Mastering Hadoop :: go beyond the basics and master the next generation of Hadoop data processing platforms /
Annotation
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Birmingham, England :
Packt Publishing,
2014.
|
Schriftenreihe: | Community experience distilled.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Annotation |
Beschreibung: | Includes index. |
Beschreibung: | 1 online resource (374 pages) : illustrations |
ISBN: | 9781783983650 1783983655 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn900886855 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 150114t20142014enka o 001 0 eng d | ||
040 | |a E7B |b eng |e rda |e pn |c E7B |d OCLCO |d UMI |d COO |d N$T |d DEBBG |d YDXCP |d REB |d OCLCF |d OCLCQ |d OCLCO |d AGLDB |d OCLCQ |d OCLCO |d ICA |d CNNOR |d D6H |d OCLCQ |d VTS |d CEF |d NLE |d STF |d UKMGB |d OCLCQ |d OCLCO |d G3B |d UAB |d UKAHL |d VT2 |d RDF |d OCLCO |d OCLCQ |d QGK |d OCLCO |d OCLCL | ||
016 | 7 | |a 018006965 |2 Uk | |
019 | |a 900898176 |a 1259222686 | ||
020 | |a 9781783983650 |q (electronic bk.) | ||
020 | |a 1783983655 |q (electronic bk.) | ||
020 | |z 1783983647 | ||
020 | |z 9781783983643 | ||
035 | |a (OCoLC)900886855 |z (OCoLC)900898176 |z (OCoLC)1259222686 | ||
037 | |a CL0500000541 |b Safari Books Online | ||
050 | 4 | |a QA76.76.A65 |b .K373 2014eb | |
072 | 7 | |a COM |x 051230 |2 bisacsh | |
082 | 7 | |a 005.1 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Karanth, Sandeep, |e author. | |
245 | 1 | 0 | |a Mastering Hadoop : |b go beyond the basics and master the next generation of Hadoop data processing platforms / |c Sandeep Karanth. |
264 | 1 | |a Birmingham, England : |b Packt Publishing, |c 2014. | |
264 | 4 | |c ©2014 | |
300 | |a 1 online resource (374 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a text file | ||
490 | 1 | |a Community Experience Distilled | |
500 | |a Includes index. | ||
588 | 0 | |a Online resource; title from PDF title page (ebrary, viewed January 14, 2015). | |
520 | 8 | |a Annotation |b Do you want to broaden your Hadoop skill set and take your knowledge to the next level? Do you wish to enhance your knowledge of Hadoop to solve challenging data processing problems? Are your Hadoop jobs, Pig scripts, or Hive queries not working as fast as you intend? Are you looking to understand the benefits of upgrading Hadoop? If the answer is yes to any of these, this book is for you. It assumes novice-level familiarity with Hadoop. | |
505 | 0 | |a Cover ; Copyright; Credits; About the Author; Acknowledgments; About the Reviewers; www.PacktPub.com; Untitled; Untitled; Table of Contents; Preface; Chapter 1: Hadoop 2.X; The inception of Hadoop; The evolution of Hadoop; Hadoop's genealogy; Hadoop-0.20-append; Hadoop-0.20-security; Hadoop's timeline; Hadoop 2.X; Yet Another Resource Negotiator (YARN); Architecture overview; Storage layer enhancements; High availability; HDFS Federation; HDFS snapshots; Other enhancements; Support enhancements; Hadoop distributions; Which Hadoop distribution?; Performance; Scalability; Reliability | |
505 | 8 | |a ManageabilityAvailable distributions; Cloudera Distribution of Hadoop (CDH); Hortonworks Data Platform (HDP); MapR; Pivotal HD; Summary; Chapter 2: Advanced MapReduce; MapReduce input; The InputFormat class; The InputSplit class; The RecordReader class; Hadoop's ""small files"" problem; Filtering inputs; The Map task; The dfs.blocksize attribute; Sort and spill of intermediate outputs; Node-local Reducers or Combiners; Fetching intermediate outputs -- Map-side; The Reduce task; Fetching intermediate outputs -- Reduce-side; Merge and spill of intermediate outputs; MapReduce output | |
505 | 8 | |a Speculative execution of tasksMapReduce job counters; Handling data joins; Reduce-side joins; Map-side joins; Summary; Chapter 3: Advanced Pig; Pig versus SQL; Different modes of execution; Complex data types in Pig; Compiling Pig scripts; The logical plan; The physical plan; The MapReduce plan; Development and debugging aids; The DESCRIBE command; The EXPLAIN command; The ILLUSTRATE command; The advanced Pig operators; The advanced FOREACH operator; The FLATTEN operator; The nested FOREACH operator; The COGROUP operator; The UNION operator; The CROSS operator; Specialized joins in Pig | |
505 | 8 | |a The Replicated joinSkewed joins; The Merge join; User-defined functions; The evaluation functions; The aggregate functions; The filter functions; The load functions; The store functions; Pig performance optimizations; The optimization rules; Measurement of Pig script performance; Combiners in Pig; Memory for the Bag data type; Number of reducers in Pig; The multiquery mode in Pig; Best practices; The explicit usage of types; Early and frequent projection; Early and frequent filtering; The usage of the LIMIT operator; The usage of the DISTINCT operator; The reduction of operations | |
505 | 8 | |a The usage of Algebraic UDFsThe usage of Accumulator UDFs; Eliminating nulls in the data; The usage of specialized joins; Compressing intermediate results; Combining smaller files; Summary; Chapter 4: Advanced Hive; The Hive architecture; The Hive metastore; The Hive compiler; The Hive execution engine; The supporting components of Hive; Data types; File formats; Compressed files; ORC files; The Parquet files; The data model; Dynamic partitions; Semantics for dynamic partitioning; Indexes on Hive tables; Hive query optimizers; Advanced DML; The GROUP BY operation | |
546 | |a English. | ||
630 | 0 | 0 | |a Apache Hadoop. |0 http://id.loc.gov/authorities/names/n2013024279 |
630 | 0 | 7 | |a Apache Hadoop |2 fast |
650 | 0 | |a Application software |x Development. |0 http://id.loc.gov/authorities/subjects/sh95009362 | |
650 | 6 | |a Logiciels d'application |x Développement. | |
650 | 7 | |a COMPUTERS |x Software Development & Engineering |x General. |2 bisacsh | |
650 | 7 | |a Application software |x Development |2 fast | |
758 | |i has work: |a Mastering Hadoop (Text) |1 https://id.oclc.org/worldcat/entity/E39PCYqbBRrJhwdV3cwt87Pcw3 |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Karanth, Sandeep. |t Mastering Hadoop : go beyond the basics and master the next generation of Hadoop data processing platforms. |d Birmingham, England : Packt Publishing, ©2014 |h vii, 351 pages |k Community experience distilled. |z 9781783983643 |
830 | 0 | |a Community experience distilled. |0 http://id.loc.gov/authorities/names/no2011030603 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=934162 |3 Volltext |
936 | |a BATCHLOAD | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH28107528 | ||
938 | |a ebrary |b EBRY |n ebr11001819 | ||
938 | |a EBSCOhost |b EBSC |n 934162 | ||
938 | |a YBP Library Services |b YANK |n 12228110 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn900886855 |
---|---|
_version_ | 1816882301835935744 |
adam_text | |
any_adam_object | |
author | Karanth, Sandeep |
author_facet | Karanth, Sandeep |
author_role | aut |
author_sort | Karanth, Sandeep |
author_variant | s k sk |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA76 |
callnumber-raw | QA76.76.A65 .K373 2014eb |
callnumber-search | QA76.76.A65 .K373 2014eb |
callnumber-sort | QA 276.76 A65 K373 42014EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Cover ; Copyright; Credits; About the Author; Acknowledgments; About the Reviewers; www.PacktPub.com; Untitled; Untitled; Table of Contents; Preface; Chapter 1: Hadoop 2.X; The inception of Hadoop; The evolution of Hadoop; Hadoop's genealogy; Hadoop-0.20-append; Hadoop-0.20-security; Hadoop's timeline; Hadoop 2.X; Yet Another Resource Negotiator (YARN); Architecture overview; Storage layer enhancements; High availability; HDFS Federation; HDFS snapshots; Other enhancements; Support enhancements; Hadoop distributions; Which Hadoop distribution?; Performance; Scalability; Reliability ManageabilityAvailable distributions; Cloudera Distribution of Hadoop (CDH); Hortonworks Data Platform (HDP); MapR; Pivotal HD; Summary; Chapter 2: Advanced MapReduce; MapReduce input; The InputFormat class; The InputSplit class; The RecordReader class; Hadoop's ""small files"" problem; Filtering inputs; The Map task; The dfs.blocksize attribute; Sort and spill of intermediate outputs; Node-local Reducers or Combiners; Fetching intermediate outputs -- Map-side; The Reduce task; Fetching intermediate outputs -- Reduce-side; Merge and spill of intermediate outputs; MapReduce output Speculative execution of tasksMapReduce job counters; Handling data joins; Reduce-side joins; Map-side joins; Summary; Chapter 3: Advanced Pig; Pig versus SQL; Different modes of execution; Complex data types in Pig; Compiling Pig scripts; The logical plan; The physical plan; The MapReduce plan; Development and debugging aids; The DESCRIBE command; The EXPLAIN command; The ILLUSTRATE command; The advanced Pig operators; The advanced FOREACH operator; The FLATTEN operator; The nested FOREACH operator; The COGROUP operator; The UNION operator; The CROSS operator; Specialized joins in Pig The Replicated joinSkewed joins; The Merge join; User-defined functions; The evaluation functions; The aggregate functions; The filter functions; The load functions; The store functions; Pig performance optimizations; The optimization rules; Measurement of Pig script performance; Combiners in Pig; Memory for the Bag data type; Number of reducers in Pig; The multiquery mode in Pig; Best practices; The explicit usage of types; Early and frequent projection; Early and frequent filtering; The usage of the LIMIT operator; The usage of the DISTINCT operator; The reduction of operations The usage of Algebraic UDFsThe usage of Accumulator UDFs; Eliminating nulls in the data; The usage of specialized joins; Compressing intermediate results; Combining smaller files; Summary; Chapter 4: Advanced Hive; The Hive architecture; The Hive metastore; The Hive compiler; The Hive execution engine; The supporting components of Hive; Data types; File formats; Compressed files; ORC files; The Parquet files; The data model; Dynamic partitions; Semantics for dynamic partitioning; Indexes on Hive tables; Hive query optimizers; Advanced DML; The GROUP BY operation |
ctrlnum | (OCoLC)900886855 |
dewey-full | 005.1 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 005 - Computer programming, programs, data, security |
dewey-raw | 005.1 |
dewey-search | 005.1 |
dewey-sort | 15.1 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06377cam a2200673 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn900886855</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cn|||||||||</controlfield><controlfield tag="008">150114t20142014enka o 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">E7B</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">E7B</subfield><subfield code="d">OCLCO</subfield><subfield code="d">UMI</subfield><subfield code="d">COO</subfield><subfield code="d">N$T</subfield><subfield code="d">DEBBG</subfield><subfield code="d">YDXCP</subfield><subfield code="d">REB</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">ICA</subfield><subfield code="d">CNNOR</subfield><subfield code="d">D6H</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">CEF</subfield><subfield code="d">NLE</subfield><subfield code="d">STF</subfield><subfield code="d">UKMGB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">G3B</subfield><subfield code="d">UAB</subfield><subfield code="d">UKAHL</subfield><subfield code="d">VT2</subfield><subfield code="d">RDF</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">QGK</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">018006965</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">900898176</subfield><subfield code="a">1259222686</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781783983650</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1783983655</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1783983647</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781783983643</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)900886855</subfield><subfield code="z">(OCoLC)900898176</subfield><subfield code="z">(OCoLC)1259222686</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">CL0500000541</subfield><subfield code="b">Safari Books Online</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA76.76.A65</subfield><subfield code="b">.K373 2014eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">051230</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">005.1</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Karanth, Sandeep,</subfield><subfield code="e">author.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mastering Hadoop :</subfield><subfield code="b">go beyond the basics and master the next generation of Hadoop data processing platforms /</subfield><subfield code="c">Sandeep Karanth.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Birmingham, England :</subfield><subfield code="b">Packt Publishing,</subfield><subfield code="c">2014.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (374 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">text file</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Community Experience Distilled</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Online resource; title from PDF title page (ebrary, viewed January 14, 2015).</subfield></datafield><datafield tag="520" ind1="8" ind2=" "><subfield code="a">Annotation</subfield><subfield code="b">Do you want to broaden your Hadoop skill set and take your knowledge to the next level? Do you wish to enhance your knowledge of Hadoop to solve challenging data processing problems? Are your Hadoop jobs, Pig scripts, or Hive queries not working as fast as you intend? Are you looking to understand the benefits of upgrading Hadoop? If the answer is yes to any of these, this book is for you. It assumes novice-level familiarity with Hadoop.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover ; Copyright; Credits; About the Author; Acknowledgments; About the Reviewers; www.PacktPub.com; Untitled; Untitled; Table of Contents; Preface; Chapter 1: Hadoop 2.X; The inception of Hadoop; The evolution of Hadoop; Hadoop's genealogy; Hadoop-0.20-append; Hadoop-0.20-security; Hadoop's timeline; Hadoop 2.X; Yet Another Resource Negotiator (YARN); Architecture overview; Storage layer enhancements; High availability; HDFS Federation; HDFS snapshots; Other enhancements; Support enhancements; Hadoop distributions; Which Hadoop distribution?; Performance; Scalability; Reliability</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">ManageabilityAvailable distributions; Cloudera Distribution of Hadoop (CDH); Hortonworks Data Platform (HDP); MapR; Pivotal HD; Summary; Chapter 2: Advanced MapReduce; MapReduce input; The InputFormat class; The InputSplit class; The RecordReader class; Hadoop's ""small files"" problem; Filtering inputs; The Map task; The dfs.blocksize attribute; Sort and spill of intermediate outputs; Node-local Reducers or Combiners; Fetching intermediate outputs -- Map-side; The Reduce task; Fetching intermediate outputs -- Reduce-side; Merge and spill of intermediate outputs; MapReduce output</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Speculative execution of tasksMapReduce job counters; Handling data joins; Reduce-side joins; Map-side joins; Summary; Chapter 3: Advanced Pig; Pig versus SQL; Different modes of execution; Complex data types in Pig; Compiling Pig scripts; The logical plan; The physical plan; The MapReduce plan; Development and debugging aids; The DESCRIBE command; The EXPLAIN command; The ILLUSTRATE command; The advanced Pig operators; The advanced FOREACH operator; The FLATTEN operator; The nested FOREACH operator; The COGROUP operator; The UNION operator; The CROSS operator; Specialized joins in Pig</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">The Replicated joinSkewed joins; The Merge join; User-defined functions; The evaluation functions; The aggregate functions; The filter functions; The load functions; The store functions; Pig performance optimizations; The optimization rules; Measurement of Pig script performance; Combiners in Pig; Memory for the Bag data type; Number of reducers in Pig; The multiquery mode in Pig; Best practices; The explicit usage of types; Early and frequent projection; Early and frequent filtering; The usage of the LIMIT operator; The usage of the DISTINCT operator; The reduction of operations</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">The usage of Algebraic UDFsThe usage of Accumulator UDFs; Eliminating nulls in the data; The usage of specialized joins; Compressing intermediate results; Combining smaller files; Summary; Chapter 4: Advanced Hive; The Hive architecture; The Hive metastore; The Hive compiler; The Hive execution engine; The supporting components of Hive; Data types; File formats; Compressed files; ORC files; The Parquet files; The data model; Dynamic partitions; Semantics for dynamic partitioning; Indexes on Hive tables; Hive query optimizers; Advanced DML; The GROUP BY operation</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="630" ind1="0" ind2="0"><subfield code="a">Apache Hadoop.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2013024279</subfield></datafield><datafield tag="630" ind1="0" ind2="7"><subfield code="a">Apache Hadoop</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Application software</subfield><subfield code="x">Development.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh95009362</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Logiciels d'application</subfield><subfield code="x">Développement.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">Software Development & Engineering</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Application software</subfield><subfield code="x">Development</subfield><subfield code="2">fast</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Mastering Hadoop (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCYqbBRrJhwdV3cwt87Pcw3</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Karanth, Sandeep.</subfield><subfield code="t">Mastering Hadoop : go beyond the basics and master the next generation of Hadoop data processing platforms.</subfield><subfield code="d">Birmingham, England : Packt Publishing, ©2014</subfield><subfield code="h">vii, 351 pages</subfield><subfield code="k">Community experience distilled.</subfield><subfield code="z">9781783983643</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Community experience distilled.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2011030603</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=934162</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="936" ind1=" " ind2=" "><subfield code="a">BATCHLOAD</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH28107528</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr11001819</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">934162</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">12228110</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn900886855 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:26:27Z |
institution | BVB |
isbn | 9781783983650 1783983655 |
language | English |
oclc_num | 900886855 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (374 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | Packt Publishing, |
record_format | marc |
series | Community experience distilled. |
series2 | Community Experience Distilled |
spelling | Karanth, Sandeep, author. Mastering Hadoop : go beyond the basics and master the next generation of Hadoop data processing platforms / Sandeep Karanth. Birmingham, England : Packt Publishing, 2014. ©2014 1 online resource (374 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier text file Community Experience Distilled Includes index. Online resource; title from PDF title page (ebrary, viewed January 14, 2015). Annotation Do you want to broaden your Hadoop skill set and take your knowledge to the next level? Do you wish to enhance your knowledge of Hadoop to solve challenging data processing problems? Are your Hadoop jobs, Pig scripts, or Hive queries not working as fast as you intend? Are you looking to understand the benefits of upgrading Hadoop? If the answer is yes to any of these, this book is for you. It assumes novice-level familiarity with Hadoop. Cover ; Copyright; Credits; About the Author; Acknowledgments; About the Reviewers; www.PacktPub.com; Untitled; Untitled; Table of Contents; Preface; Chapter 1: Hadoop 2.X; The inception of Hadoop; The evolution of Hadoop; Hadoop's genealogy; Hadoop-0.20-append; Hadoop-0.20-security; Hadoop's timeline; Hadoop 2.X; Yet Another Resource Negotiator (YARN); Architecture overview; Storage layer enhancements; High availability; HDFS Federation; HDFS snapshots; Other enhancements; Support enhancements; Hadoop distributions; Which Hadoop distribution?; Performance; Scalability; Reliability ManageabilityAvailable distributions; Cloudera Distribution of Hadoop (CDH); Hortonworks Data Platform (HDP); MapR; Pivotal HD; Summary; Chapter 2: Advanced MapReduce; MapReduce input; The InputFormat class; The InputSplit class; The RecordReader class; Hadoop's ""small files"" problem; Filtering inputs; The Map task; The dfs.blocksize attribute; Sort and spill of intermediate outputs; Node-local Reducers or Combiners; Fetching intermediate outputs -- Map-side; The Reduce task; Fetching intermediate outputs -- Reduce-side; Merge and spill of intermediate outputs; MapReduce output Speculative execution of tasksMapReduce job counters; Handling data joins; Reduce-side joins; Map-side joins; Summary; Chapter 3: Advanced Pig; Pig versus SQL; Different modes of execution; Complex data types in Pig; Compiling Pig scripts; The logical plan; The physical plan; The MapReduce plan; Development and debugging aids; The DESCRIBE command; The EXPLAIN command; The ILLUSTRATE command; The advanced Pig operators; The advanced FOREACH operator; The FLATTEN operator; The nested FOREACH operator; The COGROUP operator; The UNION operator; The CROSS operator; Specialized joins in Pig The Replicated joinSkewed joins; The Merge join; User-defined functions; The evaluation functions; The aggregate functions; The filter functions; The load functions; The store functions; Pig performance optimizations; The optimization rules; Measurement of Pig script performance; Combiners in Pig; Memory for the Bag data type; Number of reducers in Pig; The multiquery mode in Pig; Best practices; The explicit usage of types; Early and frequent projection; Early and frequent filtering; The usage of the LIMIT operator; The usage of the DISTINCT operator; The reduction of operations The usage of Algebraic UDFsThe usage of Accumulator UDFs; Eliminating nulls in the data; The usage of specialized joins; Compressing intermediate results; Combining smaller files; Summary; Chapter 4: Advanced Hive; The Hive architecture; The Hive metastore; The Hive compiler; The Hive execution engine; The supporting components of Hive; Data types; File formats; Compressed files; ORC files; The Parquet files; The data model; Dynamic partitions; Semantics for dynamic partitioning; Indexes on Hive tables; Hive query optimizers; Advanced DML; The GROUP BY operation English. Apache Hadoop. http://id.loc.gov/authorities/names/n2013024279 Apache Hadoop fast Application software Development. http://id.loc.gov/authorities/subjects/sh95009362 Logiciels d'application Développement. COMPUTERS Software Development & Engineering General. bisacsh Application software Development fast has work: Mastering Hadoop (Text) https://id.oclc.org/worldcat/entity/E39PCYqbBRrJhwdV3cwt87Pcw3 https://id.oclc.org/worldcat/ontology/hasWork Print version: Karanth, Sandeep. Mastering Hadoop : go beyond the basics and master the next generation of Hadoop data processing platforms. Birmingham, England : Packt Publishing, ©2014 vii, 351 pages Community experience distilled. 9781783983643 Community experience distilled. http://id.loc.gov/authorities/names/no2011030603 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=934162 Volltext |
spellingShingle | Karanth, Sandeep Mastering Hadoop : go beyond the basics and master the next generation of Hadoop data processing platforms / Community experience distilled. Cover ; Copyright; Credits; About the Author; Acknowledgments; About the Reviewers; www.PacktPub.com; Untitled; Untitled; Table of Contents; Preface; Chapter 1: Hadoop 2.X; The inception of Hadoop; The evolution of Hadoop; Hadoop's genealogy; Hadoop-0.20-append; Hadoop-0.20-security; Hadoop's timeline; Hadoop 2.X; Yet Another Resource Negotiator (YARN); Architecture overview; Storage layer enhancements; High availability; HDFS Federation; HDFS snapshots; Other enhancements; Support enhancements; Hadoop distributions; Which Hadoop distribution?; Performance; Scalability; Reliability ManageabilityAvailable distributions; Cloudera Distribution of Hadoop (CDH); Hortonworks Data Platform (HDP); MapR; Pivotal HD; Summary; Chapter 2: Advanced MapReduce; MapReduce input; The InputFormat class; The InputSplit class; The RecordReader class; Hadoop's ""small files"" problem; Filtering inputs; The Map task; The dfs.blocksize attribute; Sort and spill of intermediate outputs; Node-local Reducers or Combiners; Fetching intermediate outputs -- Map-side; The Reduce task; Fetching intermediate outputs -- Reduce-side; Merge and spill of intermediate outputs; MapReduce output Speculative execution of tasksMapReduce job counters; Handling data joins; Reduce-side joins; Map-side joins; Summary; Chapter 3: Advanced Pig; Pig versus SQL; Different modes of execution; Complex data types in Pig; Compiling Pig scripts; The logical plan; The physical plan; The MapReduce plan; Development and debugging aids; The DESCRIBE command; The EXPLAIN command; The ILLUSTRATE command; The advanced Pig operators; The advanced FOREACH operator; The FLATTEN operator; The nested FOREACH operator; The COGROUP operator; The UNION operator; The CROSS operator; Specialized joins in Pig The Replicated joinSkewed joins; The Merge join; User-defined functions; The evaluation functions; The aggregate functions; The filter functions; The load functions; The store functions; Pig performance optimizations; The optimization rules; Measurement of Pig script performance; Combiners in Pig; Memory for the Bag data type; Number of reducers in Pig; The multiquery mode in Pig; Best practices; The explicit usage of types; Early and frequent projection; Early and frequent filtering; The usage of the LIMIT operator; The usage of the DISTINCT operator; The reduction of operations The usage of Algebraic UDFsThe usage of Accumulator UDFs; Eliminating nulls in the data; The usage of specialized joins; Compressing intermediate results; Combining smaller files; Summary; Chapter 4: Advanced Hive; The Hive architecture; The Hive metastore; The Hive compiler; The Hive execution engine; The supporting components of Hive; Data types; File formats; Compressed files; ORC files; The Parquet files; The data model; Dynamic partitions; Semantics for dynamic partitioning; Indexes on Hive tables; Hive query optimizers; Advanced DML; The GROUP BY operation Apache Hadoop. http://id.loc.gov/authorities/names/n2013024279 Apache Hadoop fast Application software Development. http://id.loc.gov/authorities/subjects/sh95009362 Logiciels d'application Développement. COMPUTERS Software Development & Engineering General. bisacsh Application software Development fast |
subject_GND | http://id.loc.gov/authorities/names/n2013024279 http://id.loc.gov/authorities/subjects/sh95009362 |
title | Mastering Hadoop : go beyond the basics and master the next generation of Hadoop data processing platforms / |
title_auth | Mastering Hadoop : go beyond the basics and master the next generation of Hadoop data processing platforms / |
title_exact_search | Mastering Hadoop : go beyond the basics and master the next generation of Hadoop data processing platforms / |
title_full | Mastering Hadoop : go beyond the basics and master the next generation of Hadoop data processing platforms / Sandeep Karanth. |
title_fullStr | Mastering Hadoop : go beyond the basics and master the next generation of Hadoop data processing platforms / Sandeep Karanth. |
title_full_unstemmed | Mastering Hadoop : go beyond the basics and master the next generation of Hadoop data processing platforms / Sandeep Karanth. |
title_short | Mastering Hadoop : |
title_sort | mastering hadoop go beyond the basics and master the next generation of hadoop data processing platforms |
title_sub | go beyond the basics and master the next generation of Hadoop data processing platforms / |
topic | Apache Hadoop. http://id.loc.gov/authorities/names/n2013024279 Apache Hadoop fast Application software Development. http://id.loc.gov/authorities/subjects/sh95009362 Logiciels d'application Développement. COMPUTERS Software Development & Engineering General. bisacsh Application software Development fast |
topic_facet | Apache Hadoop. Apache Hadoop Application software Development. Logiciels d'application Développement. COMPUTERS Software Development & Engineering General. Application software Development |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=934162 |
work_keys_str_mv | AT karanthsandeep masteringhadoopgobeyondthebasicsandmasterthenextgenerationofhadoopdataprocessingplatforms |