Sobolev spaces on metric measure spaces :: an approach based on upper gradients /
Analysis on metric spaces emerged in the 1990s as an independent research field providing a unified treatment of first-order analysis in diverse and potentially nonsmooth settings. Based on the fundamental concept of upper gradient, the notion of a Sobolev function was formulated in the setting of m...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge :
Cambridge University Press,
2015.
|
Schriftenreihe: | New mathematical monographs ;
27. |
Schlagworte: | |
Online-Zugang: | DE-862 DE-863 |
Zusammenfassung: | Analysis on metric spaces emerged in the 1990s as an independent research field providing a unified treatment of first-order analysis in diverse and potentially nonsmooth settings. Based on the fundamental concept of upper gradient, the notion of a Sobolev function was formulated in the setting of metric measure spaces supporting a Poincaré inequality. This coherent treatment from first principles is an ideal introduction to the subject for graduate students and a useful reference for experts. It presents the foundations of the theory of such first-order Sobolev spaces, then explores geometric implications of the critical Poincaré inequality, and indicates numerous examples of spaces satisfying this axiom. A distinguishing feature of the book is its focus on vector-valued Sobolev spaces. The final chapters include proofs of several landmark theorems, including Cheeger's stability theorem for Poincaré inequalities under Gromov-Hausdorff convergence, and the Keith-Zhong self-improvement theorem for Poincaré inequalities. |
Beschreibung: | 1 online resource (xii, 434 pages) |
Bibliographie: | Includes bibliographical references and indexes. |
ISBN: | 9781316248607 1316248607 9781316250495 1316250490 9781316135914 1316135918 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn900943780 | ||
003 | OCoLC | ||
005 | 20250103110447.0 | ||
006 | m o d | ||
007 | cr mn||||||||| | ||
008 | 150129t20152015enk ob 001 0 eng d | ||
040 | |a N$T |b eng |e rda |e pn |c N$T |d YDXCP |d CDX |d EBLCP |d OSU |d N$T |d CUS |d OCLCF |d UIU |d OCLCQ |d IDB |d LIP |d YDX |d OCLCO |d AU@ |d OCLCQ |d TKN |d UKAHL |d OCLCQ |d K6U |d OCLCO |d OCLCQ |d OCLCO |d S9M |d OCLCL |d SFB | ||
020 | |a 9781316248607 |q (electronic bk.) | ||
020 | |a 1316248607 |q (electronic bk.) | ||
020 | |a 9781316250495 |q (electronic bk.) | ||
020 | |a 1316250490 |q (electronic bk.) | ||
020 | |a 9781316135914 | ||
020 | |a 1316135918 | ||
020 | |z 9781107092341 |q (hardback) | ||
020 | |z 1107092345 |q (hardback) | ||
035 | |a (OCoLC)900943780 | ||
050 | 4 | |a QA611.28 |b .S63 2015eb | |
072 | 7 | |a MAT |x 005000 |2 bisacsh | |
072 | 7 | |a MAT |x 034000 |2 bisacsh | |
082 | 7 | |a 515/.7 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Heinonen, Juha, |e author. |0 http://id.loc.gov/authorities/names/n92086213 | |
245 | 1 | 0 | |a Sobolev spaces on metric measure spaces : |b an approach based on upper gradients / |c Juha Heinonen, Pekka Koskela, Nageswari Shanmugalingam, Jeremy T. Tyson. |
264 | 1 | |a Cambridge : |b Cambridge University Press, |c 2015. | |
264 | 4 | |c ©2015 | |
300 | |a 1 online resource (xii, 434 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a New mathematical monographs ; |v 27 | |
504 | |a Includes bibliographical references and indexes. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Introduction -- Review of basic functional analysis -- Lebesgue theory of Banach space-valued functions -- Lipschitz functions and embeddings -- Path integrals and modulus -- Upper gradients -- Sobolev spaces -- Poincaré inequalities -- Consequences of Poincaré inequalities -- Other definitions of Sobolev-type spaces -- Gromov-Hausdorff convergence and Poincaré inequalities -- Self-improvement of Poincaré inequalities -- An introduction to Cheeger's differentiation theory -- Examples, applications, and further research directions. | |
520 | |a Analysis on metric spaces emerged in the 1990s as an independent research field providing a unified treatment of first-order analysis in diverse and potentially nonsmooth settings. Based on the fundamental concept of upper gradient, the notion of a Sobolev function was formulated in the setting of metric measure spaces supporting a Poincaré inequality. This coherent treatment from first principles is an ideal introduction to the subject for graduate students and a useful reference for experts. It presents the foundations of the theory of such first-order Sobolev spaces, then explores geometric implications of the critical Poincaré inequality, and indicates numerous examples of spaces satisfying this axiom. A distinguishing feature of the book is its focus on vector-valued Sobolev spaces. The final chapters include proofs of several landmark theorems, including Cheeger's stability theorem for Poincaré inequalities under Gromov-Hausdorff convergence, and the Keith-Zhong self-improvement theorem for Poincaré inequalities. | ||
650 | 0 | |a Metric spaces. |0 http://id.loc.gov/authorities/subjects/sh85084441 | |
650 | 0 | |a Sobolev spaces. |0 http://id.loc.gov/authorities/subjects/sh85123836 | |
650 | 6 | |a Espaces métriques. | |
650 | 6 | |a Espaces de Sobolev. | |
650 | 7 | |a MATHEMATICS |x Calculus. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Mathematical Analysis. |2 bisacsh | |
650 | 0 | 7 | |a Sobolev, Espacios de |2 embucm |
650 | 7 | |a Metric spaces |2 fast | |
650 | 7 | |a Sobolev spaces |2 fast | |
650 | 7 | |a Sobolev-Raum |2 gnd |0 http://d-nb.info/gnd/4055345-0 | |
650 | 7 | |a Metrischer Raum |2 gnd |0 http://d-nb.info/gnd/4169745-5 | |
655 | 0 | |a Electronic books. | |
655 | 4 | |a Electronic books. | |
700 | 1 | |a Heinonen, Juha, |e author. |0 http://id.loc.gov/authorities/names/n92086213 | |
700 | 1 | |a Koskela, Pekka, |e author. |0 http://id.loc.gov/authorities/names/n00000963 | |
700 | 1 | |a Shanmugalingam, Nageswari, |e author. |0 http://id.loc.gov/authorities/names/n2014041412 | |
700 | 1 | |a Tyson, Jeremy T., |d 1972- |e author. |1 https://id.oclc.org/worldcat/entity/E39PCjtWqkhYMKwpDX7WRfb6JC |0 http://id.loc.gov/authorities/names/n2010024742 | |
758 | |i has work: |a Sobolev spaces on metric measure spaces (Text) |1 https://id.oclc.org/worldcat/entity/E39PCFJtdFHXqHBbXWFwY86btX |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Heinonen, Juha. |t Sobolev spaces on metric measure spaces. |d Cambridge, United Kingdom : Cambridge University Press, 2015 |z 9781107092341 |w (DLC) 2014027794 |w (OCoLC)883836458 |
830 | 0 | |a New mathematical monographs ; |v 27. |0 http://id.loc.gov/authorities/names/n2003010567 | |
966 | 4 | 0 | |l DE-862 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=919826 |3 Volltext |
966 | 4 | 0 | |l DE-863 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=919826 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH34209305 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH37563603 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH33403125 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH28401628 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH27275511 | ||
938 | |a Coutts Information Services |b COUT |n 30591293 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL1873476 | ||
938 | |a EBSCOhost |b EBSC |n 919826 | ||
938 | |a YBP Library Services |b YANK |n 12260948 | ||
938 | |a YBP Library Services |b YANK |n 12289200 | ||
938 | |a YBP Library Services |b YANK |n 12276564 | ||
938 | |a YBP Library Services |b YANK |n 12289997 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-862 | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn900943780 |
---|---|
_version_ | 1829095024663461888 |
adam_text | |
any_adam_object | |
author | Heinonen, Juha Heinonen, Juha Koskela, Pekka Shanmugalingam, Nageswari Tyson, Jeremy T., 1972- |
author_GND | http://id.loc.gov/authorities/names/n92086213 http://id.loc.gov/authorities/names/n00000963 http://id.loc.gov/authorities/names/n2014041412 http://id.loc.gov/authorities/names/n2010024742 |
author_facet | Heinonen, Juha Heinonen, Juha Koskela, Pekka Shanmugalingam, Nageswari Tyson, Jeremy T., 1972- |
author_role | aut aut aut aut aut |
author_sort | Heinonen, Juha |
author_variant | j h jh j h jh p k pk n s ns j t t jt jtt |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA611 |
callnumber-raw | QA611.28 .S63 2015eb |
callnumber-search | QA611.28 .S63 2015eb |
callnumber-sort | QA 3611.28 S63 42015EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Introduction -- Review of basic functional analysis -- Lebesgue theory of Banach space-valued functions -- Lipschitz functions and embeddings -- Path integrals and modulus -- Upper gradients -- Sobolev spaces -- Poincaré inequalities -- Consequences of Poincaré inequalities -- Other definitions of Sobolev-type spaces -- Gromov-Hausdorff convergence and Poincaré inequalities -- Self-improvement of Poincaré inequalities -- An introduction to Cheeger's differentiation theory -- Examples, applications, and further research directions. |
ctrlnum | (OCoLC)900943780 |
dewey-full | 515/.7 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.7 |
dewey-search | 515/.7 |
dewey-sort | 3515 17 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05636cam a2200841 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn900943780</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20250103110447.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr mn|||||||||</controlfield><controlfield tag="008">150129t20152015enk ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">CDX</subfield><subfield code="d">EBLCP</subfield><subfield code="d">OSU</subfield><subfield code="d">N$T</subfield><subfield code="d">CUS</subfield><subfield code="d">OCLCF</subfield><subfield code="d">UIU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">IDB</subfield><subfield code="d">LIP</subfield><subfield code="d">YDX</subfield><subfield code="d">OCLCO</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">TKN</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">S9M</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SFB</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781316248607</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1316248607</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781316250495</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1316250490</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781316135914</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1316135918</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781107092341</subfield><subfield code="q">(hardback)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1107092345</subfield><subfield code="q">(hardback)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)900943780</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA611.28</subfield><subfield code="b">.S63 2015eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">005000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">034000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515/.7</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Heinonen, Juha,</subfield><subfield code="e">author.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n92086213</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Sobolev spaces on metric measure spaces :</subfield><subfield code="b">an approach based on upper gradients /</subfield><subfield code="c">Juha Heinonen, Pekka Koskela, Nageswari Shanmugalingam, Jeremy T. Tyson.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2015.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xii, 434 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">New mathematical monographs ;</subfield><subfield code="v">27</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and indexes.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Introduction -- Review of basic functional analysis -- Lebesgue theory of Banach space-valued functions -- Lipschitz functions and embeddings -- Path integrals and modulus -- Upper gradients -- Sobolev spaces -- Poincaré inequalities -- Consequences of Poincaré inequalities -- Other definitions of Sobolev-type spaces -- Gromov-Hausdorff convergence and Poincaré inequalities -- Self-improvement of Poincaré inequalities -- An introduction to Cheeger's differentiation theory -- Examples, applications, and further research directions.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Analysis on metric spaces emerged in the 1990s as an independent research field providing a unified treatment of first-order analysis in diverse and potentially nonsmooth settings. Based on the fundamental concept of upper gradient, the notion of a Sobolev function was formulated in the setting of metric measure spaces supporting a Poincaré inequality. This coherent treatment from first principles is an ideal introduction to the subject for graduate students and a useful reference for experts. It presents the foundations of the theory of such first-order Sobolev spaces, then explores geometric implications of the critical Poincaré inequality, and indicates numerous examples of spaces satisfying this axiom. A distinguishing feature of the book is its focus on vector-valued Sobolev spaces. The final chapters include proofs of several landmark theorems, including Cheeger's stability theorem for Poincaré inequalities under Gromov-Hausdorff convergence, and the Keith-Zhong self-improvement theorem for Poincaré inequalities.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Metric spaces.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85084441</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Sobolev spaces.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85123836</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Espaces métriques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Espaces de Sobolev.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Calculus.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Mathematical Analysis.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Sobolev, Espacios de</subfield><subfield code="2">embucm</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Metric spaces</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Sobolev spaces</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Sobolev-Raum</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4055345-0</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Metrischer Raum</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4169745-5</subfield></datafield><datafield tag="655" ind1=" " ind2="0"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Heinonen, Juha,</subfield><subfield code="e">author.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n92086213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Koskela, Pekka,</subfield><subfield code="e">author.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n00000963</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shanmugalingam, Nageswari,</subfield><subfield code="e">author.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2014041412</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tyson, Jeremy T.,</subfield><subfield code="d">1972-</subfield><subfield code="e">author.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjtWqkhYMKwpDX7WRfb6JC</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2010024742</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Sobolev spaces on metric measure spaces (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCFJtdFHXqHBbXWFwY86btX</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Heinonen, Juha.</subfield><subfield code="t">Sobolev spaces on metric measure spaces.</subfield><subfield code="d">Cambridge, United Kingdom : Cambridge University Press, 2015</subfield><subfield code="z">9781107092341</subfield><subfield code="w">(DLC) 2014027794</subfield><subfield code="w">(OCoLC)883836458</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">New mathematical monographs ;</subfield><subfield code="v">27.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2003010567</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-862</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=919826</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-863</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=919826</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH34209305</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH37563603</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH33403125</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH28401628</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH27275511</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">30591293</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL1873476</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">919826</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">12260948</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">12289200</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">12276564</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">12289997</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-862</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
genre | Electronic books. |
genre_facet | Electronic books. |
id | ZDB-4-EBA-ocn900943780 |
illustrated | Not Illustrated |
indexdate | 2025-04-11T08:42:27Z |
institution | BVB |
isbn | 9781316248607 1316248607 9781316250495 1316250490 9781316135914 1316135918 |
language | English |
oclc_num | 900943780 |
open_access_boolean | |
owner | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
owner_facet | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
physical | 1 online resource (xii, 434 pages) |
psigel | ZDB-4-EBA FWS_PDA_EBA ZDB-4-EBA |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | Cambridge University Press, |
record_format | marc |
series | New mathematical monographs ; |
series2 | New mathematical monographs ; |
spelling | Heinonen, Juha, author. http://id.loc.gov/authorities/names/n92086213 Sobolev spaces on metric measure spaces : an approach based on upper gradients / Juha Heinonen, Pekka Koskela, Nageswari Shanmugalingam, Jeremy T. Tyson. Cambridge : Cambridge University Press, 2015. ©2015 1 online resource (xii, 434 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier New mathematical monographs ; 27 Includes bibliographical references and indexes. Print version record. Introduction -- Review of basic functional analysis -- Lebesgue theory of Banach space-valued functions -- Lipschitz functions and embeddings -- Path integrals and modulus -- Upper gradients -- Sobolev spaces -- Poincaré inequalities -- Consequences of Poincaré inequalities -- Other definitions of Sobolev-type spaces -- Gromov-Hausdorff convergence and Poincaré inequalities -- Self-improvement of Poincaré inequalities -- An introduction to Cheeger's differentiation theory -- Examples, applications, and further research directions. Analysis on metric spaces emerged in the 1990s as an independent research field providing a unified treatment of first-order analysis in diverse and potentially nonsmooth settings. Based on the fundamental concept of upper gradient, the notion of a Sobolev function was formulated in the setting of metric measure spaces supporting a Poincaré inequality. This coherent treatment from first principles is an ideal introduction to the subject for graduate students and a useful reference for experts. It presents the foundations of the theory of such first-order Sobolev spaces, then explores geometric implications of the critical Poincaré inequality, and indicates numerous examples of spaces satisfying this axiom. A distinguishing feature of the book is its focus on vector-valued Sobolev spaces. The final chapters include proofs of several landmark theorems, including Cheeger's stability theorem for Poincaré inequalities under Gromov-Hausdorff convergence, and the Keith-Zhong self-improvement theorem for Poincaré inequalities. Metric spaces. http://id.loc.gov/authorities/subjects/sh85084441 Sobolev spaces. http://id.loc.gov/authorities/subjects/sh85123836 Espaces métriques. Espaces de Sobolev. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Sobolev, Espacios de embucm Metric spaces fast Sobolev spaces fast Sobolev-Raum gnd http://d-nb.info/gnd/4055345-0 Metrischer Raum gnd http://d-nb.info/gnd/4169745-5 Electronic books. Koskela, Pekka, author. http://id.loc.gov/authorities/names/n00000963 Shanmugalingam, Nageswari, author. http://id.loc.gov/authorities/names/n2014041412 Tyson, Jeremy T., 1972- author. https://id.oclc.org/worldcat/entity/E39PCjtWqkhYMKwpDX7WRfb6JC http://id.loc.gov/authorities/names/n2010024742 has work: Sobolev spaces on metric measure spaces (Text) https://id.oclc.org/worldcat/entity/E39PCFJtdFHXqHBbXWFwY86btX https://id.oclc.org/worldcat/ontology/hasWork Print version: Heinonen, Juha. Sobolev spaces on metric measure spaces. Cambridge, United Kingdom : Cambridge University Press, 2015 9781107092341 (DLC) 2014027794 (OCoLC)883836458 New mathematical monographs ; 27. http://id.loc.gov/authorities/names/n2003010567 |
spellingShingle | Heinonen, Juha Heinonen, Juha Koskela, Pekka Shanmugalingam, Nageswari Tyson, Jeremy T., 1972- Sobolev spaces on metric measure spaces : an approach based on upper gradients / New mathematical monographs ; Introduction -- Review of basic functional analysis -- Lebesgue theory of Banach space-valued functions -- Lipschitz functions and embeddings -- Path integrals and modulus -- Upper gradients -- Sobolev spaces -- Poincaré inequalities -- Consequences of Poincaré inequalities -- Other definitions of Sobolev-type spaces -- Gromov-Hausdorff convergence and Poincaré inequalities -- Self-improvement of Poincaré inequalities -- An introduction to Cheeger's differentiation theory -- Examples, applications, and further research directions. Metric spaces. http://id.loc.gov/authorities/subjects/sh85084441 Sobolev spaces. http://id.loc.gov/authorities/subjects/sh85123836 Espaces métriques. Espaces de Sobolev. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Sobolev, Espacios de embucm Metric spaces fast Sobolev spaces fast Sobolev-Raum gnd http://d-nb.info/gnd/4055345-0 Metrischer Raum gnd http://d-nb.info/gnd/4169745-5 |
subject_GND | http://id.loc.gov/authorities/subjects/sh85084441 http://id.loc.gov/authorities/subjects/sh85123836 http://d-nb.info/gnd/4055345-0 http://d-nb.info/gnd/4169745-5 |
title | Sobolev spaces on metric measure spaces : an approach based on upper gradients / |
title_auth | Sobolev spaces on metric measure spaces : an approach based on upper gradients / |
title_exact_search | Sobolev spaces on metric measure spaces : an approach based on upper gradients / |
title_full | Sobolev spaces on metric measure spaces : an approach based on upper gradients / Juha Heinonen, Pekka Koskela, Nageswari Shanmugalingam, Jeremy T. Tyson. |
title_fullStr | Sobolev spaces on metric measure spaces : an approach based on upper gradients / Juha Heinonen, Pekka Koskela, Nageswari Shanmugalingam, Jeremy T. Tyson. |
title_full_unstemmed | Sobolev spaces on metric measure spaces : an approach based on upper gradients / Juha Heinonen, Pekka Koskela, Nageswari Shanmugalingam, Jeremy T. Tyson. |
title_short | Sobolev spaces on metric measure spaces : |
title_sort | sobolev spaces on metric measure spaces an approach based on upper gradients |
title_sub | an approach based on upper gradients / |
topic | Metric spaces. http://id.loc.gov/authorities/subjects/sh85084441 Sobolev spaces. http://id.loc.gov/authorities/subjects/sh85123836 Espaces métriques. Espaces de Sobolev. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Sobolev, Espacios de embucm Metric spaces fast Sobolev spaces fast Sobolev-Raum gnd http://d-nb.info/gnd/4055345-0 Metrischer Raum gnd http://d-nb.info/gnd/4169745-5 |
topic_facet | Metric spaces. Sobolev spaces. Espaces métriques. Espaces de Sobolev. MATHEMATICS Calculus. MATHEMATICS Mathematical Analysis. Sobolev, Espacios de Metric spaces Sobolev spaces Sobolev-Raum Metrischer Raum Electronic books. |
work_keys_str_mv | AT heinonenjuha sobolevspacesonmetricmeasurespacesanapproachbasedonuppergradients AT koskelapekka sobolevspacesonmetricmeasurespacesanapproachbasedonuppergradients AT shanmugalingamnageswari sobolevspacesonmetricmeasurespacesanapproachbasedonuppergradients AT tysonjeremyt sobolevspacesonmetricmeasurespacesanapproachbasedonuppergradients |