Numerical structural analysis /:
As structural engineers move further into the age of digital computation and rely more heavily on computers to solve problems, it remains paramount that they understand the basic mathematics and engineering principles used to design and analyze building structures. The analysis of complex structural...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York [New York] (222 East 46th Street, New York, NY 10017) :
Momentum Press,
2015.
|
Schriftenreihe: | Momentum Press sustainable structural systems collection.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | As structural engineers move further into the age of digital computation and rely more heavily on computers to solve problems, it remains paramount that they understand the basic mathematics and engineering principles used to design and analyze building structures. The analysis of complex structural systems involves the knowledge of science, technology, engineering, and math to design and develop efficient and economical buildings and other structures. The link between the basic concepts and application to real world problems is one of the most challenging learning endeavors that structural engineers face. A thorough understanding of the analysis procedures should lead to successful structures. |
Beschreibung: | Title from PDF title page (viewed on January 10, 2015). |
Beschreibung: | 1 online resource (1 PDF (xix, 277 pages)) : illustrations. |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9781606504895 1606504894 |
Internformat
MARC
LEADER | 00000cam a2200000Mi 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn900011556 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m eo d | ||
007 | cr cn||||m|||a | ||
008 | 150110s2015 nyua foab 001 0 eng d | ||
040 | |a NYMPP |b eng |e rda |e pn |c NYMPP |d OCLCO |d MYG |d N$T |d OCLCF |d YDXCP |d ZCU |d OTZ |d UPM |d COCUF |d CNNOR |d STF |d LOA |d CUY |d ICG |d K6U |d VT2 |d U3W |d CNCEN |d OCLCQ |d G3B |d LVT |d S8J |d S9I |d D6H |d OCLCO |d OCLCQ |d OCLCO | ||
019 | |a 960717450 | ||
020 | |a 9781606504895 |q (electronic bk.) | ||
020 | |a 1606504894 |q (electronic bk.) | ||
020 | |z 9781606504888 |q (print) | ||
024 | 7 | |a 10.5643/9781606504895 |2 doi | |
035 | |a (OCoLC)900011556 |z (OCoLC)960717450 | ||
050 | 4 | |a TA645 |b .O325 2015 | |
072 | 7 | |a TEC |x 009020 |2 bisacsh | |
082 | 7 | |a 624.171 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a O'Hara, Steven E., |e author. | |
245 | 1 | 0 | |a Numerical structural analysis / |c Steven E. O'Hara, Carisa H. Ramming. |
264 | 1 | |a New York [New York] (222 East 46th Street, New York, NY 10017) : |b Momentum Press, |c 2015. | |
300 | |a 1 online resource (1 PDF (xix, 277 pages)) : |b illustrations. | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Sustainable structural systems collection | |
500 | |a Title from PDF title page (viewed on January 10, 2015). | ||
504 | |a Includes bibliographical references and index. | ||
505 | 0 | |a 1. Roots of algebraic and transcendental equations -- 1.1 Equations -- 1.2 Polynomials -- 1.3 Descartes' rule -- 1.4 Synthetic division -- 1.5 Incremental search method -- 1.6 Refined incremental search method -- 1.7 Bisection method -- 1.8 Method of false position or linear interpolation -- 1.9 Secant method -- 1.10 Newton-Raphson method or Newton's tangent -- 1.11 Newton's second order method -- 1.12 Graeffe's root squaring method -- 1.13 Bairstow's method -- References. | |
505 | 8 | |a 2. Solutions of simultaneous linear algebraic equations using matrix algebra -- 2.1 Simultaneous equations -- 2.2 Matrices -- 2.3 Matrix operations -- 2.4 Cramer's rule -- 2.5 Method of adjoints or cofactor method -- 2.6 Gaussian elimination method -- 2.7 Gauss-Jordan elimination method -- 2.8 Improved Gauss-Jordan elimination method -- 2.9 Cholesky decomposition method -- 2.10 Error equations -- 2.11 Matrix inversion method -- 2.12 Gauss-Seidel iteration method -- 2.13 Eigenvalues by Cramer's rule -- 2.14 Faddeev-Leverrier method -- 2.15 Power method or iteration method -- References. | |
505 | 8 | |a 3. Numerical integration and differentiation -- 3.1 Trapezoidal rule -- 3.2 Romberg integration -- 3.3 Simpson's rule -- 3.4 Gaussian quadrature -- 3.5 Double integration by Simpson's one-third rule -- 3.6 Double integration by Gaussian quadrature -- 3.7 Taylor series polynomial expansion -- 3.8 Difference operators by Taylor series expansion -- 3.9 Numeric modeling with difference operators -- 3.10 Partial differential equation difference operators -- 3.11 Numeric modeling with partial difference operators -- References. | |
505 | 8 | |a 4. Matrix structural stiffness -- 4.1 Matrix transformations and coordinate systems -- 4.2 Rotation matrix -- 4.3 Transmission matrix -- 4.4 Area moment method -- 4.5 Conjugate beam method -- 4.6 Virtual work -- 4.7 Castigliano's theorems -- 4.8 Slope-deflection method -- 4.9 Moment-distribution method -- 4.10 Elastic member stiffness, X-Z system -- 4.11 Elastic member stiffness, X-Y system -- 4.12 Elastic member stiffness, 3-D system -- 4.13 Global joint stiffness -- References. | |
505 | 8 | |a 5. Advanced structural stiffness -- 5.1 Member end releases, X-Z system -- 5.2 Member end releases, X-Y system -- 5.3 Member end releases, 3-D system -- 5.4 Non-prismatic members -- 5.5 Shear stiffness, X-Z system -- 5.6 Shear stiffness, X-Y system -- 5.7 Shear stiffness, 3-D system -- 5.8 Geometric stiffness, X-Y system -- 5.9 Geometric stiffness, X-Z system -- 5.10 Geometric stiffness, 3-D system -- 5.11 Geometric and shear stiffness -- 5.12 Torsion -- 5.13 Sub-structuring -- References. | |
505 | 8 | |a About the authors -- Index. | |
520 | 3 | |a As structural engineers move further into the age of digital computation and rely more heavily on computers to solve problems, it remains paramount that they understand the basic mathematics and engineering principles used to design and analyze building structures. The analysis of complex structural systems involves the knowledge of science, technology, engineering, and math to design and develop efficient and economical buildings and other structures. The link between the basic concepts and application to real world problems is one of the most challenging learning endeavors that structural engineers face. A thorough understanding of the analysis procedures should lead to successful structures. | |
650 | 0 | |a Structural analysis (Engineering) |x Mathematical models. | |
650 | 6 | |a Théorie des constructions |x Modèles mathématiques. | |
650 | 7 | |a TECHNOLOGY & ENGINEERING |x Civil |x General. |2 bisacsh | |
650 | 7 | |a Structural analysis (Engineering) |x Mathematical models |2 fast | |
653 | |a adjoint matrix | ||
653 | |a algebraic equations | ||
653 | |a area moment | ||
653 | |a beam deflection | ||
653 | |a carry- over factor, | ||
653 | |a castigliano's theorems | ||
653 | |a cofactor matrix | ||
653 | |a column matrix | ||
653 | |a complex conjugate pairs | ||
653 | |a complex roots | ||
653 | |a conjugate beam | ||
653 | |a conjugate pairs | ||
653 | |a convergence | ||
653 | |a diagonal matrix | ||
653 | |a differentiation | ||
653 | |a distinct roots | ||
653 | |a distribution factor | ||
653 | |a eigenvalues | ||
653 | |a elastic stiffness | ||
653 | |a enke roots | ||
653 | |a extrapolation | ||
653 | |a flexural stiffness | ||
653 | |a geometric stiffness | ||
653 | |a homogeneous | ||
653 | |a identity matrix | ||
653 | |a integer | ||
653 | |a integration | ||
653 | |a interpolation | ||
653 | |a inverse | ||
653 | |a joint stiffness factor | ||
653 | |a linear algebraic equations | ||
653 | |a lower triangular matrix | ||
653 | |a matrix | ||
653 | |a matrix minor | ||
653 | |a member end release | ||
653 | |a member relative stiffness factor | ||
653 | |a member stiffness factor | ||
653 | |a moment-distribution | ||
653 | |a non-homogeneous | ||
653 | |a non-prismatic members | ||
653 | |a partial pivoting | ||
653 | |a pivot coefficient | ||
653 | |a pivot equation | ||
653 | |a polynomials | ||
653 | |a principal diagonal | ||
653 | |a roots | ||
653 | |a rotation | ||
653 | |a rotational stiffness | ||
653 | |a row matrix | ||
653 | |a second-order stiffness | ||
653 | |a shear stiffness | ||
653 | |a slope-deflection | ||
653 | |a sparse matrix | ||
653 | |a square matrix | ||
653 | |a stiffness matrix | ||
653 | |a structural flexibility | ||
653 | |a structural stiffness | ||
653 | |a symmetric transformation | ||
653 | |a torsional stiffness | ||
653 | |a transcendental equations | ||
653 | |a transformations | ||
653 | |a transmission | ||
653 | |a transposed matrix | ||
653 | |a triangular matrix | ||
653 | |a upper triangular matrix | ||
653 | |a virtual work | ||
653 | |a visual integration | ||
700 | 1 | |a Ramming, Carisa H., |e author. | |
776 | 0 | 8 | |i Print version: |z 9781606504888 |
830 | 0 | |a Momentum Press sustainable structural systems collection. |0 http://id.loc.gov/authorities/names/no2019067587 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=929571 |3 Volltext |
938 | |a EBSCOhost |b EBSC |n 929571 | ||
938 | |a Momentum Press |b NYMP |n 9781606504895 | ||
938 | |a YBP Library Services |b YANK |n 12219127 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn900011556 |
---|---|
_version_ | 1816882299629731840 |
adam_text | |
any_adam_object | |
author | O'Hara, Steven E. Ramming, Carisa H. |
author_facet | O'Hara, Steven E. Ramming, Carisa H. |
author_role | aut aut |
author_sort | O'Hara, Steven E. |
author_variant | s e o se seo c h r ch chr |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | T - Technology |
callnumber-label | TA645 |
callnumber-raw | TA645 .O325 2015 |
callnumber-search | TA645 .O325 2015 |
callnumber-sort | TA 3645 O325 42015 |
callnumber-subject | TA - General and Civil Engineering |
collection | ZDB-4-EBA |
contents | 1. Roots of algebraic and transcendental equations -- 1.1 Equations -- 1.2 Polynomials -- 1.3 Descartes' rule -- 1.4 Synthetic division -- 1.5 Incremental search method -- 1.6 Refined incremental search method -- 1.7 Bisection method -- 1.8 Method of false position or linear interpolation -- 1.9 Secant method -- 1.10 Newton-Raphson method or Newton's tangent -- 1.11 Newton's second order method -- 1.12 Graeffe's root squaring method -- 1.13 Bairstow's method -- References. 2. Solutions of simultaneous linear algebraic equations using matrix algebra -- 2.1 Simultaneous equations -- 2.2 Matrices -- 2.3 Matrix operations -- 2.4 Cramer's rule -- 2.5 Method of adjoints or cofactor method -- 2.6 Gaussian elimination method -- 2.7 Gauss-Jordan elimination method -- 2.8 Improved Gauss-Jordan elimination method -- 2.9 Cholesky decomposition method -- 2.10 Error equations -- 2.11 Matrix inversion method -- 2.12 Gauss-Seidel iteration method -- 2.13 Eigenvalues by Cramer's rule -- 2.14 Faddeev-Leverrier method -- 2.15 Power method or iteration method -- References. 3. Numerical integration and differentiation -- 3.1 Trapezoidal rule -- 3.2 Romberg integration -- 3.3 Simpson's rule -- 3.4 Gaussian quadrature -- 3.5 Double integration by Simpson's one-third rule -- 3.6 Double integration by Gaussian quadrature -- 3.7 Taylor series polynomial expansion -- 3.8 Difference operators by Taylor series expansion -- 3.9 Numeric modeling with difference operators -- 3.10 Partial differential equation difference operators -- 3.11 Numeric modeling with partial difference operators -- References. 4. Matrix structural stiffness -- 4.1 Matrix transformations and coordinate systems -- 4.2 Rotation matrix -- 4.3 Transmission matrix -- 4.4 Area moment method -- 4.5 Conjugate beam method -- 4.6 Virtual work -- 4.7 Castigliano's theorems -- 4.8 Slope-deflection method -- 4.9 Moment-distribution method -- 4.10 Elastic member stiffness, X-Z system -- 4.11 Elastic member stiffness, X-Y system -- 4.12 Elastic member stiffness, 3-D system -- 4.13 Global joint stiffness -- References. 5. Advanced structural stiffness -- 5.1 Member end releases, X-Z system -- 5.2 Member end releases, X-Y system -- 5.3 Member end releases, 3-D system -- 5.4 Non-prismatic members -- 5.5 Shear stiffness, X-Z system -- 5.6 Shear stiffness, X-Y system -- 5.7 Shear stiffness, 3-D system -- 5.8 Geometric stiffness, X-Y system -- 5.9 Geometric stiffness, X-Z system -- 5.10 Geometric stiffness, 3-D system -- 5.11 Geometric and shear stiffness -- 5.12 Torsion -- 5.13 Sub-structuring -- References. About the authors -- Index. |
ctrlnum | (OCoLC)900011556 |
dewey-full | 624.171 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 624 - Civil engineering |
dewey-raw | 624.171 |
dewey-search | 624.171 |
dewey-sort | 3624.171 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Bauingenieurwesen |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07815cam a2201381Mi 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn900011556</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m eo d </controlfield><controlfield tag="007">cr cn||||m|||a</controlfield><controlfield tag="008">150110s2015 nyua foab 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">NYMPP</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">NYMPP</subfield><subfield code="d">OCLCO</subfield><subfield code="d">MYG</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCF</subfield><subfield code="d">YDXCP</subfield><subfield code="d">ZCU</subfield><subfield code="d">OTZ</subfield><subfield code="d">UPM</subfield><subfield code="d">COCUF</subfield><subfield code="d">CNNOR</subfield><subfield code="d">STF</subfield><subfield code="d">LOA</subfield><subfield code="d">CUY</subfield><subfield code="d">ICG</subfield><subfield code="d">K6U</subfield><subfield code="d">VT2</subfield><subfield code="d">U3W</subfield><subfield code="d">CNCEN</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">G3B</subfield><subfield code="d">LVT</subfield><subfield code="d">S8J</subfield><subfield code="d">S9I</subfield><subfield code="d">D6H</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">960717450</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781606504895</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1606504894</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781606504888</subfield><subfield code="q">(print)</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.5643/9781606504895</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)900011556</subfield><subfield code="z">(OCoLC)960717450</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">TA645</subfield><subfield code="b">.O325 2015</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">TEC</subfield><subfield code="x">009020</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">624.171</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">O'Hara, Steven E.,</subfield><subfield code="e">author.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical structural analysis /</subfield><subfield code="c">Steven E. O'Hara, Carisa H. Ramming.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York [New York] (222 East 46th Street, New York, NY 10017) :</subfield><subfield code="b">Momentum Press,</subfield><subfield code="c">2015.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (1 PDF (xix, 277 pages)) :</subfield><subfield code="b">illustrations.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Sustainable structural systems collection</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from PDF title page (viewed on January 10, 2015).</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">1. Roots of algebraic and transcendental equations -- 1.1 Equations -- 1.2 Polynomials -- 1.3 Descartes' rule -- 1.4 Synthetic division -- 1.5 Incremental search method -- 1.6 Refined incremental search method -- 1.7 Bisection method -- 1.8 Method of false position or linear interpolation -- 1.9 Secant method -- 1.10 Newton-Raphson method or Newton's tangent -- 1.11 Newton's second order method -- 1.12 Graeffe's root squaring method -- 1.13 Bairstow's method -- References.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2. Solutions of simultaneous linear algebraic equations using matrix algebra -- 2.1 Simultaneous equations -- 2.2 Matrices -- 2.3 Matrix operations -- 2.4 Cramer's rule -- 2.5 Method of adjoints or cofactor method -- 2.6 Gaussian elimination method -- 2.7 Gauss-Jordan elimination method -- 2.8 Improved Gauss-Jordan elimination method -- 2.9 Cholesky decomposition method -- 2.10 Error equations -- 2.11 Matrix inversion method -- 2.12 Gauss-Seidel iteration method -- 2.13 Eigenvalues by Cramer's rule -- 2.14 Faddeev-Leverrier method -- 2.15 Power method or iteration method -- References.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3. Numerical integration and differentiation -- 3.1 Trapezoidal rule -- 3.2 Romberg integration -- 3.3 Simpson's rule -- 3.4 Gaussian quadrature -- 3.5 Double integration by Simpson's one-third rule -- 3.6 Double integration by Gaussian quadrature -- 3.7 Taylor series polynomial expansion -- 3.8 Difference operators by Taylor series expansion -- 3.9 Numeric modeling with difference operators -- 3.10 Partial differential equation difference operators -- 3.11 Numeric modeling with partial difference operators -- References.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4. Matrix structural stiffness -- 4.1 Matrix transformations and coordinate systems -- 4.2 Rotation matrix -- 4.3 Transmission matrix -- 4.4 Area moment method -- 4.5 Conjugate beam method -- 4.6 Virtual work -- 4.7 Castigliano's theorems -- 4.8 Slope-deflection method -- 4.9 Moment-distribution method -- 4.10 Elastic member stiffness, X-Z system -- 4.11 Elastic member stiffness, X-Y system -- 4.12 Elastic member stiffness, 3-D system -- 4.13 Global joint stiffness -- References.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5. Advanced structural stiffness -- 5.1 Member end releases, X-Z system -- 5.2 Member end releases, X-Y system -- 5.3 Member end releases, 3-D system -- 5.4 Non-prismatic members -- 5.5 Shear stiffness, X-Z system -- 5.6 Shear stiffness, X-Y system -- 5.7 Shear stiffness, 3-D system -- 5.8 Geometric stiffness, X-Y system -- 5.9 Geometric stiffness, X-Z system -- 5.10 Geometric stiffness, 3-D system -- 5.11 Geometric and shear stiffness -- 5.12 Torsion -- 5.13 Sub-structuring -- References.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">About the authors -- Index.</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">As structural engineers move further into the age of digital computation and rely more heavily on computers to solve problems, it remains paramount that they understand the basic mathematics and engineering principles used to design and analyze building structures. The analysis of complex structural systems involves the knowledge of science, technology, engineering, and math to design and develop efficient and economical buildings and other structures. The link between the basic concepts and application to real world problems is one of the most challenging learning endeavors that structural engineers face. A thorough understanding of the analysis procedures should lead to successful structures.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Structural analysis (Engineering)</subfield><subfield code="x">Mathematical models.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie des constructions</subfield><subfield code="x">Modèles mathématiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING</subfield><subfield code="x">Civil</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Structural analysis (Engineering)</subfield><subfield code="x">Mathematical models</subfield><subfield code="2">fast</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">adjoint matrix</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">algebraic equations</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">area moment</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">beam deflection</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">carry- over factor,</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">castigliano's theorems</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">cofactor matrix</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">column matrix</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">complex conjugate pairs</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">complex roots</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">conjugate beam</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">conjugate pairs</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">convergence</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">diagonal matrix</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">differentiation</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">distinct roots</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">distribution factor</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">eigenvalues</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">elastic stiffness</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">enke roots</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">extrapolation</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">flexural stiffness</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">geometric stiffness</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">homogeneous</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">identity matrix</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">integer</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">integration</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">interpolation</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">inverse</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">joint stiffness factor</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">linear algebraic equations</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">lower triangular matrix</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">matrix</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">matrix minor</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">member end release</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">member relative stiffness factor</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">member stiffness factor</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">moment-distribution</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">non-homogeneous</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">non-prismatic members</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">partial pivoting</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">pivot coefficient</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">pivot equation</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">polynomials</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">principal diagonal</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">roots</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">rotation</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">rotational stiffness</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">row matrix</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">second-order stiffness</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">shear stiffness</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">slope-deflection</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">sparse matrix</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">square matrix</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">stiffness matrix</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">structural flexibility</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">structural stiffness</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">symmetric transformation</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">torsional stiffness</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">transcendental equations</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">transformations</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">transmission</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">transposed matrix</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">triangular matrix</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">upper triangular matrix</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">virtual work</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">visual integration</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ramming, Carisa H.,</subfield><subfield code="e">author.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="z">9781606504888</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Momentum Press sustainable structural systems collection.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2019067587</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=929571</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">929571</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Momentum Press</subfield><subfield code="b">NYMP</subfield><subfield code="n">9781606504895</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">12219127</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn900011556 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:26:24Z |
institution | BVB |
isbn | 9781606504895 1606504894 |
language | English |
oclc_num | 900011556 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (1 PDF (xix, 277 pages)) : illustrations. |
psigel | ZDB-4-EBA |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | Momentum Press, |
record_format | marc |
series | Momentum Press sustainable structural systems collection. |
series2 | Sustainable structural systems collection |
spelling | O'Hara, Steven E., author. Numerical structural analysis / Steven E. O'Hara, Carisa H. Ramming. New York [New York] (222 East 46th Street, New York, NY 10017) : Momentum Press, 2015. 1 online resource (1 PDF (xix, 277 pages)) : illustrations. text txt rdacontent computer c rdamedia online resource cr rdacarrier Sustainable structural systems collection Title from PDF title page (viewed on January 10, 2015). Includes bibliographical references and index. 1. Roots of algebraic and transcendental equations -- 1.1 Equations -- 1.2 Polynomials -- 1.3 Descartes' rule -- 1.4 Synthetic division -- 1.5 Incremental search method -- 1.6 Refined incremental search method -- 1.7 Bisection method -- 1.8 Method of false position or linear interpolation -- 1.9 Secant method -- 1.10 Newton-Raphson method or Newton's tangent -- 1.11 Newton's second order method -- 1.12 Graeffe's root squaring method -- 1.13 Bairstow's method -- References. 2. Solutions of simultaneous linear algebraic equations using matrix algebra -- 2.1 Simultaneous equations -- 2.2 Matrices -- 2.3 Matrix operations -- 2.4 Cramer's rule -- 2.5 Method of adjoints or cofactor method -- 2.6 Gaussian elimination method -- 2.7 Gauss-Jordan elimination method -- 2.8 Improved Gauss-Jordan elimination method -- 2.9 Cholesky decomposition method -- 2.10 Error equations -- 2.11 Matrix inversion method -- 2.12 Gauss-Seidel iteration method -- 2.13 Eigenvalues by Cramer's rule -- 2.14 Faddeev-Leverrier method -- 2.15 Power method or iteration method -- References. 3. Numerical integration and differentiation -- 3.1 Trapezoidal rule -- 3.2 Romberg integration -- 3.3 Simpson's rule -- 3.4 Gaussian quadrature -- 3.5 Double integration by Simpson's one-third rule -- 3.6 Double integration by Gaussian quadrature -- 3.7 Taylor series polynomial expansion -- 3.8 Difference operators by Taylor series expansion -- 3.9 Numeric modeling with difference operators -- 3.10 Partial differential equation difference operators -- 3.11 Numeric modeling with partial difference operators -- References. 4. Matrix structural stiffness -- 4.1 Matrix transformations and coordinate systems -- 4.2 Rotation matrix -- 4.3 Transmission matrix -- 4.4 Area moment method -- 4.5 Conjugate beam method -- 4.6 Virtual work -- 4.7 Castigliano's theorems -- 4.8 Slope-deflection method -- 4.9 Moment-distribution method -- 4.10 Elastic member stiffness, X-Z system -- 4.11 Elastic member stiffness, X-Y system -- 4.12 Elastic member stiffness, 3-D system -- 4.13 Global joint stiffness -- References. 5. Advanced structural stiffness -- 5.1 Member end releases, X-Z system -- 5.2 Member end releases, X-Y system -- 5.3 Member end releases, 3-D system -- 5.4 Non-prismatic members -- 5.5 Shear stiffness, X-Z system -- 5.6 Shear stiffness, X-Y system -- 5.7 Shear stiffness, 3-D system -- 5.8 Geometric stiffness, X-Y system -- 5.9 Geometric stiffness, X-Z system -- 5.10 Geometric stiffness, 3-D system -- 5.11 Geometric and shear stiffness -- 5.12 Torsion -- 5.13 Sub-structuring -- References. About the authors -- Index. As structural engineers move further into the age of digital computation and rely more heavily on computers to solve problems, it remains paramount that they understand the basic mathematics and engineering principles used to design and analyze building structures. The analysis of complex structural systems involves the knowledge of science, technology, engineering, and math to design and develop efficient and economical buildings and other structures. The link between the basic concepts and application to real world problems is one of the most challenging learning endeavors that structural engineers face. A thorough understanding of the analysis procedures should lead to successful structures. Structural analysis (Engineering) Mathematical models. Théorie des constructions Modèles mathématiques. TECHNOLOGY & ENGINEERING Civil General. bisacsh Structural analysis (Engineering) Mathematical models fast adjoint matrix algebraic equations area moment beam deflection carry- over factor, castigliano's theorems cofactor matrix column matrix complex conjugate pairs complex roots conjugate beam conjugate pairs convergence diagonal matrix differentiation distinct roots distribution factor eigenvalues elastic stiffness enke roots extrapolation flexural stiffness geometric stiffness homogeneous identity matrix integer integration interpolation inverse joint stiffness factor linear algebraic equations lower triangular matrix matrix matrix minor member end release member relative stiffness factor member stiffness factor moment-distribution non-homogeneous non-prismatic members partial pivoting pivot coefficient pivot equation polynomials principal diagonal roots rotation rotational stiffness row matrix second-order stiffness shear stiffness slope-deflection sparse matrix square matrix stiffness matrix structural flexibility structural stiffness symmetric transformation torsional stiffness transcendental equations transformations transmission transposed matrix triangular matrix upper triangular matrix virtual work visual integration Ramming, Carisa H., author. Print version: 9781606504888 Momentum Press sustainable structural systems collection. http://id.loc.gov/authorities/names/no2019067587 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=929571 Volltext |
spellingShingle | O'Hara, Steven E. Ramming, Carisa H. Numerical structural analysis / Momentum Press sustainable structural systems collection. 1. Roots of algebraic and transcendental equations -- 1.1 Equations -- 1.2 Polynomials -- 1.3 Descartes' rule -- 1.4 Synthetic division -- 1.5 Incremental search method -- 1.6 Refined incremental search method -- 1.7 Bisection method -- 1.8 Method of false position or linear interpolation -- 1.9 Secant method -- 1.10 Newton-Raphson method or Newton's tangent -- 1.11 Newton's second order method -- 1.12 Graeffe's root squaring method -- 1.13 Bairstow's method -- References. 2. Solutions of simultaneous linear algebraic equations using matrix algebra -- 2.1 Simultaneous equations -- 2.2 Matrices -- 2.3 Matrix operations -- 2.4 Cramer's rule -- 2.5 Method of adjoints or cofactor method -- 2.6 Gaussian elimination method -- 2.7 Gauss-Jordan elimination method -- 2.8 Improved Gauss-Jordan elimination method -- 2.9 Cholesky decomposition method -- 2.10 Error equations -- 2.11 Matrix inversion method -- 2.12 Gauss-Seidel iteration method -- 2.13 Eigenvalues by Cramer's rule -- 2.14 Faddeev-Leverrier method -- 2.15 Power method or iteration method -- References. 3. Numerical integration and differentiation -- 3.1 Trapezoidal rule -- 3.2 Romberg integration -- 3.3 Simpson's rule -- 3.4 Gaussian quadrature -- 3.5 Double integration by Simpson's one-third rule -- 3.6 Double integration by Gaussian quadrature -- 3.7 Taylor series polynomial expansion -- 3.8 Difference operators by Taylor series expansion -- 3.9 Numeric modeling with difference operators -- 3.10 Partial differential equation difference operators -- 3.11 Numeric modeling with partial difference operators -- References. 4. Matrix structural stiffness -- 4.1 Matrix transformations and coordinate systems -- 4.2 Rotation matrix -- 4.3 Transmission matrix -- 4.4 Area moment method -- 4.5 Conjugate beam method -- 4.6 Virtual work -- 4.7 Castigliano's theorems -- 4.8 Slope-deflection method -- 4.9 Moment-distribution method -- 4.10 Elastic member stiffness, X-Z system -- 4.11 Elastic member stiffness, X-Y system -- 4.12 Elastic member stiffness, 3-D system -- 4.13 Global joint stiffness -- References. 5. Advanced structural stiffness -- 5.1 Member end releases, X-Z system -- 5.2 Member end releases, X-Y system -- 5.3 Member end releases, 3-D system -- 5.4 Non-prismatic members -- 5.5 Shear stiffness, X-Z system -- 5.6 Shear stiffness, X-Y system -- 5.7 Shear stiffness, 3-D system -- 5.8 Geometric stiffness, X-Y system -- 5.9 Geometric stiffness, X-Z system -- 5.10 Geometric stiffness, 3-D system -- 5.11 Geometric and shear stiffness -- 5.12 Torsion -- 5.13 Sub-structuring -- References. About the authors -- Index. Structural analysis (Engineering) Mathematical models. Théorie des constructions Modèles mathématiques. TECHNOLOGY & ENGINEERING Civil General. bisacsh Structural analysis (Engineering) Mathematical models fast |
title | Numerical structural analysis / |
title_auth | Numerical structural analysis / |
title_exact_search | Numerical structural analysis / |
title_full | Numerical structural analysis / Steven E. O'Hara, Carisa H. Ramming. |
title_fullStr | Numerical structural analysis / Steven E. O'Hara, Carisa H. Ramming. |
title_full_unstemmed | Numerical structural analysis / Steven E. O'Hara, Carisa H. Ramming. |
title_short | Numerical structural analysis / |
title_sort | numerical structural analysis |
topic | Structural analysis (Engineering) Mathematical models. Théorie des constructions Modèles mathématiques. TECHNOLOGY & ENGINEERING Civil General. bisacsh Structural analysis (Engineering) Mathematical models fast |
topic_facet | Structural analysis (Engineering) Mathematical models. Théorie des constructions Modèles mathématiques. TECHNOLOGY & ENGINEERING Civil General. Structural analysis (Engineering) Mathematical models |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=929571 |
work_keys_str_mv | AT oharastevene numericalstructuralanalysis AT rammingcarisah numericalstructuralanalysis |