Mastering pandas for finance :: master pandas, an open source Python data analysis library, for financial data analysis /
If you are interested in quantitative finance, financial modeling, and trading, or simply want to learn how Python and pandas can be applied to finance, then this book is ideal for you. Some knowledge of Python and pandas is assumed. Interest in financial concepts is helpful, but no prior knowledge...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Birmingham, UK :
Packt Publishing,
2015.
|
Schriftenreihe: | Community experience distilled.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | If you are interested in quantitative finance, financial modeling, and trading, or simply want to learn how Python and pandas can be applied to finance, then this book is ideal for you. Some knowledge of Python and pandas is assumed. Interest in financial concepts is helpful, but no prior knowledge is expected. |
Beschreibung: | Includes index. |
Beschreibung: | 1 online resource (1 volume) : illustrations |
ISBN: | 9781783985111 1783985119 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn911057825 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr unu|||||||| | ||
008 | 150616s2015 enka o 001 0 eng d | ||
040 | |a UMI |b eng |e rda |e pn |c UMI |d IDEBK |d EBLCP |d DEBBG |d YDXCP |d COO |d OCLCF |d N$T |d OCLCQ |d MERUC |d CEF |d UKMGB |d OCLCQ |d WYU |d ZCU |d UAB |d AU@ |d UKAHL |d VLY |d OCLCO |d OCLCQ |d QGK |d OCLCO |d OCLCL |d SXB |d OCLCQ |d UEJ |d OCLCQ | ||
016 | 7 | |a 018007006 |2 Uk | |
019 | |a 910282285 |a 913844222 |a 1259103267 | ||
020 | |a 9781783985111 |q (electronic bk.) | ||
020 | |a 1783985119 |q (electronic bk.) | ||
020 | |z 1783985119 | ||
020 | |z 1783985100 | ||
020 | |z 9781783985104 | ||
035 | |a (OCoLC)911057825 |z (OCoLC)910282285 |z (OCoLC)913844222 |z (OCoLC)1259103267 | ||
037 | |a CL0500000604 |b Safari Books Online | ||
050 | 4 | |a QA76.73.P98 | |
072 | 7 | |a BUS |x 027000 |2 bisacsh | |
082 | 7 | |a 332.01/51 | |
049 | |a MAIN | ||
100 | 1 | |a Heydt, Michael, |e author. | |
245 | 1 | 0 | |a Mastering pandas for finance : |b master pandas, an open source Python data analysis library, for financial data analysis / |c Michael Heydt. |
246 | 3 | 0 | |a Master pandas, an open source Python data analysis library, for financial data analysis |
264 | 1 | |a Birmingham, UK : |b Packt Publishing, |c 2015. | |
300 | |a 1 online resource (1 volume) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a text file | ||
490 | 1 | |a Community experience distilled | |
588 | 0 | |a Online resource; title from cover (Safari, viewed June 10, 2015). | |
500 | |a Includes index. | ||
505 | 0 | |a ""Cover""; ""Copyright""; ""Credits""; ""About the Author""; ""About the Reviewers""; ""www.PacktPub.com""; ""Table of Contents""; ""Preface""; ""Chapter 1: Getting Started with pandas Using Wakari.io""; ""What is Wakari?""; ""Creating a Wakari cloud account""; ""Updating existing packages""; ""Installing new packages""; ""Installing the samples in Wakari""; ""Summary""; ""Chapter 2: Introducing the Series and DataFrame""; ""Notebook setup""; ""The main pandas data structures � Series and DataFrame""; ""The Series""; ""The DataFrame""; ""The basics of the Series and DataFrame objects"" | |
505 | 8 | |a ""Creating a Series and accessing elements""""Size, shape, uniqueness, and counts of values""; ""Alignment via index labels""; ""Creating a DataFrame""; ""Example data""; ""Selecting columns of a DataFrame""; ""Selecting rows of a DataFrame using the index""; ""Slicing using the [] operator""; ""Selecting rows by the index label and location � .loc[] and .iloc[]""; ""Selecting rows by the index label and/or location � .ix[]""; ""Scalar lookup by label or location using .at[] and .iat[]""; ""Selecting rows using the Boolean selection""; ""Arithmetic on a DataFrame"" | |
505 | 8 | |a Reindexing the Series and DataFrame objectsSummary -- Chapter 3: Reshaping, Reorganizing, and Aggregating -- Notebook setup -- Loading historical stock data -- Organizing the data for the examples -- Reorganizing and reshaping data -- Concatenating multiple DataFrame objects -- Merging DataFrame objects -- Pivoting -- Stacking and unstacking -- Melting -- Grouping and aggregating -- Splitting -- Aggregating -- Summary -- Chapter 4: Time-series -- Notebook setup -- Time-series data and the DatetimeIndex | |
505 | 8 | |a Creating time-series with specific frequenciesRepresenting intervals of time using periods -- Shifting and lagging time-series data -- Frequency conversion of time-series data -- Resampling of time-series -- Summary -- Chapter 5: Time-series Stock Data -- Notebook setup -- Obtaining historical stock and index data -- Fetching historical stock data from Yahoo! -- Fetching index data from Yahoo! -- Visualizing financial time-series data -- Plotting closing prices -- Plotting volume-series data -- Combined price and volumes -- Plotting candlesticks | |
505 | 8 | |a Fundamental financial calculationsCalculating simple daily percentage change -- Calculating simple daily cumulative returns -- Analyzing the distribution of returns -- Histograms -- Q-Q plots -- Box-and-whisker plots -- Comparison of daily percentage change between stocks -- Moving windows -- Volatility calculation -- Rolling correlation of returns -- Least-squares regression of returns -- Comparing stocks to the S & P 500 -- Summary -- Chapter 6: Trading Using Google Trends -- Notebook setup | |
520 | |a If you are interested in quantitative finance, financial modeling, and trading, or simply want to learn how Python and pandas can be applied to finance, then this book is ideal for you. Some knowledge of Python and pandas is assumed. Interest in financial concepts is helpful, but no prior knowledge is expected. | ||
546 | |a English. | ||
650 | 0 | |a Python (Computer program language) |0 http://id.loc.gov/authorities/subjects/sh96008834 | |
650 | 0 | |a Finance. |0 http://id.loc.gov/authorities/subjects/sh85048256 | |
650 | 0 | |a Quantitative research. |0 http://id.loc.gov/authorities/subjects/sh2007000909 | |
650 | 0 | |a Open source software. |0 http://id.loc.gov/authorities/subjects/sh99003437 | |
650 | 6 | |a Python (Langage de programmation) | |
650 | 6 | |a Finances. | |
650 | 6 | |a Recherche quantitative. | |
650 | 6 | |a Logiciels libres. | |
650 | 7 | |a finance. |2 aat | |
650 | 7 | |a BUSINESS & ECONOMICS |x Finance. |2 bisacsh | |
650 | 7 | |a Finance |2 fast | |
650 | 7 | |a Open source software |2 fast | |
650 | 7 | |a Python (Computer program language) |2 fast | |
650 | 7 | |a Quantitative research |2 fast | |
758 | |i has work: |a Mastering pandas for Finance (Text) |1 https://id.oclc.org/worldcat/entity/E39PCYb8t3C9739Jd6Txkh9wwd |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Heydt, Michael. |t Mastering pandas for finance : master pandas, an open source Python Data Analysis Library, for financial data analysis. |d Birmingham, England ; Mumbai, [India] : Packt Publishing, ©2015 |h viii, 275 pages |z 9781783985104 |
830 | 0 | |a Community experience distilled. |0 http://id.loc.gov/authorities/names/no2011030603 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=996726 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH28640010 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL2057551 | ||
938 | |a EBSCOhost |b EBSC |n 996726 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis31652432 | ||
938 | |a YBP Library Services |b YANK |n 12452526 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn911057825 |
---|---|
_version_ | 1816882315341594627 |
adam_text | |
any_adam_object | |
author | Heydt, Michael |
author_facet | Heydt, Michael |
author_role | aut |
author_sort | Heydt, Michael |
author_variant | m h mh |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA76 |
callnumber-raw | QA76.73.P98 |
callnumber-search | QA76.73.P98 |
callnumber-sort | QA 276.73 P98 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | ""Cover""; ""Copyright""; ""Credits""; ""About the Author""; ""About the Reviewers""; ""www.PacktPub.com""; ""Table of Contents""; ""Preface""; ""Chapter 1: Getting Started with pandas Using Wakari.io""; ""What is Wakari?""; ""Creating a Wakari cloud account""; ""Updating existing packages""; ""Installing new packages""; ""Installing the samples in Wakari""; ""Summary""; ""Chapter 2: Introducing the Series and DataFrame""; ""Notebook setup""; ""The main pandas data structures � Series and DataFrame""; ""The Series""; ""The DataFrame""; ""The basics of the Series and DataFrame objects"" ""Creating a Series and accessing elements""""Size, shape, uniqueness, and counts of values""; ""Alignment via index labels""; ""Creating a DataFrame""; ""Example data""; ""Selecting columns of a DataFrame""; ""Selecting rows of a DataFrame using the index""; ""Slicing using the [] operator""; ""Selecting rows by the index label and location � .loc[] and .iloc[]""; ""Selecting rows by the index label and/or location � .ix[]""; ""Scalar lookup by label or location using .at[] and .iat[]""; ""Selecting rows using the Boolean selection""; ""Arithmetic on a DataFrame"" Reindexing the Series and DataFrame objectsSummary -- Chapter 3: Reshaping, Reorganizing, and Aggregating -- Notebook setup -- Loading historical stock data -- Organizing the data for the examples -- Reorganizing and reshaping data -- Concatenating multiple DataFrame objects -- Merging DataFrame objects -- Pivoting -- Stacking and unstacking -- Melting -- Grouping and aggregating -- Splitting -- Aggregating -- Summary -- Chapter 4: Time-series -- Notebook setup -- Time-series data and the DatetimeIndex Creating time-series with specific frequenciesRepresenting intervals of time using periods -- Shifting and lagging time-series data -- Frequency conversion of time-series data -- Resampling of time-series -- Summary -- Chapter 5: Time-series Stock Data -- Notebook setup -- Obtaining historical stock and index data -- Fetching historical stock data from Yahoo! -- Fetching index data from Yahoo! -- Visualizing financial time-series data -- Plotting closing prices -- Plotting volume-series data -- Combined price and volumes -- Plotting candlesticks Fundamental financial calculationsCalculating simple daily percentage change -- Calculating simple daily cumulative returns -- Analyzing the distribution of returns -- Histograms -- Q-Q plots -- Box-and-whisker plots -- Comparison of daily percentage change between stocks -- Moving windows -- Volatility calculation -- Rolling correlation of returns -- Least-squares regression of returns -- Comparing stocks to the S & P 500 -- Summary -- Chapter 6: Trading Using Google Trends -- Notebook setup |
ctrlnum | (OCoLC)911057825 |
dewey-full | 332.01/51 |
dewey-hundreds | 300 - Social sciences |
dewey-ones | 332 - Financial economics |
dewey-raw | 332.01/51 |
dewey-search | 332.01/51 |
dewey-sort | 3332.01 251 |
dewey-tens | 330 - Economics |
discipline | Wirtschaftswissenschaften |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06554cam a2200781 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn911057825</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr unu||||||||</controlfield><controlfield tag="008">150616s2015 enka o 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">UMI</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">UMI</subfield><subfield code="d">IDEBK</subfield><subfield code="d">EBLCP</subfield><subfield code="d">DEBBG</subfield><subfield code="d">YDXCP</subfield><subfield code="d">COO</subfield><subfield code="d">OCLCF</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MERUC</subfield><subfield code="d">CEF</subfield><subfield code="d">UKMGB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">ZCU</subfield><subfield code="d">UAB</subfield><subfield code="d">AU@</subfield><subfield code="d">UKAHL</subfield><subfield code="d">VLY</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">QGK</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SXB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UEJ</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">018007006</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">910282285</subfield><subfield code="a">913844222</subfield><subfield code="a">1259103267</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781783985111</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1783985119</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1783985119</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1783985100</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781783985104</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)911057825</subfield><subfield code="z">(OCoLC)910282285</subfield><subfield code="z">(OCoLC)913844222</subfield><subfield code="z">(OCoLC)1259103267</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">CL0500000604</subfield><subfield code="b">Safari Books Online</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA76.73.P98</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">BUS</subfield><subfield code="x">027000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">332.01/51</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Heydt, Michael,</subfield><subfield code="e">author.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mastering pandas for finance :</subfield><subfield code="b">master pandas, an open source Python data analysis library, for financial data analysis /</subfield><subfield code="c">Michael Heydt.</subfield></datafield><datafield tag="246" ind1="3" ind2="0"><subfield code="a">Master pandas, an open source Python data analysis library, for financial data analysis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Birmingham, UK :</subfield><subfield code="b">Packt Publishing,</subfield><subfield code="c">2015.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (1 volume) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">text file</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Community experience distilled</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Online resource; title from cover (Safari, viewed June 10, 2015).</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">""Cover""; ""Copyright""; ""Credits""; ""About the Author""; ""About the Reviewers""; ""www.PacktPub.com""; ""Table of Contents""; ""Preface""; ""Chapter 1: Getting Started with pandas Using Wakari.io""; ""What is Wakari?""; ""Creating a Wakari cloud account""; ""Updating existing packages""; ""Installing new packages""; ""Installing the samples in Wakari""; ""Summary""; ""Chapter 2: Introducing the Series and DataFrame""; ""Notebook setup""; ""The main pandas data structures â€? Series and DataFrame""; ""The Series""; ""The DataFrame""; ""The basics of the Series and DataFrame objects""</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">""Creating a Series and accessing elements""""Size, shape, uniqueness, and counts of values""; ""Alignment via index labels""; ""Creating a DataFrame""; ""Example data""; ""Selecting columns of a DataFrame""; ""Selecting rows of a DataFrame using the index""; ""Slicing using the [] operator""; ""Selecting rows by the index label and location â€? .loc[] and .iloc[]""; ""Selecting rows by the index label and/or location â€? .ix[]""; ""Scalar lookup by label or location using .at[] and .iat[]""; ""Selecting rows using the Boolean selection""; ""Arithmetic on a DataFrame""</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Reindexing the Series and DataFrame objectsSummary -- Chapter 3: Reshaping, Reorganizing, and Aggregating -- Notebook setup -- Loading historical stock data -- Organizing the data for the examples -- Reorganizing and reshaping data -- Concatenating multiple DataFrame objects -- Merging DataFrame objects -- Pivoting -- Stacking and unstacking -- Melting -- Grouping and aggregating -- Splitting -- Aggregating -- Summary -- Chapter 4: Time-series -- Notebook setup -- Time-series data and the DatetimeIndex</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Creating time-series with specific frequenciesRepresenting intervals of time using periods -- Shifting and lagging time-series data -- Frequency conversion of time-series data -- Resampling of time-series -- Summary -- Chapter 5: Time-series Stock Data -- Notebook setup -- Obtaining historical stock and index data -- Fetching historical stock data from Yahoo! -- Fetching index data from Yahoo! -- Visualizing financial time-series data -- Plotting closing prices -- Plotting volume-series data -- Combined price and volumes -- Plotting candlesticks</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Fundamental financial calculationsCalculating simple daily percentage change -- Calculating simple daily cumulative returns -- Analyzing the distribution of returns -- Histograms -- Q-Q plots -- Box-and-whisker plots -- Comparison of daily percentage change between stocks -- Moving windows -- Volatility calculation -- Rolling correlation of returns -- Least-squares regression of returns -- Comparing stocks to the S & P 500 -- Summary -- Chapter 6: Trading Using Google Trends -- Notebook setup</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">If you are interested in quantitative finance, financial modeling, and trading, or simply want to learn how Python and pandas can be applied to finance, then this book is ideal for you. Some knowledge of Python and pandas is assumed. Interest in financial concepts is helpful, but no prior knowledge is expected.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Python (Computer program language)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh96008834</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Finance.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85048256</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Quantitative research.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh2007000909</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Open source software.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh99003437</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Python (Langage de programmation)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Finances.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Recherche quantitative.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Logiciels libres.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">finance.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">BUSINESS & ECONOMICS</subfield><subfield code="x">Finance.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Finance</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Open source software</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Python (Computer program language)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Quantitative research</subfield><subfield code="2">fast</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Mastering pandas for Finance (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCYb8t3C9739Jd6Txkh9wwd</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Heydt, Michael.</subfield><subfield code="t">Mastering pandas for finance : master pandas, an open source Python Data Analysis Library, for financial data analysis.</subfield><subfield code="d">Birmingham, England ; Mumbai, [India] : Packt Publishing, ©2015</subfield><subfield code="h">viii, 275 pages</subfield><subfield code="z">9781783985104</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Community experience distilled.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2011030603</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=996726</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH28640010</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL2057551</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">996726</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis31652432</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">12452526</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn911057825 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:26:39Z |
institution | BVB |
isbn | 9781783985111 1783985119 |
language | English |
oclc_num | 911057825 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (1 volume) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | Packt Publishing, |
record_format | marc |
series | Community experience distilled. |
series2 | Community experience distilled |
spelling | Heydt, Michael, author. Mastering pandas for finance : master pandas, an open source Python data analysis library, for financial data analysis / Michael Heydt. Master pandas, an open source Python data analysis library, for financial data analysis Birmingham, UK : Packt Publishing, 2015. 1 online resource (1 volume) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier text file Community experience distilled Online resource; title from cover (Safari, viewed June 10, 2015). Includes index. ""Cover""; ""Copyright""; ""Credits""; ""About the Author""; ""About the Reviewers""; ""www.PacktPub.com""; ""Table of Contents""; ""Preface""; ""Chapter 1: Getting Started with pandas Using Wakari.io""; ""What is Wakari?""; ""Creating a Wakari cloud account""; ""Updating existing packages""; ""Installing new packages""; ""Installing the samples in Wakari""; ""Summary""; ""Chapter 2: Introducing the Series and DataFrame""; ""Notebook setup""; ""The main pandas data structures â€? Series and DataFrame""; ""The Series""; ""The DataFrame""; ""The basics of the Series and DataFrame objects"" ""Creating a Series and accessing elements""""Size, shape, uniqueness, and counts of values""; ""Alignment via index labels""; ""Creating a DataFrame""; ""Example data""; ""Selecting columns of a DataFrame""; ""Selecting rows of a DataFrame using the index""; ""Slicing using the [] operator""; ""Selecting rows by the index label and location â€? .loc[] and .iloc[]""; ""Selecting rows by the index label and/or location â€? .ix[]""; ""Scalar lookup by label or location using .at[] and .iat[]""; ""Selecting rows using the Boolean selection""; ""Arithmetic on a DataFrame"" Reindexing the Series and DataFrame objectsSummary -- Chapter 3: Reshaping, Reorganizing, and Aggregating -- Notebook setup -- Loading historical stock data -- Organizing the data for the examples -- Reorganizing and reshaping data -- Concatenating multiple DataFrame objects -- Merging DataFrame objects -- Pivoting -- Stacking and unstacking -- Melting -- Grouping and aggregating -- Splitting -- Aggregating -- Summary -- Chapter 4: Time-series -- Notebook setup -- Time-series data and the DatetimeIndex Creating time-series with specific frequenciesRepresenting intervals of time using periods -- Shifting and lagging time-series data -- Frequency conversion of time-series data -- Resampling of time-series -- Summary -- Chapter 5: Time-series Stock Data -- Notebook setup -- Obtaining historical stock and index data -- Fetching historical stock data from Yahoo! -- Fetching index data from Yahoo! -- Visualizing financial time-series data -- Plotting closing prices -- Plotting volume-series data -- Combined price and volumes -- Plotting candlesticks Fundamental financial calculationsCalculating simple daily percentage change -- Calculating simple daily cumulative returns -- Analyzing the distribution of returns -- Histograms -- Q-Q plots -- Box-and-whisker plots -- Comparison of daily percentage change between stocks -- Moving windows -- Volatility calculation -- Rolling correlation of returns -- Least-squares regression of returns -- Comparing stocks to the S & P 500 -- Summary -- Chapter 6: Trading Using Google Trends -- Notebook setup If you are interested in quantitative finance, financial modeling, and trading, or simply want to learn how Python and pandas can be applied to finance, then this book is ideal for you. Some knowledge of Python and pandas is assumed. Interest in financial concepts is helpful, but no prior knowledge is expected. English. Python (Computer program language) http://id.loc.gov/authorities/subjects/sh96008834 Finance. http://id.loc.gov/authorities/subjects/sh85048256 Quantitative research. http://id.loc.gov/authorities/subjects/sh2007000909 Open source software. http://id.loc.gov/authorities/subjects/sh99003437 Python (Langage de programmation) Finances. Recherche quantitative. Logiciels libres. finance. aat BUSINESS & ECONOMICS Finance. bisacsh Finance fast Open source software fast Python (Computer program language) fast Quantitative research fast has work: Mastering pandas for Finance (Text) https://id.oclc.org/worldcat/entity/E39PCYb8t3C9739Jd6Txkh9wwd https://id.oclc.org/worldcat/ontology/hasWork Print version: Heydt, Michael. Mastering pandas for finance : master pandas, an open source Python Data Analysis Library, for financial data analysis. Birmingham, England ; Mumbai, [India] : Packt Publishing, ©2015 viii, 275 pages 9781783985104 Community experience distilled. http://id.loc.gov/authorities/names/no2011030603 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=996726 Volltext |
spellingShingle | Heydt, Michael Mastering pandas for finance : master pandas, an open source Python data analysis library, for financial data analysis / Community experience distilled. ""Cover""; ""Copyright""; ""Credits""; ""About the Author""; ""About the Reviewers""; ""www.PacktPub.com""; ""Table of Contents""; ""Preface""; ""Chapter 1: Getting Started with pandas Using Wakari.io""; ""What is Wakari?""; ""Creating a Wakari cloud account""; ""Updating existing packages""; ""Installing new packages""; ""Installing the samples in Wakari""; ""Summary""; ""Chapter 2: Introducing the Series and DataFrame""; ""Notebook setup""; ""The main pandas data structures � Series and DataFrame""; ""The Series""; ""The DataFrame""; ""The basics of the Series and DataFrame objects"" ""Creating a Series and accessing elements""""Size, shape, uniqueness, and counts of values""; ""Alignment via index labels""; ""Creating a DataFrame""; ""Example data""; ""Selecting columns of a DataFrame""; ""Selecting rows of a DataFrame using the index""; ""Slicing using the [] operator""; ""Selecting rows by the index label and location � .loc[] and .iloc[]""; ""Selecting rows by the index label and/or location � .ix[]""; ""Scalar lookup by label or location using .at[] and .iat[]""; ""Selecting rows using the Boolean selection""; ""Arithmetic on a DataFrame"" Reindexing the Series and DataFrame objectsSummary -- Chapter 3: Reshaping, Reorganizing, and Aggregating -- Notebook setup -- Loading historical stock data -- Organizing the data for the examples -- Reorganizing and reshaping data -- Concatenating multiple DataFrame objects -- Merging DataFrame objects -- Pivoting -- Stacking and unstacking -- Melting -- Grouping and aggregating -- Splitting -- Aggregating -- Summary -- Chapter 4: Time-series -- Notebook setup -- Time-series data and the DatetimeIndex Creating time-series with specific frequenciesRepresenting intervals of time using periods -- Shifting and lagging time-series data -- Frequency conversion of time-series data -- Resampling of time-series -- Summary -- Chapter 5: Time-series Stock Data -- Notebook setup -- Obtaining historical stock and index data -- Fetching historical stock data from Yahoo! -- Fetching index data from Yahoo! -- Visualizing financial time-series data -- Plotting closing prices -- Plotting volume-series data -- Combined price and volumes -- Plotting candlesticks Fundamental financial calculationsCalculating simple daily percentage change -- Calculating simple daily cumulative returns -- Analyzing the distribution of returns -- Histograms -- Q-Q plots -- Box-and-whisker plots -- Comparison of daily percentage change between stocks -- Moving windows -- Volatility calculation -- Rolling correlation of returns -- Least-squares regression of returns -- Comparing stocks to the S & P 500 -- Summary -- Chapter 6: Trading Using Google Trends -- Notebook setup Python (Computer program language) http://id.loc.gov/authorities/subjects/sh96008834 Finance. http://id.loc.gov/authorities/subjects/sh85048256 Quantitative research. http://id.loc.gov/authorities/subjects/sh2007000909 Open source software. http://id.loc.gov/authorities/subjects/sh99003437 Python (Langage de programmation) Finances. Recherche quantitative. Logiciels libres. finance. aat BUSINESS & ECONOMICS Finance. bisacsh Finance fast Open source software fast Python (Computer program language) fast Quantitative research fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh96008834 http://id.loc.gov/authorities/subjects/sh85048256 http://id.loc.gov/authorities/subjects/sh2007000909 http://id.loc.gov/authorities/subjects/sh99003437 |
title | Mastering pandas for finance : master pandas, an open source Python data analysis library, for financial data analysis / |
title_alt | Master pandas, an open source Python data analysis library, for financial data analysis |
title_auth | Mastering pandas for finance : master pandas, an open source Python data analysis library, for financial data analysis / |
title_exact_search | Mastering pandas for finance : master pandas, an open source Python data analysis library, for financial data analysis / |
title_full | Mastering pandas for finance : master pandas, an open source Python data analysis library, for financial data analysis / Michael Heydt. |
title_fullStr | Mastering pandas for finance : master pandas, an open source Python data analysis library, for financial data analysis / Michael Heydt. |
title_full_unstemmed | Mastering pandas for finance : master pandas, an open source Python data analysis library, for financial data analysis / Michael Heydt. |
title_short | Mastering pandas for finance : |
title_sort | mastering pandas for finance master pandas an open source python data analysis library for financial data analysis |
title_sub | master pandas, an open source Python data analysis library, for financial data analysis / |
topic | Python (Computer program language) http://id.loc.gov/authorities/subjects/sh96008834 Finance. http://id.loc.gov/authorities/subjects/sh85048256 Quantitative research. http://id.loc.gov/authorities/subjects/sh2007000909 Open source software. http://id.loc.gov/authorities/subjects/sh99003437 Python (Langage de programmation) Finances. Recherche quantitative. Logiciels libres. finance. aat BUSINESS & ECONOMICS Finance. bisacsh Finance fast Open source software fast Python (Computer program language) fast Quantitative research fast |
topic_facet | Python (Computer program language) Finance. Quantitative research. Open source software. Python (Langage de programmation) Finances. Recherche quantitative. Logiciels libres. finance. BUSINESS & ECONOMICS Finance. Finance Open source software Quantitative research |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=996726 |
work_keys_str_mv | AT heydtmichael masteringpandasforfinancemasterpandasanopensourcepythondataanalysislibraryforfinancialdataanalysis AT heydtmichael masterpandasanopensourcepythondataanalysislibraryforfinancialdataanalysis |