Convexity in the Theory of Lattice Gases.:
In this book, Robert Israel considers classical and quantum lattice systems in terms of equilibrium statistical mechanics. He is especially concerned with the characterization of translation-invariant equilibrium states by a variational principle and the use of convexity in studying these states. Ar...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton :
Princeton University Press,
2015.
|
Schriftenreihe: | Princeton series in physics.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | In this book, Robert Israel considers classical and quantum lattice systems in terms of equilibrium statistical mechanics. He is especially concerned with the characterization of translation-invariant equilibrium states by a variational principle and the use of convexity in studying these states. Arthur Wightman's Introduction gives a general and historical perspective on convexity in statistical mechanics and thermodynamics. Professor Israel then reviews the general framework of the theory of lattice gases. In addition to presenting new and more direct proofs of some known results, he uses. |
Beschreibung: | Contents. |
Beschreibung: | 1 online resource (257 pages) |
ISBN: | 9781400868421 1400868424 |
Internformat
MARC
LEADER | 00000cam a2200000 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn902958227 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 150207s2015 nju o 000 0 eng d | ||
040 | |a EBLCP |b eng |e pn |c EBLCP |d OCLCO |d IDEBK |d DEBSZ |d JSTOR |d DEBBG |d OCLCF |d N$T |d YDXCP |d OCLCQ |d IDB |d AGLDB |d OCLCQ |d CUY |d IOG |d DEGRU |d EZ9 |d STF |d OCLCQ |d VTS |d OCLCQ |d LVT |d LEAUB |d DKC |d OCLCQ |d M8D |d OCLCQ |d AJS |d OCLCO |d OCLCQ |d OCLCO |d OCLCL | ||
066 | |c (S | ||
019 | |a 979727834 |a 992933491 | ||
020 | |a 9781400868421 |q (electronic bk.) | ||
020 | |a 1400868424 |q (electronic bk.) | ||
024 | 7 | |a 10.1515/9781400868421 |2 doi | |
035 | |a (OCoLC)902958227 |z (OCoLC)979727834 |z (OCoLC)992933491 | ||
037 | |a 22573/ctt13gm448 |b JSTOR | ||
050 | 4 | |a QC174.85.L38 I87 | |
072 | 7 | |a SCI055000 |2 bisacsh | |
072 | 7 | |a SCI |x 024000 |2 bisacsh | |
072 | 7 | |a SCI |x 041000 |2 bisacsh | |
072 | 7 | |a SCI |x 055000 |2 bisacsh | |
082 | 7 | |a 530.13 | |
049 | |a MAIN | ||
100 | 1 | |a Israel, Robert B. | |
245 | 1 | 0 | |a Convexity in the Theory of Lattice Gases. |
260 | |a Princeton : |b Princeton University Press, |c 2015. | ||
300 | |a 1 online resource (257 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |b PDF | ||
347 | |a text file | ||
490 | 1 | |a Princeton Series in Physics | |
588 | 0 | |a Print version record. | |
500 | |a Contents. | ||
520 | |a In this book, Robert Israel considers classical and quantum lattice systems in terms of equilibrium statistical mechanics. He is especially concerned with the characterization of translation-invariant equilibrium states by a variational principle and the use of convexity in studying these states. Arthur Wightman's Introduction gives a general and historical perspective on convexity in statistical mechanics and thermodynamics. Professor Israel then reviews the general framework of the theory of lattice gases. In addition to presenting new and more direct proofs of some known results, he uses. | ||
505 | 0 | 0 | |t Frontmatter -- |t CONTENTS -- |t INTRODUCTION. Convexity and the Notion of Equilibrium State in Thermodynamics and Statistical Mechanics -- |t I. Interactions -- |t II. Tangent Functionals and the Variational Principle -- |t III. DLR Equations and KMS Conditions -- |t IV. Decomposition of States -- |t V. Approximation by Tangent Functionals: Existence of Phase Transitions -- |t VI. The Gibbs Phase Rule -- |t APPENDIX [Alpha]. Hausdorff Measure and Dimension -- |t APPENDIX B. Classical Hard-Core Continuous Systems -- |t BIBLIOGRAPHY -- |t INDEX -- |t Backmatter. |
546 | |a In English. | ||
650 | 0 | |a Lattice gas. |0 http://id.loc.gov/authorities/subjects/sh85074987 | |
650 | 0 | |a Convex domains. |0 http://id.loc.gov/authorities/subjects/sh85031727 | |
650 | 0 | |a Statistical mechanics. |0 http://id.loc.gov/authorities/subjects/sh85127571 | |
650 | 0 | |a Statistical thermodynamics. |0 http://id.loc.gov/authorities/subjects/sh85127576 | |
650 | 4 | |a Natural Sciences. | |
650 | 4 | |a Physics, other. | |
650 | 4 | |a Physics. | |
650 | 4 | |a Physik. | |
650 | 6 | |a Gaz réticulaires. | |
650 | 6 | |a Algèbres convexes. | |
650 | 6 | |a Mécanique statistique. | |
650 | 6 | |a Thermodynamique statistique. | |
650 | 7 | |a SCIENCE |x Physics |x General. |2 bisacsh | |
650 | 7 | |a SCIENCE |x Energy. |2 bisacsh | |
650 | 7 | |a SCIENCE |x Mechanics |x General. |2 bisacsh | |
650 | 7 | |a Convex domains |2 fast | |
650 | 7 | |a Lattice gas |2 fast | |
650 | 7 | |a Statistical mechanics |2 fast | |
650 | 7 | |a Statistical thermodynamics |2 fast | |
758 | |i has work: |a Convexity in the theory of lattice gases (Text) |1 https://id.oclc.org/worldcat/entity/E39PCXj97qfBKrBV8vDWwX9CHy |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Israel, Robert B. |t Convexity in the Theory of Lattice Gases. |d Princeton : Princeton University Press, ©2015 |
830 | 0 | |a Princeton series in physics. |0 http://id.loc.gov/authorities/names/n42032469 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=946717 |3 Volltext |
880 | 0 | 0 | |6 505-00/(S |t Frontmatter -- |t CONTENTS -- |t INTRODUCTION. Convexity and the Notion of Equilibrium State in Thermodynamics and Statistical Mechanics -- |t I. Interactions -- |t II. Tangent Functionals and the Variational Principle -- |t III. DLR Equations and KMS Conditions -- |t IV. Decomposition of States -- |t V. Approximation by Tangent Functionals: Existence of Phase Transitions -- |t VI. The Gibbs Phase Rule -- |t APPENDIX Α. Hausdorff Measure and Dimension -- |t APPENDIX B. Classical Hard-Core Continuous Systems -- |t BIBLIOGRAPHY -- |t INDEX -- |t Backmatter. |
936 | |a BATCHLOAD | ||
938 | |a De Gruyter |b DEGR |n 9781400868421 | ||
938 | |a YBP Library Services |b YANK |n 12283920 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis30589919 | ||
938 | |a EBSCOhost |b EBSC |n 946717 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL1937615 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn902958227 |
---|---|
_version_ | 1816882302816354304 |
adam_text | |
any_adam_object | |
author | Israel, Robert B. |
author_facet | Israel, Robert B. |
author_role | |
author_sort | Israel, Robert B. |
author_variant | r b i rb rbi |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QC174 |
callnumber-raw | QC174.85.L38 I87 |
callnumber-search | QC174.85.L38 I87 |
callnumber-sort | QC 3174.85 L38 I87 |
callnumber-subject | QC - Physics |
collection | ZDB-4-EBA |
contents | Frontmatter -- CONTENTS -- INTRODUCTION. Convexity and the Notion of Equilibrium State in Thermodynamics and Statistical Mechanics -- I. Interactions -- II. Tangent Functionals and the Variational Principle -- III. DLR Equations and KMS Conditions -- IV. Decomposition of States -- V. Approximation by Tangent Functionals: Existence of Phase Transitions -- VI. The Gibbs Phase Rule -- APPENDIX [Alpha]. Hausdorff Measure and Dimension -- APPENDIX B. Classical Hard-Core Continuous Systems -- BIBLIOGRAPHY -- INDEX -- Backmatter. |
ctrlnum | (OCoLC)902958227 |
dewey-full | 530.13 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.13 |
dewey-search | 530.13 |
dewey-sort | 3530.13 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04992cam a2200829 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn902958227</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">150207s2015 nju o 000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">EBLCP</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">EBLCP</subfield><subfield code="d">OCLCO</subfield><subfield code="d">IDEBK</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">JSTOR</subfield><subfield code="d">DEBBG</subfield><subfield code="d">OCLCF</subfield><subfield code="d">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">IDB</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">CUY</subfield><subfield code="d">IOG</subfield><subfield code="d">DEGRU</subfield><subfield code="d">EZ9</subfield><subfield code="d">STF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LVT</subfield><subfield code="d">LEAUB</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="066" ind1=" " ind2=" "><subfield code="c">(S</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">979727834</subfield><subfield code="a">992933491</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400868421</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1400868424</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781400868421</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)902958227</subfield><subfield code="z">(OCoLC)979727834</subfield><subfield code="z">(OCoLC)992933491</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">22573/ctt13gm448</subfield><subfield code="b">JSTOR</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QC174.85.L38 I87</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI055000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">024000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">041000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">055000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">530.13</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Israel, Robert B.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Convexity in the Theory of Lattice Gases.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Princeton :</subfield><subfield code="b">Princeton University Press,</subfield><subfield code="c">2015.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (257 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="b">PDF</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">text file</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Princeton Series in Physics</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Contents.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this book, Robert Israel considers classical and quantum lattice systems in terms of equilibrium statistical mechanics. He is especially concerned with the characterization of translation-invariant equilibrium states by a variational principle and the use of convexity in studying these states. Arthur Wightman's Introduction gives a general and historical perspective on convexity in statistical mechanics and thermodynamics. Professor Israel then reviews the general framework of the theory of lattice gases. In addition to presenting new and more direct proofs of some known results, he uses.</subfield></datafield><datafield tag="505" ind1="0" ind2="0"><subfield code="t">Frontmatter --</subfield><subfield code="t">CONTENTS --</subfield><subfield code="t">INTRODUCTION. Convexity and the Notion of Equilibrium State in Thermodynamics and Statistical Mechanics --</subfield><subfield code="t">I. Interactions --</subfield><subfield code="t">II. Tangent Functionals and the Variational Principle --</subfield><subfield code="t">III. DLR Equations and KMS Conditions --</subfield><subfield code="t">IV. Decomposition of States --</subfield><subfield code="t">V. Approximation by Tangent Functionals: Existence of Phase Transitions --</subfield><subfield code="t">VI. The Gibbs Phase Rule --</subfield><subfield code="t">APPENDIX [Alpha]. Hausdorff Measure and Dimension --</subfield><subfield code="t">APPENDIX B. Classical Hard-Core Continuous Systems --</subfield><subfield code="t">BIBLIOGRAPHY --</subfield><subfield code="t">INDEX --</subfield><subfield code="t">Backmatter.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Lattice gas.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85074987</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Convex domains.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85031727</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Statistical mechanics.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85127571</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Statistical thermodynamics.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85127576</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Natural Sciences.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics, other.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physik.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Gaz réticulaires.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Algèbres convexes.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Mécanique statistique.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Thermodynamique statistique.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Physics</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Energy.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Mechanics</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Convex domains</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lattice gas</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Statistical mechanics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Statistical thermodynamics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Convexity in the theory of lattice gases (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCXj97qfBKrBV8vDWwX9CHy</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Israel, Robert B.</subfield><subfield code="t">Convexity in the Theory of Lattice Gases.</subfield><subfield code="d">Princeton : Princeton University Press, ©2015</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Princeton series in physics.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42032469</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=946717</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="880" ind1="0" ind2="0"><subfield code="6">505-00/(S</subfield><subfield code="t">Frontmatter --</subfield><subfield code="t">CONTENTS --</subfield><subfield code="t">INTRODUCTION. Convexity and the Notion of Equilibrium State in Thermodynamics and Statistical Mechanics --</subfield><subfield code="t">I. Interactions --</subfield><subfield code="t">II. Tangent Functionals and the Variational Principle --</subfield><subfield code="t">III. DLR Equations and KMS Conditions --</subfield><subfield code="t">IV. Decomposition of States --</subfield><subfield code="t">V. Approximation by Tangent Functionals: Existence of Phase Transitions --</subfield><subfield code="t">VI. The Gibbs Phase Rule --</subfield><subfield code="t">APPENDIX Α. Hausdorff Measure and Dimension --</subfield><subfield code="t">APPENDIX B. Classical Hard-Core Continuous Systems --</subfield><subfield code="t">BIBLIOGRAPHY --</subfield><subfield code="t">INDEX --</subfield><subfield code="t">Backmatter.</subfield></datafield><datafield tag="936" ind1=" " ind2=" "><subfield code="a">BATCHLOAD</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">De Gruyter</subfield><subfield code="b">DEGR</subfield><subfield code="n">9781400868421</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">12283920</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis30589919</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">946717</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL1937615</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn902958227 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:26:28Z |
institution | BVB |
isbn | 9781400868421 1400868424 |
language | English |
oclc_num | 902958227 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (257 pages) |
psigel | ZDB-4-EBA |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | Princeton University Press, |
record_format | marc |
series | Princeton series in physics. |
series2 | Princeton Series in Physics |
spelling | Israel, Robert B. Convexity in the Theory of Lattice Gases. Princeton : Princeton University Press, 2015. 1 online resource (257 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier text file Princeton Series in Physics Print version record. Contents. In this book, Robert Israel considers classical and quantum lattice systems in terms of equilibrium statistical mechanics. He is especially concerned with the characterization of translation-invariant equilibrium states by a variational principle and the use of convexity in studying these states. Arthur Wightman's Introduction gives a general and historical perspective on convexity in statistical mechanics and thermodynamics. Professor Israel then reviews the general framework of the theory of lattice gases. In addition to presenting new and more direct proofs of some known results, he uses. Frontmatter -- CONTENTS -- INTRODUCTION. Convexity and the Notion of Equilibrium State in Thermodynamics and Statistical Mechanics -- I. Interactions -- II. Tangent Functionals and the Variational Principle -- III. DLR Equations and KMS Conditions -- IV. Decomposition of States -- V. Approximation by Tangent Functionals: Existence of Phase Transitions -- VI. The Gibbs Phase Rule -- APPENDIX [Alpha]. Hausdorff Measure and Dimension -- APPENDIX B. Classical Hard-Core Continuous Systems -- BIBLIOGRAPHY -- INDEX -- Backmatter. In English. Lattice gas. http://id.loc.gov/authorities/subjects/sh85074987 Convex domains. http://id.loc.gov/authorities/subjects/sh85031727 Statistical mechanics. http://id.loc.gov/authorities/subjects/sh85127571 Statistical thermodynamics. http://id.loc.gov/authorities/subjects/sh85127576 Natural Sciences. Physics, other. Physics. Physik. Gaz réticulaires. Algèbres convexes. Mécanique statistique. Thermodynamique statistique. SCIENCE Physics General. bisacsh SCIENCE Energy. bisacsh SCIENCE Mechanics General. bisacsh Convex domains fast Lattice gas fast Statistical mechanics fast Statistical thermodynamics fast has work: Convexity in the theory of lattice gases (Text) https://id.oclc.org/worldcat/entity/E39PCXj97qfBKrBV8vDWwX9CHy https://id.oclc.org/worldcat/ontology/hasWork Print version: Israel, Robert B. Convexity in the Theory of Lattice Gases. Princeton : Princeton University Press, ©2015 Princeton series in physics. http://id.loc.gov/authorities/names/n42032469 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=946717 Volltext 505-00/(S Frontmatter -- CONTENTS -- INTRODUCTION. Convexity and the Notion of Equilibrium State in Thermodynamics and Statistical Mechanics -- I. Interactions -- II. Tangent Functionals and the Variational Principle -- III. DLR Equations and KMS Conditions -- IV. Decomposition of States -- V. Approximation by Tangent Functionals: Existence of Phase Transitions -- VI. The Gibbs Phase Rule -- APPENDIX Α. Hausdorff Measure and Dimension -- APPENDIX B. Classical Hard-Core Continuous Systems -- BIBLIOGRAPHY -- INDEX -- Backmatter. |
spellingShingle | Israel, Robert B. Convexity in the Theory of Lattice Gases. Princeton series in physics. Frontmatter -- CONTENTS -- INTRODUCTION. Convexity and the Notion of Equilibrium State in Thermodynamics and Statistical Mechanics -- I. Interactions -- II. Tangent Functionals and the Variational Principle -- III. DLR Equations and KMS Conditions -- IV. Decomposition of States -- V. Approximation by Tangent Functionals: Existence of Phase Transitions -- VI. The Gibbs Phase Rule -- APPENDIX [Alpha]. Hausdorff Measure and Dimension -- APPENDIX B. Classical Hard-Core Continuous Systems -- BIBLIOGRAPHY -- INDEX -- Backmatter. Lattice gas. http://id.loc.gov/authorities/subjects/sh85074987 Convex domains. http://id.loc.gov/authorities/subjects/sh85031727 Statistical mechanics. http://id.loc.gov/authorities/subjects/sh85127571 Statistical thermodynamics. http://id.loc.gov/authorities/subjects/sh85127576 Natural Sciences. Physics, other. Physics. Physik. Gaz réticulaires. Algèbres convexes. Mécanique statistique. Thermodynamique statistique. SCIENCE Physics General. bisacsh SCIENCE Energy. bisacsh SCIENCE Mechanics General. bisacsh Convex domains fast Lattice gas fast Statistical mechanics fast Statistical thermodynamics fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85074987 http://id.loc.gov/authorities/subjects/sh85031727 http://id.loc.gov/authorities/subjects/sh85127571 http://id.loc.gov/authorities/subjects/sh85127576 |
title | Convexity in the Theory of Lattice Gases. |
title_alt | Frontmatter -- CONTENTS -- INTRODUCTION. Convexity and the Notion of Equilibrium State in Thermodynamics and Statistical Mechanics -- I. Interactions -- II. Tangent Functionals and the Variational Principle -- III. DLR Equations and KMS Conditions -- IV. Decomposition of States -- V. Approximation by Tangent Functionals: Existence of Phase Transitions -- VI. The Gibbs Phase Rule -- APPENDIX [Alpha]. Hausdorff Measure and Dimension -- APPENDIX B. Classical Hard-Core Continuous Systems -- BIBLIOGRAPHY -- INDEX -- Backmatter. |
title_auth | Convexity in the Theory of Lattice Gases. |
title_exact_search | Convexity in the Theory of Lattice Gases. |
title_full | Convexity in the Theory of Lattice Gases. |
title_fullStr | Convexity in the Theory of Lattice Gases. |
title_full_unstemmed | Convexity in the Theory of Lattice Gases. |
title_short | Convexity in the Theory of Lattice Gases. |
title_sort | convexity in the theory of lattice gases |
topic | Lattice gas. http://id.loc.gov/authorities/subjects/sh85074987 Convex domains. http://id.loc.gov/authorities/subjects/sh85031727 Statistical mechanics. http://id.loc.gov/authorities/subjects/sh85127571 Statistical thermodynamics. http://id.loc.gov/authorities/subjects/sh85127576 Natural Sciences. Physics, other. Physics. Physik. Gaz réticulaires. Algèbres convexes. Mécanique statistique. Thermodynamique statistique. SCIENCE Physics General. bisacsh SCIENCE Energy. bisacsh SCIENCE Mechanics General. bisacsh Convex domains fast Lattice gas fast Statistical mechanics fast Statistical thermodynamics fast |
topic_facet | Lattice gas. Convex domains. Statistical mechanics. Statistical thermodynamics. Natural Sciences. Physics, other. Physics. Physik. Gaz réticulaires. Algèbres convexes. Mécanique statistique. Thermodynamique statistique. SCIENCE Physics General. SCIENCE Energy. SCIENCE Mechanics General. Convex domains Lattice gas Statistical mechanics Statistical thermodynamics |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=946717 |
work_keys_str_mv | AT israelrobertb convexityinthetheoryoflatticegases |