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">11722142</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">1017025</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn911847214 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:26:40Z |
institution | BVB |
isbn | 3110369540 9783110369540 9783110392791 3110392798 |
language | English |
oclc_num | 911847214 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (366) |
psigel | ZDB-4-EBA |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | De Gruyter, |
record_format | marc |
series | De Gruyter graduate. |
series2 | De Gruyter graduate. |
spelling | Walschap, Gerard. Multivariable Calculus and Differential Geometry. Berlin/Boston, Germany : De Gruyter, 2015. ©2015 1 online resource (366) text txt rdacontent computer c rdamedia online resource cr rdacarrier De Gruyter graduate. Print version record. Includes bibliographical references (page 349) and index. Preface -- 1 Euclidean Space -- 1.1 Vector spaces -- 1.2 Linear transformations -- 1.3 Determinants -- 1.4 Euclidean spaces -- 1.5 Subspaces of Euclidean space -- 1.6 Determinants as volume -- 1.7 Elementary topology of Euclidean spaces -- 1.8 Sequences -- 1.9 Limits and continuity -- 1.10 Exercises -- 2 Differentiation -- 2.1 The derivative -- 2.2 Basic properties of the derivative -- 2.3 Differentiation of integrals -- 2.4 Curves -- 2.5 The inverse and implicit function theorems -- 2.6 The spectral theorem and scalar products -- 2.7 Taylor polynomials and extreme values -- 2.8 Vector fields -- 2.9 Lie brackets -- 2.10 Partitions of unity -- 2.11 Exercises -- 3 Manifolds -- 3.1 Submanifolds of Euclidean space -- 3.2 Differentiablemaps on manifolds -- 3.3 Vector fields on manifolds -- 3.4 Lie groups -- 3.5 The tangent bundle -- 3.6 Covariant differentiation -- 3.7 Geodesics -- 3.8 The second fundamental tensor -- 3.9 Curvature -- 3.10 Sectional curvature -- 3.11 Isometries -- 3.12 Exercises -- 4 Integration on Euclidean space -- 4.1 The integral of a function over a box -- 4.2 Integrability and discontinuities -- 4.3 Fubini's theorem -- 4.4 Sard's theorem -- 4.5 The change of variables theorem -- 4.6 Cylindrical and spherical coordinates -- 4.6.1 Cylindrical coordinates -- 4.6.2 Spherical coordinates -- 4.7 Some applications -- 4.7.1 Mass -- 4.7.2 Center ofmass -- 4.7.3 Moment of inertia -- 4.8 Exercises -- 5 Differential Forms -- 5.1 Tensors and tensor fields -- 5.2 Alternating tensors and forms -- 5.3 Differential forms -- 5.4 Integration on manifolds -- 5.5 Manifolds with boundary -- 5.6 Stokes' theorem -- 5.7 Classical versions of Stokes' theorem -- 5.7.1 An application: the polar planimeter -- 5.8 Closed forms and exact forms -- 5.9 Exercises -- 6 Manifolds as metric spaces. 6.1 Extremal properties of geodesics -- 6.2 Jacobi fields -- 6.3 The length function of a variation -- 6.4 The index formof a geodesic -- 6.5 The distance function -- 6.6 The Hopf-Rinow theorem -- 6.7 Curvature comparison -- 6.8 Exercises -- 7 Hypersurfaces -- 7.1 Hypersurfaces and orientation -- 7.2 The Gaussmap -- 7.3 Curvature of hypersurfaces -- 7.4 The fundamental theorem for hypersurfaces -- 7.5 Curvature in local coordinates -- 7.6 Convexity and curvature -- 7.7 Ruled surfaces -- 7.8 Surfaces of revolution -- 7.9 Exercises -- Appendix A -- Appendix B -- Index. This text is a modern in-depth study of the subject that includes all the material needed from linear algebra. It then goes on to investigate topics in differential geometry, such as manifolds in Euclidean space, curvature, and the generalization of the fundamental theorem of calculus known as Stokes' theorem. Geometry, Differential. http://id.loc.gov/authorities/subjects/sh85054146 Calculus. http://id.loc.gov/authorities/subjects/sh85018802 Géométrie différentielle. Calcul infinitésimal. calculus. aat MATHEMATICS Geometry General. bisacsh Geometry, Differential fast Differential geometry. Riemannian geometry. Print version: Walschap, Gerard, 1954- Multivariable calculus and differential geometry. Berlin : De Gruyter, [2015] 3110369494 (DLC) 2015458315 (OCoLC)904420460 De Gruyter graduate. http://id.loc.gov/authorities/names/no2011117424 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1017025 Volltext |
spellingShingle | Walschap, Gerard Multivariable Calculus and Differential Geometry. De Gruyter graduate. Preface -- 1 Euclidean Space -- 1.1 Vector spaces -- 1.2 Linear transformations -- 1.3 Determinants -- 1.4 Euclidean spaces -- 1.5 Subspaces of Euclidean space -- 1.6 Determinants as volume -- 1.7 Elementary topology of Euclidean spaces -- 1.8 Sequences -- 1.9 Limits and continuity -- 1.10 Exercises -- 2 Differentiation -- 2.1 The derivative -- 2.2 Basic properties of the derivative -- 2.3 Differentiation of integrals -- 2.4 Curves -- 2.5 The inverse and implicit function theorems -- 2.6 The spectral theorem and scalar products -- 2.7 Taylor polynomials and extreme values -- 2.8 Vector fields -- 2.9 Lie brackets -- 2.10 Partitions of unity -- 2.11 Exercises -- 3 Manifolds -- 3.1 Submanifolds of Euclidean space -- 3.2 Differentiablemaps on manifolds -- 3.3 Vector fields on manifolds -- 3.4 Lie groups -- 3.5 The tangent bundle -- 3.6 Covariant differentiation -- 3.7 Geodesics -- 3.8 The second fundamental tensor -- 3.9 Curvature -- 3.10 Sectional curvature -- 3.11 Isometries -- 3.12 Exercises -- 4 Integration on Euclidean space -- 4.1 The integral of a function over a box -- 4.2 Integrability and discontinuities -- 4.3 Fubini's theorem -- 4.4 Sard's theorem -- 4.5 The change of variables theorem -- 4.6 Cylindrical and spherical coordinates -- 4.6.1 Cylindrical coordinates -- 4.6.2 Spherical coordinates -- 4.7 Some applications -- 4.7.1 Mass -- 4.7.2 Center ofmass -- 4.7.3 Moment of inertia -- 4.8 Exercises -- 5 Differential Forms -- 5.1 Tensors and tensor fields -- 5.2 Alternating tensors and forms -- 5.3 Differential forms -- 5.4 Integration on manifolds -- 5.5 Manifolds with boundary -- 5.6 Stokes' theorem -- 5.7 Classical versions of Stokes' theorem -- 5.7.1 An application: the polar planimeter -- 5.8 Closed forms and exact forms -- 5.9 Exercises -- 6 Manifolds as metric spaces. 6.1 Extremal properties of geodesics -- 6.2 Jacobi fields -- 6.3 The length function of a variation -- 6.4 The index formof a geodesic -- 6.5 The distance function -- 6.6 The Hopf-Rinow theorem -- 6.7 Curvature comparison -- 6.8 Exercises -- 7 Hypersurfaces -- 7.1 Hypersurfaces and orientation -- 7.2 The Gaussmap -- 7.3 Curvature of hypersurfaces -- 7.4 The fundamental theorem for hypersurfaces -- 7.5 Curvature in local coordinates -- 7.6 Convexity and curvature -- 7.7 Ruled surfaces -- 7.8 Surfaces of revolution -- 7.9 Exercises -- Appendix A -- Appendix B -- Index. Geometry, Differential. http://id.loc.gov/authorities/subjects/sh85054146 Calculus. http://id.loc.gov/authorities/subjects/sh85018802 Géométrie différentielle. Calcul infinitésimal. calculus. aat MATHEMATICS Geometry General. bisacsh Geometry, Differential fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85054146 http://id.loc.gov/authorities/subjects/sh85018802 |
title | Multivariable Calculus and Differential Geometry. |
title_auth | Multivariable Calculus and Differential Geometry. |
title_exact_search | Multivariable Calculus and Differential Geometry. |
title_full | Multivariable Calculus and Differential Geometry. |
title_fullStr | Multivariable Calculus and Differential Geometry. |
title_full_unstemmed | Multivariable Calculus and Differential Geometry. |
title_short | Multivariable Calculus and Differential Geometry. |
title_sort | multivariable calculus and differential geometry |
topic | Geometry, Differential. http://id.loc.gov/authorities/subjects/sh85054146 Calculus. http://id.loc.gov/authorities/subjects/sh85018802 Géométrie différentielle. Calcul infinitésimal. calculus. aat MATHEMATICS Geometry General. bisacsh Geometry, Differential fast |
topic_facet | Geometry, Differential. Calculus. Géométrie différentielle. Calcul infinitésimal. calculus. MATHEMATICS Geometry General. Geometry, Differential |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1017025 |
work_keys_str_mv | AT walschapgerard multivariablecalculusanddifferentialgeometry |