Learning Hadoop 2 :: design and implement data processing, lifecycle management, and analytic workflows with the cutting-edge toolbox of Hadoop 2 /
If you are a system or application developer interested in learning how to solve practical problems using the Hadoop framework, then this book is ideal for you. You are expected to be familiar with the Unix/Linux command-line interface and have some experience with the Java programming language. Fam...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Birmingham, UK :
Packt Publishing,
2015.
|
Schriftenreihe: | Community experience distilled.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | If you are a system or application developer interested in learning how to solve practical problems using the Hadoop framework, then this book is ideal for you. You are expected to be familiar with the Unix/Linux command-line interface and have some experience with the Java programming language. Familiarity with Hadoop would be a plus. |
Beschreibung: | Includes index. |
Beschreibung: | 1 online resource (1 volume) : illustrations |
ISBN: | 9781783285525 1783285524 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn905091883 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr unu|||||||| | ||
008 | 150318s2015 enka o 001 0 eng d | ||
040 | |a UMI |b eng |e rda |e pn |c UMI |d COO |d N$T |d DEBBG |d YDXCP |d OCLCF |d CEF |d UKMGB |d UAB |d AU@ |d UKAHL |d SFB |d OCLCO |d OCLCQ |d QGK |d OCLCO |d OCLCL | ||
015 | |a GBB6G3008 |2 bnb | ||
016 | 7 | |a 018006559 |2 Uk | |
019 | |a 1259248353 | ||
020 | |a 9781783285525 |q (electronic bk.) | ||
020 | |a 1783285524 |q (electronic bk.) | ||
020 | |z 1783285524 | ||
020 | |z 1783285516 | ||
020 | |z 9781783285518 | ||
035 | |a (OCoLC)905091883 |z (OCoLC)1259248353 | ||
037 | |a CL0500000568 |b Safari Books Online | ||
050 | 4 | |a QA76.9.D5 | |
072 | 7 | |a COM |x 013000 |2 bisacsh | |
072 | 7 | |a COM |x 014000 |2 bisacsh | |
072 | 7 | |a COM |x 018000 |2 bisacsh | |
072 | 7 | |a COM |x 067000 |2 bisacsh | |
072 | 7 | |a COM |x 032000 |2 bisacsh | |
072 | 7 | |a COM |x 037000 |2 bisacsh | |
072 | 7 | |a COM |x 052000 |2 bisacsh | |
082 | 7 | |a 004.36 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Turkington, Garry, |e author. | |
245 | 1 | 0 | |a Learning Hadoop 2 : |b design and implement data processing, lifecycle management, and analytic workflows with the cutting-edge toolbox of Hadoop 2 / |c Garry Turkington, Gabriele Modena. |
246 | 3 | |a Learning Hadoop two | |
246 | 3 | 0 | |a Design and implement data processing, lifecycle management, and analytic workflows with the cutting-edge toolbox of Hadoop 2 |
264 | 1 | |a Birmingham, UK : |b Packt Publishing, |c 2015. | |
300 | |a 1 online resource (1 volume) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a text file | ||
490 | 1 | |a Community experience distilled | |
588 | 0 | |a Online resource; title from cover (Safari, viewed March 10, 2015). | |
500 | |a Includes index. | ||
505 | 0 | |a Cover; Copyright; Credits; About the Authors; About the Reviewers; www.PacktPub.com; Table of Contents; Preface; Chapter 1: Introduction; A note on versioning; The background of Hadoop; Components of Hadoop; Common building blocks; Storage; Computation; Better together; Hadoop 2 -- what's the big deal?; Storage in Hadoop 2; Computation in Hadoop 2; Distributions of Apache Hadoop; A dual approach; AWS -- infrastructure on demand from Amazon; Simple Storage Service (S3); Elastic MapReduce (EMR); Getting started; Cloudera QuickStart VM; Amazon EMR; Creating an AWS account | |
505 | 8 | |a Signing up for the necessary servicesUsing Elastic MapReduce; Getting Hadoop up and running; How to use EMR; AWS credentials; The AWS command-line interface; Running the examples; Data processing with Hadoop; Why Twitter?; Building our first dataset; One service, multiple APIs; Anatomy of a Tweet; Twitter credentials; Programmatic access with Python; Summary; Chapter 2: Storage; The inner workings of HDFS; Cluster startup; NameNode startup; DataNode startup; Block replication; Command-line access to the HDFS filesystem; Exploring the HDFS filesystem; Protecting the filesystem metadata | |
505 | 8 | |a Secondary NameNode not to the rescueHadoop 2 NameNode HA; Keeping the HA NameNodes in sync; Client configuration; How a failover works; Apache ZooKeeper -- a different type of filesystem; Implementing a distributed lock with sequential ZNodes; Implementing group membership and leader election using ephemeral ZNodes; Java API; Building blocks; Further reading; Automatic NameNode failover; HDFS snapshots; Hadoop filesystems; Hadoop interfaces; Java FileSystem API; Libhdfs; Thrift ; Managing and serializing data; The Writable interface; Introducing the wrapper classes ; Array wrapper classes | |
505 | 8 | |a The Comparable and WritableComparable interfacesStoring data; Serialization and Containers; Compression; General-purpose file formats; Column-oriented data formats; RCFile; ORC; Parquet; Avro; Using the Java API; Summary; Chapter 3: Processing -- MapReduce and Beyond; MapReduce; Java API to MapReduce; The Mapper class; The Reducer class; The Driver class; Combiner; Partitioning; The optional partition function; Hadoop-provided mapper and reducer implementations; Sharing reference data; Writing MapReduce programs; Getting started; Running the examples; Local cluster; Elastic MapReduce | |
505 | 8 | |a WordCount, the Hello World of MapReduceWord co-occurrences; Trending topics; The Top N pattern; Sentiment of hashtags; Text cleanup using chain mapper; Walking through a run of a MapReduce job; Startup; Splitting the input; Task assignment; Task startup; Ongoing JobTracker monitoring; Mapper input; Mapper execution; Mapper output and reducer input; Reducer input; Reducer execution; Reducer output; Shutdown; Input/Output; InputFormat and RecordReader; Hadoop-provided InputFormat; Hadoop-provided RecordReader; OutputFormat and RecordWriter; Hadoop-provided OutputFormat; Sequence files; YARN | |
520 | |a If you are a system or application developer interested in learning how to solve practical problems using the Hadoop framework, then this book is ideal for you. You are expected to be familiar with the Unix/Linux command-line interface and have some experience with the Java programming language. Familiarity with Hadoop would be a plus. | ||
546 | |a English. | ||
630 | 0 | 0 | |a Apache Hadoop. |0 http://id.loc.gov/authorities/names/n2013024279 |
630 | 0 | 7 | |a Apache Hadoop |2 fast |
650 | 0 | |a Electronic data processing |x Distributed processing. |0 http://id.loc.gov/authorities/subjects/sh85042293 | |
650 | 0 | |a Big data. |0 http://id.loc.gov/authorities/subjects/sh2012003227 | |
650 | 6 | |a Traitement réparti. | |
650 | 6 | |a Données volumineuses. | |
650 | 7 | |a COMPUTERS |x Computer Literacy. |2 bisacsh | |
650 | 7 | |a COMPUTERS |x Computer Science. |2 bisacsh | |
650 | 7 | |a COMPUTERS |x Data Processing. |2 bisacsh | |
650 | 7 | |a COMPUTERS |x Hardware |x General. |2 bisacsh | |
650 | 7 | |a COMPUTERS |x Information Technology. |2 bisacsh | |
650 | 7 | |a COMPUTERS |x Machine Theory. |2 bisacsh | |
650 | 7 | |a COMPUTERS |x Reference. |2 bisacsh | |
650 | 7 | |a Big data |2 fast | |
650 | 7 | |a Electronic data processing |x Distributed processing |2 fast | |
700 | 1 | |a Modena, Gabriele, |e author. | |
758 | |i has work: |a Learning Hadoop 2 (Text) |1 https://id.oclc.org/worldcat/entity/E39PCH6x8qT3fQW4cHJGDfxrG3 |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Turkington, Garry. |t Learning Hadoop 2 : design and implement data processing, lifecycle management, and analytic workflows with the cutting-edge toolbox of Hadoop 2. |d Birmingham, England ; Mumbai, India : Packt Publishing, ©2015 |h x, 360 pages |k Community experience distilled. |z 9781783285518 |
830 | 0 | |a Community experience distilled. |0 http://id.loc.gov/authorities/names/no2011030603 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=956633 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH28256048 | ||
938 | |a EBSCOhost |b EBSC |n 956633 | ||
938 | |a YBP Library Services |b YANK |n 12298529 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn905091883 |
---|---|
_version_ | 1816882306287140864 |
adam_text | |
any_adam_object | |
author | Turkington, Garry Modena, Gabriele |
author_facet | Turkington, Garry Modena, Gabriele |
author_role | aut aut |
author_sort | Turkington, Garry |
author_variant | g t gt g m gm |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA76 |
callnumber-raw | QA76.9.D5 |
callnumber-search | QA76.9.D5 |
callnumber-sort | QA 276.9 D5 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Cover; Copyright; Credits; About the Authors; About the Reviewers; www.PacktPub.com; Table of Contents; Preface; Chapter 1: Introduction; A note on versioning; The background of Hadoop; Components of Hadoop; Common building blocks; Storage; Computation; Better together; Hadoop 2 -- what's the big deal?; Storage in Hadoop 2; Computation in Hadoop 2; Distributions of Apache Hadoop; A dual approach; AWS -- infrastructure on demand from Amazon; Simple Storage Service (S3); Elastic MapReduce (EMR); Getting started; Cloudera QuickStart VM; Amazon EMR; Creating an AWS account Signing up for the necessary servicesUsing Elastic MapReduce; Getting Hadoop up and running; How to use EMR; AWS credentials; The AWS command-line interface; Running the examples; Data processing with Hadoop; Why Twitter?; Building our first dataset; One service, multiple APIs; Anatomy of a Tweet; Twitter credentials; Programmatic access with Python; Summary; Chapter 2: Storage; The inner workings of HDFS; Cluster startup; NameNode startup; DataNode startup; Block replication; Command-line access to the HDFS filesystem; Exploring the HDFS filesystem; Protecting the filesystem metadata Secondary NameNode not to the rescueHadoop 2 NameNode HA; Keeping the HA NameNodes in sync; Client configuration; How a failover works; Apache ZooKeeper -- a different type of filesystem; Implementing a distributed lock with sequential ZNodes; Implementing group membership and leader election using ephemeral ZNodes; Java API; Building blocks; Further reading; Automatic NameNode failover; HDFS snapshots; Hadoop filesystems; Hadoop interfaces; Java FileSystem API; Libhdfs; Thrift ; Managing and serializing data; The Writable interface; Introducing the wrapper classes ; Array wrapper classes The Comparable and WritableComparable interfacesStoring data; Serialization and Containers; Compression; General-purpose file formats; Column-oriented data formats; RCFile; ORC; Parquet; Avro; Using the Java API; Summary; Chapter 3: Processing -- MapReduce and Beyond; MapReduce; Java API to MapReduce; The Mapper class; The Reducer class; The Driver class; Combiner; Partitioning; The optional partition function; Hadoop-provided mapper and reducer implementations; Sharing reference data; Writing MapReduce programs; Getting started; Running the examples; Local cluster; Elastic MapReduce WordCount, the Hello World of MapReduceWord co-occurrences; Trending topics; The Top N pattern; Sentiment of hashtags; Text cleanup using chain mapper; Walking through a run of a MapReduce job; Startup; Splitting the input; Task assignment; Task startup; Ongoing JobTracker monitoring; Mapper input; Mapper execution; Mapper output and reducer input; Reducer input; Reducer execution; Reducer output; Shutdown; Input/Output; InputFormat and RecordReader; Hadoop-provided InputFormat; Hadoop-provided RecordReader; OutputFormat and RecordWriter; Hadoop-provided OutputFormat; Sequence files; YARN |
ctrlnum | (OCoLC)905091883 |
dewey-full | 004.36 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 004 - Computer science |
dewey-raw | 004.36 |
dewey-search | 004.36 |
dewey-sort | 14.36 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07095cam a2200877 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn905091883</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr unu||||||||</controlfield><controlfield tag="008">150318s2015 enka o 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">UMI</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">UMI</subfield><subfield code="d">COO</subfield><subfield code="d">N$T</subfield><subfield code="d">DEBBG</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCF</subfield><subfield code="d">CEF</subfield><subfield code="d">UKMGB</subfield><subfield code="d">UAB</subfield><subfield code="d">AU@</subfield><subfield code="d">UKAHL</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">QGK</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBB6G3008</subfield><subfield code="2">bnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">018006559</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1259248353</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781783285525</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1783285524</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1783285524</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1783285516</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781783285518</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)905091883</subfield><subfield code="z">(OCoLC)1259248353</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">CL0500000568</subfield><subfield code="b">Safari Books Online</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA76.9.D5</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">013000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">014000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">018000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">067000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">032000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">037000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">052000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">004.36</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Turkington, Garry,</subfield><subfield code="e">author.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Learning Hadoop 2 :</subfield><subfield code="b">design and implement data processing, lifecycle management, and analytic workflows with the cutting-edge toolbox of Hadoop 2 /</subfield><subfield code="c">Garry Turkington, Gabriele Modena.</subfield></datafield><datafield tag="246" ind1="3" ind2=" "><subfield code="a">Learning Hadoop two</subfield></datafield><datafield tag="246" ind1="3" ind2="0"><subfield code="a">Design and implement data processing, lifecycle management, and analytic workflows with the cutting-edge toolbox of Hadoop 2</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Birmingham, UK :</subfield><subfield code="b">Packt Publishing,</subfield><subfield code="c">2015.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (1 volume) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">text file</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Community experience distilled</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Online resource; title from cover (Safari, viewed March 10, 2015).</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Copyright; Credits; About the Authors; About the Reviewers; www.PacktPub.com; Table of Contents; Preface; Chapter 1: Introduction; A note on versioning; The background of Hadoop; Components of Hadoop; Common building blocks; Storage; Computation; Better together; Hadoop 2 -- what's the big deal?; Storage in Hadoop 2; Computation in Hadoop 2; Distributions of Apache Hadoop; A dual approach; AWS -- infrastructure on demand from Amazon; Simple Storage Service (S3); Elastic MapReduce (EMR); Getting started; Cloudera QuickStart VM; Amazon EMR; Creating an AWS account</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Signing up for the necessary servicesUsing Elastic MapReduce; Getting Hadoop up and running; How to use EMR; AWS credentials; The AWS command-line interface; Running the examples; Data processing with Hadoop; Why Twitter?; Building our first dataset; One service, multiple APIs; Anatomy of a Tweet; Twitter credentials; Programmatic access with Python; Summary; Chapter 2: Storage; The inner workings of HDFS; Cluster startup; NameNode startup; DataNode startup; Block replication; Command-line access to the HDFS filesystem; Exploring the HDFS filesystem; Protecting the filesystem metadata</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Secondary NameNode not to the rescueHadoop 2 NameNode HA; Keeping the HA NameNodes in sync; Client configuration; How a failover works; Apache ZooKeeper -- a different type of filesystem; Implementing a distributed lock with sequential ZNodes; Implementing group membership and leader election using ephemeral ZNodes; Java API; Building blocks; Further reading; Automatic NameNode failover; HDFS snapshots; Hadoop filesystems; Hadoop interfaces; Java FileSystem API; Libhdfs; Thrift ; Managing and serializing data; The Writable interface; Introducing the wrapper classes ; Array wrapper classes</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">The Comparable and WritableComparable interfacesStoring data; Serialization and Containers; Compression; General-purpose file formats; Column-oriented data formats; RCFile; ORC; Parquet; Avro; Using the Java API; Summary; Chapter 3: Processing -- MapReduce and Beyond; MapReduce; Java API to MapReduce; The Mapper class; The Reducer class; The Driver class; Combiner; Partitioning; The optional partition function; Hadoop-provided mapper and reducer implementations; Sharing reference data; Writing MapReduce programs; Getting started; Running the examples; Local cluster; Elastic MapReduce</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">WordCount, the Hello World of MapReduceWord co-occurrences; Trending topics; The Top N pattern; Sentiment of hashtags; Text cleanup using chain mapper; Walking through a run of a MapReduce job; Startup; Splitting the input; Task assignment; Task startup; Ongoing JobTracker monitoring; Mapper input; Mapper execution; Mapper output and reducer input; Reducer input; Reducer execution; Reducer output; Shutdown; Input/Output; InputFormat and RecordReader; Hadoop-provided InputFormat; Hadoop-provided RecordReader; OutputFormat and RecordWriter; Hadoop-provided OutputFormat; Sequence files; YARN</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">If you are a system or application developer interested in learning how to solve practical problems using the Hadoop framework, then this book is ideal for you. You are expected to be familiar with the Unix/Linux command-line interface and have some experience with the Java programming language. Familiarity with Hadoop would be a plus.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="630" ind1="0" ind2="0"><subfield code="a">Apache Hadoop.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2013024279</subfield></datafield><datafield tag="630" ind1="0" ind2="7"><subfield code="a">Apache Hadoop</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Electronic data processing</subfield><subfield code="x">Distributed processing.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85042293</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Big data.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh2012003227</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Traitement réparti.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Données volumineuses.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">Computer Literacy.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">Computer Science.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">Data Processing.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">Hardware</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">Information Technology.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">Machine Theory.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">Reference.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Big data</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Electronic data processing</subfield><subfield code="x">Distributed processing</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Modena, Gabriele,</subfield><subfield code="e">author.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Learning Hadoop 2 (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCH6x8qT3fQW4cHJGDfxrG3</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Turkington, Garry.</subfield><subfield code="t">Learning Hadoop 2 : design and implement data processing, lifecycle management, and analytic workflows with the cutting-edge toolbox of Hadoop 2.</subfield><subfield code="d">Birmingham, England ; Mumbai, India : Packt Publishing, ©2015</subfield><subfield code="h">x, 360 pages</subfield><subfield code="k">Community experience distilled.</subfield><subfield code="z">9781783285518</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Community experience distilled.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2011030603</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=956633</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH28256048</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">956633</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">12298529</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn905091883 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:26:31Z |
institution | BVB |
isbn | 9781783285525 1783285524 |
language | English |
oclc_num | 905091883 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (1 volume) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | Packt Publishing, |
record_format | marc |
series | Community experience distilled. |
series2 | Community experience distilled |
spelling | Turkington, Garry, author. Learning Hadoop 2 : design and implement data processing, lifecycle management, and analytic workflows with the cutting-edge toolbox of Hadoop 2 / Garry Turkington, Gabriele Modena. Learning Hadoop two Design and implement data processing, lifecycle management, and analytic workflows with the cutting-edge toolbox of Hadoop 2 Birmingham, UK : Packt Publishing, 2015. 1 online resource (1 volume) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier text file Community experience distilled Online resource; title from cover (Safari, viewed March 10, 2015). Includes index. Cover; Copyright; Credits; About the Authors; About the Reviewers; www.PacktPub.com; Table of Contents; Preface; Chapter 1: Introduction; A note on versioning; The background of Hadoop; Components of Hadoop; Common building blocks; Storage; Computation; Better together; Hadoop 2 -- what's the big deal?; Storage in Hadoop 2; Computation in Hadoop 2; Distributions of Apache Hadoop; A dual approach; AWS -- infrastructure on demand from Amazon; Simple Storage Service (S3); Elastic MapReduce (EMR); Getting started; Cloudera QuickStart VM; Amazon EMR; Creating an AWS account Signing up for the necessary servicesUsing Elastic MapReduce; Getting Hadoop up and running; How to use EMR; AWS credentials; The AWS command-line interface; Running the examples; Data processing with Hadoop; Why Twitter?; Building our first dataset; One service, multiple APIs; Anatomy of a Tweet; Twitter credentials; Programmatic access with Python; Summary; Chapter 2: Storage; The inner workings of HDFS; Cluster startup; NameNode startup; DataNode startup; Block replication; Command-line access to the HDFS filesystem; Exploring the HDFS filesystem; Protecting the filesystem metadata Secondary NameNode not to the rescueHadoop 2 NameNode HA; Keeping the HA NameNodes in sync; Client configuration; How a failover works; Apache ZooKeeper -- a different type of filesystem; Implementing a distributed lock with sequential ZNodes; Implementing group membership and leader election using ephemeral ZNodes; Java API; Building blocks; Further reading; Automatic NameNode failover; HDFS snapshots; Hadoop filesystems; Hadoop interfaces; Java FileSystem API; Libhdfs; Thrift ; Managing and serializing data; The Writable interface; Introducing the wrapper classes ; Array wrapper classes The Comparable and WritableComparable interfacesStoring data; Serialization and Containers; Compression; General-purpose file formats; Column-oriented data formats; RCFile; ORC; Parquet; Avro; Using the Java API; Summary; Chapter 3: Processing -- MapReduce and Beyond; MapReduce; Java API to MapReduce; The Mapper class; The Reducer class; The Driver class; Combiner; Partitioning; The optional partition function; Hadoop-provided mapper and reducer implementations; Sharing reference data; Writing MapReduce programs; Getting started; Running the examples; Local cluster; Elastic MapReduce WordCount, the Hello World of MapReduceWord co-occurrences; Trending topics; The Top N pattern; Sentiment of hashtags; Text cleanup using chain mapper; Walking through a run of a MapReduce job; Startup; Splitting the input; Task assignment; Task startup; Ongoing JobTracker monitoring; Mapper input; Mapper execution; Mapper output and reducer input; Reducer input; Reducer execution; Reducer output; Shutdown; Input/Output; InputFormat and RecordReader; Hadoop-provided InputFormat; Hadoop-provided RecordReader; OutputFormat and RecordWriter; Hadoop-provided OutputFormat; Sequence files; YARN If you are a system or application developer interested in learning how to solve practical problems using the Hadoop framework, then this book is ideal for you. You are expected to be familiar with the Unix/Linux command-line interface and have some experience with the Java programming language. Familiarity with Hadoop would be a plus. English. Apache Hadoop. http://id.loc.gov/authorities/names/n2013024279 Apache Hadoop fast Electronic data processing Distributed processing. http://id.loc.gov/authorities/subjects/sh85042293 Big data. http://id.loc.gov/authorities/subjects/sh2012003227 Traitement réparti. Données volumineuses. COMPUTERS Computer Literacy. bisacsh COMPUTERS Computer Science. bisacsh COMPUTERS Data Processing. bisacsh COMPUTERS Hardware General. bisacsh COMPUTERS Information Technology. bisacsh COMPUTERS Machine Theory. bisacsh COMPUTERS Reference. bisacsh Big data fast Electronic data processing Distributed processing fast Modena, Gabriele, author. has work: Learning Hadoop 2 (Text) https://id.oclc.org/worldcat/entity/E39PCH6x8qT3fQW4cHJGDfxrG3 https://id.oclc.org/worldcat/ontology/hasWork Print version: Turkington, Garry. Learning Hadoop 2 : design and implement data processing, lifecycle management, and analytic workflows with the cutting-edge toolbox of Hadoop 2. Birmingham, England ; Mumbai, India : Packt Publishing, ©2015 x, 360 pages Community experience distilled. 9781783285518 Community experience distilled. http://id.loc.gov/authorities/names/no2011030603 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=956633 Volltext |
spellingShingle | Turkington, Garry Modena, Gabriele Learning Hadoop 2 : design and implement data processing, lifecycle management, and analytic workflows with the cutting-edge toolbox of Hadoop 2 / Community experience distilled. Cover; Copyright; Credits; About the Authors; About the Reviewers; www.PacktPub.com; Table of Contents; Preface; Chapter 1: Introduction; A note on versioning; The background of Hadoop; Components of Hadoop; Common building blocks; Storage; Computation; Better together; Hadoop 2 -- what's the big deal?; Storage in Hadoop 2; Computation in Hadoop 2; Distributions of Apache Hadoop; A dual approach; AWS -- infrastructure on demand from Amazon; Simple Storage Service (S3); Elastic MapReduce (EMR); Getting started; Cloudera QuickStart VM; Amazon EMR; Creating an AWS account Signing up for the necessary servicesUsing Elastic MapReduce; Getting Hadoop up and running; How to use EMR; AWS credentials; The AWS command-line interface; Running the examples; Data processing with Hadoop; Why Twitter?; Building our first dataset; One service, multiple APIs; Anatomy of a Tweet; Twitter credentials; Programmatic access with Python; Summary; Chapter 2: Storage; The inner workings of HDFS; Cluster startup; NameNode startup; DataNode startup; Block replication; Command-line access to the HDFS filesystem; Exploring the HDFS filesystem; Protecting the filesystem metadata Secondary NameNode not to the rescueHadoop 2 NameNode HA; Keeping the HA NameNodes in sync; Client configuration; How a failover works; Apache ZooKeeper -- a different type of filesystem; Implementing a distributed lock with sequential ZNodes; Implementing group membership and leader election using ephemeral ZNodes; Java API; Building blocks; Further reading; Automatic NameNode failover; HDFS snapshots; Hadoop filesystems; Hadoop interfaces; Java FileSystem API; Libhdfs; Thrift ; Managing and serializing data; The Writable interface; Introducing the wrapper classes ; Array wrapper classes The Comparable and WritableComparable interfacesStoring data; Serialization and Containers; Compression; General-purpose file formats; Column-oriented data formats; RCFile; ORC; Parquet; Avro; Using the Java API; Summary; Chapter 3: Processing -- MapReduce and Beyond; MapReduce; Java API to MapReduce; The Mapper class; The Reducer class; The Driver class; Combiner; Partitioning; The optional partition function; Hadoop-provided mapper and reducer implementations; Sharing reference data; Writing MapReduce programs; Getting started; Running the examples; Local cluster; Elastic MapReduce WordCount, the Hello World of MapReduceWord co-occurrences; Trending topics; The Top N pattern; Sentiment of hashtags; Text cleanup using chain mapper; Walking through a run of a MapReduce job; Startup; Splitting the input; Task assignment; Task startup; Ongoing JobTracker monitoring; Mapper input; Mapper execution; Mapper output and reducer input; Reducer input; Reducer execution; Reducer output; Shutdown; Input/Output; InputFormat and RecordReader; Hadoop-provided InputFormat; Hadoop-provided RecordReader; OutputFormat and RecordWriter; Hadoop-provided OutputFormat; Sequence files; YARN Apache Hadoop. http://id.loc.gov/authorities/names/n2013024279 Apache Hadoop fast Electronic data processing Distributed processing. http://id.loc.gov/authorities/subjects/sh85042293 Big data. http://id.loc.gov/authorities/subjects/sh2012003227 Traitement réparti. Données volumineuses. COMPUTERS Computer Literacy. bisacsh COMPUTERS Computer Science. bisacsh COMPUTERS Data Processing. bisacsh COMPUTERS Hardware General. bisacsh COMPUTERS Information Technology. bisacsh COMPUTERS Machine Theory. bisacsh COMPUTERS Reference. bisacsh Big data fast Electronic data processing Distributed processing fast |
subject_GND | http://id.loc.gov/authorities/names/n2013024279 http://id.loc.gov/authorities/subjects/sh85042293 http://id.loc.gov/authorities/subjects/sh2012003227 |
title | Learning Hadoop 2 : design and implement data processing, lifecycle management, and analytic workflows with the cutting-edge toolbox of Hadoop 2 / |
title_alt | Learning Hadoop two Design and implement data processing, lifecycle management, and analytic workflows with the cutting-edge toolbox of Hadoop 2 |
title_auth | Learning Hadoop 2 : design and implement data processing, lifecycle management, and analytic workflows with the cutting-edge toolbox of Hadoop 2 / |
title_exact_search | Learning Hadoop 2 : design and implement data processing, lifecycle management, and analytic workflows with the cutting-edge toolbox of Hadoop 2 / |
title_full | Learning Hadoop 2 : design and implement data processing, lifecycle management, and analytic workflows with the cutting-edge toolbox of Hadoop 2 / Garry Turkington, Gabriele Modena. |
title_fullStr | Learning Hadoop 2 : design and implement data processing, lifecycle management, and analytic workflows with the cutting-edge toolbox of Hadoop 2 / Garry Turkington, Gabriele Modena. |
title_full_unstemmed | Learning Hadoop 2 : design and implement data processing, lifecycle management, and analytic workflows with the cutting-edge toolbox of Hadoop 2 / Garry Turkington, Gabriele Modena. |
title_short | Learning Hadoop 2 : |
title_sort | learning hadoop 2 design and implement data processing lifecycle management and analytic workflows with the cutting edge toolbox of hadoop 2 |
title_sub | design and implement data processing, lifecycle management, and analytic workflows with the cutting-edge toolbox of Hadoop 2 / |
topic | Apache Hadoop. http://id.loc.gov/authorities/names/n2013024279 Apache Hadoop fast Electronic data processing Distributed processing. http://id.loc.gov/authorities/subjects/sh85042293 Big data. http://id.loc.gov/authorities/subjects/sh2012003227 Traitement réparti. Données volumineuses. COMPUTERS Computer Literacy. bisacsh COMPUTERS Computer Science. bisacsh COMPUTERS Data Processing. bisacsh COMPUTERS Hardware General. bisacsh COMPUTERS Information Technology. bisacsh COMPUTERS Machine Theory. bisacsh COMPUTERS Reference. bisacsh Big data fast Electronic data processing Distributed processing fast |
topic_facet | Apache Hadoop. Apache Hadoop Electronic data processing Distributed processing. Big data. Traitement réparti. Données volumineuses. COMPUTERS Computer Literacy. COMPUTERS Computer Science. COMPUTERS Data Processing. COMPUTERS Hardware General. COMPUTERS Information Technology. COMPUTERS Machine Theory. COMPUTERS Reference. Big data Electronic data processing Distributed processing |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=956633 |
work_keys_str_mv | AT turkingtongarry learninghadoop2designandimplementdataprocessinglifecyclemanagementandanalyticworkflowswiththecuttingedgetoolboxofhadoop2 AT modenagabriele learninghadoop2designandimplementdataprocessinglifecyclemanagementandanalyticworkflowswiththecuttingedgetoolboxofhadoop2 AT turkingtongarry learninghadooptwo AT modenagabriele learninghadooptwo AT turkingtongarry designandimplementdataprocessinglifecyclemanagementandanalyticworkflowswiththecuttingedgetoolboxofhadoop2 AT modenagabriele designandimplementdataprocessinglifecyclemanagementandanalyticworkflowswiththecuttingedgetoolboxofhadoop2 |