Electrochemical energy storage for renewable sources and grid balancing /:
"Electricity from renewable sources of energy is plagued by fluctuations (due to variations in wind strength or the intensity of insolation) resulting in a lack of stability if the energy supplied from such sources is used in 'real time'. An important solution to this problem is to st...
Gespeichert in:
Weitere Verfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Amsterdam, Netherlands :
Elsevier,
2015.
|
Schlagworte: | |
Online-Zugang: | Volltext Volltext |
Zusammenfassung: | "Electricity from renewable sources of energy is plagued by fluctuations (due to variations in wind strength or the intensity of insolation) resulting in a lack of stability if the energy supplied from such sources is used in 'real time'. An important solution to this problem is to store the energy electrochemically (in a secondary battery or in hydrogen and its derivatives) and to make use of it in a controlled fashion at some time after it has been initially gathered and stored. Electrochemical battery storage systems are the major technologies for decentralized storage systems and hydrogen is the only solution for long-term storage systems to provide energy during extended periods of low wind speeds or solar insolation. Future electricity grid design has to include storage systems as a major component for grid stability and for security of supply. The technology of systems designed to achieve this regulation of the supply of renewable energy, and a survey of the markets that they will serve, is the subject of this book. It includes economic aspects to guide the development of technology in the right direction"--Provided by publisher |
Beschreibung: | 1 online resource (493 pages) : illustrations (some color) |
Bibliographie: | Includes bibliographical references at the end of each chapters and index. |
ISBN: | 9780444626103 0444626107 0444638075 9780444638076 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn896853409 | ||
003 | OCoLC | ||
005 | 20240705115654.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 141112t20152015ne a ob 001 0 eng d | ||
040 | |a E7B |b eng |e rda |e pn |c E7B |d UIU |d OCLCF |d OCLCQ |d EBLCP |d N$T |d IDEBK |d CDX |d COO |d TEFOD |d ITD |d WAU |d CSAIL |d OCLCQ |d MERUC |d BUF |d U3W |d D6H |d COCUF |d CNNOR |d STF |d LOA |d ZCU |d ICG |d K6U |d VT2 |d YDXCP |d CNCEN |d OCLCQ |d G3B |d LVT |d S8J |d S9I |d DKC |d OCLCQ |d LQU |d OCLCQ |d HS0 |d UWK |d OCLCQ |d QGK |d SNK |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d SXB |d OCLCQ |d OCLCO | ||
019 | |a 894171654 |a 897016051 |a 965479094 |a 1105182060 |a 1105569820 |a 1162267342 |a 1165233844 |a 1166210550 |a 1241888326 |a 1259100372 |a 1290094745 |a 1300472619 | ||
020 | |a 9780444626103 |q (e-book) | ||
020 | |a 0444626107 |q (e-book) | ||
020 | |a 0444638075 | ||
020 | |a 9780444638076 | ||
020 | |z 9780444626165 | ||
020 | |z 0444626166 | ||
020 | |z 9781322270036 | ||
020 | |z 1322270031 | ||
035 | |a (OCoLC)896853409 |z (OCoLC)894171654 |z (OCoLC)897016051 |z (OCoLC)965479094 |z (OCoLC)1105182060 |z (OCoLC)1105569820 |z (OCoLC)1162267342 |z (OCoLC)1165233844 |z (OCoLC)1166210550 |z (OCoLC)1241888326 |z (OCoLC)1259100372 |z (OCoLC)1290094745 |z (OCoLC)1300472619 | ||
037 | |a D7BF4D1A-0028-4470-98D0-C258B2F3E681 |b OverDrive, Inc. |n http://www.overdrive.com | ||
050 | 4 | |a TJ808 |b .E443 2014eb | |
072 | 7 | |a TEC |x 009070 |2 bisacsh | |
082 | 7 | |a 333.7932 |2 23 | |
049 | |a MAIN | ||
245 | 0 | 0 | |a Electrochemical energy storage for renewable sources and grid balancing / |c edited by Patrick T. Moseley, Jürgen Garche ; contributors Peter Adelmann [and thirty five others]. |
264 | 1 | |a Amsterdam, Netherlands : |b Elsevier, |c 2015. | |
264 | 4 | |c ©2015 | |
300 | |a 1 online resource (493 pages) : |b illustrations (some color) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references at the end of each chapters and index. | ||
588 | 0 | |a Online resource; title from PDF title page (ebrary, viewed November 12, 2014). | |
520 | |a "Electricity from renewable sources of energy is plagued by fluctuations (due to variations in wind strength or the intensity of insolation) resulting in a lack of stability if the energy supplied from such sources is used in 'real time'. An important solution to this problem is to store the energy electrochemically (in a secondary battery or in hydrogen and its derivatives) and to make use of it in a controlled fashion at some time after it has been initially gathered and stored. Electrochemical battery storage systems are the major technologies for decentralized storage systems and hydrogen is the only solution for long-term storage systems to provide energy during extended periods of low wind speeds or solar insolation. Future electricity grid design has to include storage systems as a major component for grid stability and for security of supply. The technology of systems designed to achieve this regulation of the supply of renewable energy, and a survey of the markets that they will serve, is the subject of this book. It includes economic aspects to guide the development of technology in the right direction"--Provided by publisher | ||
505 | 0 | 0 | |g Machine-generated contents note: |g pt. I |t Introduction -- Renewable Energies, Markets and Storage Technology Classification -- |g 1. |t The Exploitation of Renewable Sources of Energy for Power Generation / |r Anthony Price -- |g 1.1. |t Energy and Society -- |g 1.2. |t Energy and Electricity -- |g 1.2.1. |t Power System History and Operation -- |g 1.2.2. |t Electricity Generation -- |g 1.2.3. |t Power Systems Operation -- |g 1.2.4. |t Integration of Renewable Energy into Power Networks -- |g 1.3. |t The Role of Energy Storage -- |g 1.4. |t International Comparisons -- |g 1.5. |t Types and Applications of Energy Storage -- |g 1.5.1. |t Thermal Energy Storage -- |g 1.5.2. |t Hydrogen Energy Storage as an Energy Vector -- |g 1.5.3. |t Compressed Air Energy Storage -- |g 1.5.4. |t Mechanical Systems -- |g 1.5.5. |t Novel Electrochemical Storage -- |g 1.6. |t Commercialization of Energy Storage -- |t References -- |g 2. |t Classification of Storage Systems / |r Dirk Uwe Sauer -- |g 2.1. |t Introduction and Motivation -- |g 2.2. |t Flexibility Options -- |g 2.3. |t Different Types of Classifications -- |g 2.3.1. |t Classification According to the Needs of the Grid -- |g 2.3.2. |t Classification According to the Supply Time of the Storage System -- |g 2.3.3. |t Classification as Single-purpose and Double-use Storage Systems -- |g 2.3.4. |t Classification According to the Position in the Grid and the Service Offers -- |g 2.4. |t Conclusion -- |g 3. |t Challenges of Power Systems / |r Albert Moser -- |g 3.1. |t Power System Requirements -- |g 3.2. |t The Role of Storage Systems for Future Challenges in the Electrical Network -- |g 3.2.1. |t Transmission System -- |g 3.2.2. |t Distribution Network -- |g 3.3. |t Demand-Side Management and Other Alternatives to Storage Systems -- |g 3.3.1. |t Demand-Side Management -- |g 3.3.2. |t Thermal Storage Systems -- |g 3.4. |t Supply of Reserve Power -- |g 3.4.1. |t Reserve Qualities -- |g 3.4.2. |t Reserve Power in Germany -- |t References -- |g 4. |t Applications and Markets for Grid-Connected Storage Systems / |r Dirk Uwe Sauer -- |g 4.1. |t Introduction -- |g 4.2. |t Frequency Control -- |g 4.2.1. |t Instantaneous Reserve/Spinning Reserve -- |g 4.2.2. |t Primary Control Reserve -- |g 4.2.3. |t Secondary Control Reserve -- |g 4.2.4. |t Tertiary/Minute Control Reserve -- |g 4.3. |t Self-supply -- |g 4.3.1. |t Market Situation -- |g 4.3.2. |t Market Size -- |g 4.3.3. |t Operation Profile -- |g 4.3.4. |t Barriers to Entry -- |g 4.3.5. |t Competitors -- |g 4.4. |t Uninterruptible Power Supply -- |g 4.4.1. |t Market Situation -- |g 4.4.2. |t Operation Profile -- |g 4.4.3. |t Competition -- |g 4.5. |t Arbitrage/Energy Trading -- |g 4.5.1. |t Market Situation -- |g 4.5.2. |t Market Size -- |g 4.5.3. |t Operation Profile -- |g 4.5.4. |t Barriers to Entry -- |g 4.5.5. |t Competitors -- |g 4.6. |t Load Levelling/Peak-Shaving -- |g 4.6.1. |t Market Situation -- |g 4.6.2. |t Operation Profile -- |g 4.6.3. |t Competitors -- |g 4.7. |t Other Markets and Applications -- |g 4.7.1. |t Microgrids -- |g 4.7.2. |t Island Grids/Off-grid/Weak Grids -- |g 4.7.3. |t Transmission and Distribution Upgrade Deferral -- |g 4.7.4. |t Stabilizing Conventional Generation/Ramp Rate Support -- |g 4.7.5. |t Ancillary Services -- |t References -- |g 5. |t Existing Markets for Storage Systems in Off-Grid Applications / |r Peter Adelmann -- |g 5.1. |t Different Sources of Renewable Energy -- |g 5.2. |t Impact of the User -- |g 5.2.1. |t Telecom Repeaters -- |g 5.2.2. |t Rural Schools and Rural Hospitals -- |g 5.2.3. |t Solar-Powered Street Lights -- |g 5.2.4. |t Applications in the Leisure Market -- |g 5.2.5. |t Rural Electrification: Mini-Grids -- |g 5.2.6. |t Solar Home Systems -- |g 5.2.7. |t Pico Solar Systems -- |g 5.2.8. |t Market Overview of 'Off-Grid' Systems -- |g 6. |t Review of the Need for Storage Capacity Depending on the Share of Renewable Energies / |r Bert Droste-Franke -- |g 6.1. |t Introductory Remarks -- |g 6.2. |t Selected Studies with German Focus -- |g 6.3. |t Selected Studies with European Focus -- |g 6.4. |t Discussion of Study Results -- |g 6.4.1. |t Required Electric and Storage Power -- |g 6.4.2. |t Energy Capacity Need -- |g 6.4.3. |t Transferability of the Results to Other Regions -- |g 6.5. |t Conclusions -- |t Abbreviations -- |t References -- |g pt. II |t Storage Technologies -- |g 7. |t Overview of Non-electrochemical Storage Technologies / |r Dirk Uwe Sauer -- |g 7.1. |t Introduction -- |g 7.2. |t 'Electrical' Storage Systems -- |g 7.2.1. |t Superconductive Magnetic Energy Storage -- |g 7.2.2. |t Capacitors -- |g 7.3. |t 'Mechanical' Storage Systems -- |g 7.3.1. |t Pumped Hydro -- |g 7.3.2. |t Compressed Air Energy Storage (CAES) -- |g 7.3.3. |t Flywheels -- |g 7.4. |t 'Thermoelectric' Energy Storage -- |g 7.5. |t Storage Technologies at the Concept Stage -- |g 7.6. |t Summary -- |t References -- |g 8. |t Hydrogen Production from Renewable Energies-Electrolyzer Technologies / |r Jurgen Garche -- |g 8.1. |t Introduction -- |g 8.1.1. |t General Approach -- |g 8.1.2. |t Historical Background -- |g 8.2. |t Fundamentals of Water Electrolysis -- |g 8.2.1. |t Thermodynamic Consideration -- |g 8.2.2. |t Kinetic Losses Inside an Electrolysis Cell -- |g 8.2.3. |t Efficiency of a Water Electrolyzer -- |g 8.3. |t Alkaline Water Electrolysis -- |g 8.3.1. |t Cell Components and Stack Design -- |g 8.3.2. |t System Layout and Peripheral Components -- |g 8.3.3. |t Gas Quality, Efficiency, and Lifetime -- |g 8.3.4. |t Regenerative Loads -- |g 8.4. |t PEM Water Electrolysis -- |g 8.4.1. |t Cell Components and Stack Design -- |g 8.4.2. |t System Layout and Peripheral Components -- |g 8.4.3. |t Gas Quality, Efficiency, and Lifetime -- |g 8.4.4. |t Regenerative Loads -- |g 8.5. |t High-Temperature Water Electrolysis -- |g 8.5.1. |t Cell Components and Stack Design -- |g 8.5.2. |t System Layout and Peripheral Components -- |g 8.5.3. |t Electrical Performance, Efficiency and Lifetime -- |g 8.5.4. |t Regenerative Loads -- |g 8.6. |t Manufacturers and Developers of Electrolyzers -- |g 8.7. |t Cost Issues -- |g 8.8. |t Summary -- |t Acronyms/Abbreviations -- |t References -- |g 9. |t Large-Scale Hydrogen Energy Storage / |r Erik Wolf -- |g 9.1. |t Introduction -- |g 9.2. |t Electrolyzer -- |g 9.2.1. |t Introduction -- |g 9.2.2. |t PEM Electrolysis Principle -- |g 9.2.3. |t Parameters of an Envisaged Large-Scale Electrolyzer System -- |g 9.2.4. |t Development Roadmap for PEM Electrolyzer Systems at Siemens -- |g 9.3. |t Hydrogen Gas Storage -- |g 9.3.1. |t Underground Hydrogen Storage in Salt Caverns -- |g 9.3.2. |t Utilization of Artificial, Mined Underground Salt Caverns and Their Potential -- |g 9.4. |t Reconversion of the Hydrogen into Electricity -- |g 9.4.1. |t Aspects Related to the Electricity Grid -- |g 9.4.2. |t Power to Gas Solution -- |g 9.5. |t Cost Issues: Levellized Cost of Energy -- |g 9.6. |t Actual Status and Outlook -- |t Acknowledgment -- |t References -- |g 10. |t Hydrogen Conversion into Electricity and Thermal Energy by Fuel Cells: Use of H2-Systems and Batteries / |r Ludwig Jorissen -- |g 10.1. |t Introduction -- |g 10.2. |t Electrochemical Power Sources -- |g 10.3. |t Hydrogen-Based Energy Storage Systems -- |g 10.3.1. |t Hydrogen Production by Water Electrolysis -- |g 10.3.2. |t Hydrogen Storage -- |g 10.3.3. |t Fuel Cells -- |g 10.4. |t Energy Flow in the Hydrogen Energy Storage System -- |g 10.5. |t Demonstration Projects -- |g 10.5.1. |t Freiburg Energy-Independent Solar Home -- |g 10.5.2. |t PAFC in Combined Heat and Power Generation in Hamburg -- |g 10.5.3. |t The Phoebus Project -- |g 10.5.4. |t Utsira Island -- |g 10.5.5. |t Myrthe -- |g 10.5.6. |t Hydrogen Community Lolland -- |g 10.5.7. |t MW-Scale PEMFC Demonstration by FirstEnergy Corporation -- |g 10.5.3. |t MW-PEMFC System Operated by Solvay -- |g 10.6. |t Case Study: A General Energy Storage System Layout for Maximized Use of Renewable Energies -- |g 10.6.1. |t Short-term Energy Storage Options -- |g 10.6.2. |t Storage Efficiency Considerations of the Hybrid System -- |g 10.7. |t Case Study of a PV-Based System Minimizing Grid Interaction -- |g 10.7.1. |t Energy Harvest from a Photovoltaic System -- |g 10.7.2. |t Battery Storage -- |g 10.7.3. |t Electrolyzer and Hydrogen Storage System -- |g 10.7.4. |t Fuel Cell System -- |g 10.7.5. |t Operating Strategy -- |g 10.7.6. |t Simulation Result -- |g 10.8. |t Conclusions -- |g 10.9. |t Summary -- |t References -- |g 11. |t PEM Electrolyzers and PEM Regenerative Fuel Cells Industrial View / |r Jason Willey -- |g 11.1. |t Introduction -- |g 11.2. |t General Technology Description -- |g 11.2.1. |t Background of Water Electrolysis -- |g 11.2.2. |t Cell and System Designs -- |g 11.2.3. |t Typical Applications -- |g 11.3. |t Electrical Performance and Lifetime -- |g 11.3.1. |t Efficiency -- |g 11.3.2. |t Energy and Power Densities -- |g 11.3.3. |t Lifetime and Ageing Processes -- |g 11.3.4. |t Dynamic Behaviour -- |g 11.4. |t Necessary Accessories -- |g 11.4.1. |t Electronics -- |g 11.4.2. |t Monitoring Systems -- |g 11.4.3. |t Safety Devices -- |g 11.4.4. |t Diagnostics -- |g 11.5. |t Environmental Issues -- |g 11.5.1. |t Materials Availability -- |g 11.5.2. |t Life-Cycle Analysis |
505 | 0 | 0 | |g -- |g 11.5.3. |t Critical Legislative Restriction -- |g 11.5.4. |t Energy for System Production -- |g 11.6. |t Cost Issues -- |g 11.6.1. |t Installation Costs -- |g 11.6.2. |t Operation Costs -- |g 11.7. |t Actual Status -- |g 11.7.1. |t Overview of Industrial Activities (Existing Applications and Markets) -- |g 11.7.2. |t R & D Activities (Major Research Institutions and Companies) -- |g 11.8. |t Summary -- |t References -- |g 12. |t Energy Carriers Made from Hydrogen / |r Ferdi Schuth -- |g 12.1. |t Introduction -- |g 12.2. |t Hydrogen Production and Distribution -- |g 12.3. |t Methane -- |g 12.4. |t Methanol -- |g 12.5. |t Dimethyl Ether -- |g 12.6. |t Fischer-Tropsch Synfuels -- |g 12.7. |t Higher Alcohols and Ethers -- |g 12.8. |t Ammonia -- |g 12.9. |t Conclusion and Outlook -- |t Abbreviations -- |t References -- |g 13. |t Energy Storage with Lead-Acid Batteries / |r Patrick T. Moseley -- |g 13.1. |t Fundamentals of Lead-Acid Technology -- |g 13.1.1. |t Basic Cell Reactions -- |g 13.1.2. |t Materials of Construction -- |g 13.1.3. |t Cell and Battery Designs -- |g 13.1.4. |t Typical Applications -- |g 13.2. |t Electrical Performance and Ageing -- |g 13.2.1. |t Efficiency -- |g 13.2.2. |t Specific Energy/Power; Energy/Power Density -- |g 13.2.3. |t Lifetime: Influence of Operating Conditions on Aging Processes -- |g 13.2.4. |t Capacity -- |g 13.2.5. |t Self-Discharge. |
505 | 0 | 0 | |g Note continued: |g 13.2.6. |t Dynamic Behavioer -- |g 13.3. |t Battery Management -- |g 13.3.1. |t State-of-Charge Measurement -- |g 13.3.2. |t Charging Methods -- |g 13.3.3. |t Safety -- |g 13.4. |t Environmental Issues -- |g 13.5. |t Cost Issues -- |g 13.6. |t Past/Present Applications, Activities and Markets -- |g 13.6.1. |t Notable Past Battery Energy Storage System Installations -- |g 13.6.2. |t Notable Present Battery Energy Storage System Installations -- |g 13.6.3. |t Remote Area Power Supplies Systems -- |g 13.6.4. |t Research and Development Activities -- |g 13.6.5. |t Contribution of Lead-Acid to Global Energy Storage -- |t Acronyms and Initialisms -- |t Symbols -- |t Further reading -- |g 14. |t Nickel-Cadmium and Nickel-Metal Hydride Battery Energy Storage / |r Michael Lippert -- |g 14.1. |t Introduction -- |g 14.2. |t Ni-Cd and Ni-MH Technologies -- |g 14.2.1. |t Ni-Cd and Ni-MH Basic Reactions -- |g 14.2.2. |t Materials -- |g 14.2.3. |t Alkaline Cell and Battery Designs -- |g 14.3. |t Electrical Performance and Lifetime and Ageing Aspects -- |g 14.3.1. |t General Charge-Discharge Characteristics -- |g 14.3.2. |t Lifetime: Ageing Processes -- |g 14.3.3. |t Storage Conditions -- |g 14.3.4. |t Self-discharge -- |g 14.4. |t Environmental Considerations -- |g 14.4.1. |t Materials Availability -- |g 14.4.2. |t Legislative Considerations -- |g 14.4.3. |t Recycling -- |g 14.5. |t Actual Status -- |g 14.5.1. |t Overview of Alkaline Batteries for Energy Storage -- |g 14.6. |t Conclusion -- |t Further Reading -- |g 15. |t High-Temperature Sodium Batteries for Energy Storage / |r David A.J. Rand -- |g 15.1. |t Fundamentals of High-Temperature Sodium Battery Technology -- |g 15.1.1. |t Sodium-Sulphur -- |g 15.1.2. |t Sodium -- Metal-Halide -- |g 15.1.3. |t Beta Alumina -- |g 15.1.4. |t Basic Cell Reactions -- |g 15.1.5. |t Materials of Construction -- |g 15.1.6. |t Cell and Battery Designs -- |g 15.1.7. |t Typical Applications -- |g 15.2. |t Electrical Performance and Ageing -- |g 15.2.1. |t Efficiency -- |g 15.2.2. |t Specific Energy/Power, Energy/Power Density -- |g 15.2.3. |t Lifetime: Influence of Operating Conditions on Ageing Processes -- |g 15.2.4. |t Self-Discharge -- |g 15.3. |t Battery Management -- |g 15.3.1. |t State-of-Charge Measurement -- |g 15.3.2. |t Safety -- |g 15.4. |t Environmental Issues -- |g 15.4.1. |t Availability of Materials -- |g 15.4.2. |t Life-Cycle Analysis -- |g 15.4.3. |t Legislative Restriction -- |g 15.4.4. |t Recycling -- |g 15.4.5. |t Energy Required for Production -- |g 15.5. |t Cost Issues -- |g 15.5.1. |t Sodium-Sulphur -- |g 15.5.2. |t Sodium-Metal-Halide -- |g 15.6. |t Current Status -- |g 15.6.1. |t Present Applications and Markets -- |g 15.6.2. |t Research and Development Activities -- |g 15.7. |t Concluding Remarks -- |t Acronyms and Initialisms -- |t Symbols and Units -- |t References -- |t Further Reading -- |g 16. |t Lithium Battery Energy Storage: State-of-the-Art Including Lithium-Air and Lithium-Sulphur Systems / |r Peter Kurzweil -- |g 16.1. |t Energy Storage in Lithium Batteries -- |g 16.1.1. |t Basic Cell Chemistry -- |g 16.1.2. |t Positive Electrode Materials -- |g 16.1.3. |t Negative Electrode Materials -- |g 16.1.4. |t Electrolytes -- |g 16.1.5. |t Separators -- |g 16.1.6. |t Cell and Battery Designs -- |g 16.1.7. |t Typical Applications -- |g 16.2. |t Electrical Performance, Lifetime, and Ageing -- |g 16.2.1. |t Efficiency -- |g 16.2.2. |t Power-to-Energy Ratio -- |g 16.2.3. |t Energy and Power Densities -- |g 16.2.4. |t Lifetime and Ageing Processes -- |g 16.2.5. |t Capacity Depending on Temperature and Discharge Rate -- |g 16.2.6. |t Self-Discharge Rate -- |g 16.2.7. |t Dynamic Behaviour -- |g 16.3. |t Accessories -- |g 16.3.1. |t Electronics and Charging Devices -- |g 16.3.2. |t Monitoring Systems -- |g 16.3.3. |t Safety Devices -- |g 16.3.4. |t Diagnosis and Monitoring Concepts -- |g 16.4. |t Environmental Issues -- |g 16.4.1. |t Availability of Lithium -- |g 16.4.2. |t Life Cycle Analysis -- |g 16.4.3. |t Legislative Restriction -- |g 16.4.4. |t Recycling -- |g 16.5. |t Cost Issues -- |g 16.5.1. |t Cost Projections -- |g 16.5.2. |t Anode Materials (Negative) -- |g 16.5.3. |t Cathode Materials (Positive) -- |g 16.5.4. |t Electrolyte -- |g 16.6. |t State-of-the-Art -- |g 16.6.1. |t Industrial Activities -- |g 16.6.2. |t Research Activities and Challenges -- |g 16.6.3. |t Worldwide Annual Turnover -- |t Abbreviations and Symbols -- |t References -- |g 17. |t Redox Flow Batteries / |r Maria Skyllas-Kazacos -- |g 17.1. |t Introduction -- |g 17.2. |t Flow Battery Chemistries -- |g 17.2.1. |t Zinc-Based Flow Batteries -- |g 17.2.2. |t Redox Flow Batteries -- |g 17.3. |t Cost Considerations -- |g 17.4. |t Summary and Conclusions -- |t References -- |t Further readings -- |g 18. |t Metal Storage/Metal Air (Zn, Fe, Al, Mg) / |r Hajime Arai -- |g 18.1. |t General Technical Description of the Technology -- |g 18.1.1. |t Basic Reactions -- |g 18.1.2. |t Materials -- |g 18.1.3. |t Cell and Battery Designs -- |g 18.1.4. |t Typical Applications -- |g 18.2. |t Electrical Performance, Lifetime, and Ageing Aspects -- |g 18.2.1. |t Efficiency as f(T, I) -- |g 18.2.2. |t Power-to-Energy Ratio -- |g 18.2.3. |t Energy and Power Densities (Volume, Gravimetric) -- |g 18.2.4. |t Lifetime: Ageing Processes, Operating Conditions Affecting Ageing (T, DoD) -- |g 18.2.5. |t Capacity Depending on Temperature and Discharge Rate -- |g 18.2.6. |t Self-discharge Rate (Dependence on Temperature, Starting at Full-Charged System and Starting at 50% State of Charge) -- |g 18.2.7. |t Dynamic Behaviour -- |g 18.3. |t Necessary Accessories -- |g 18.3.1. |t Electronics -- |g 18.3.2. |t Charging Devices -- |g 18.3.3. |t Necessary Monitoring Systems -- |g 18.3.4. |t Safety Devices -- |g 18.3.5. |t Needs for Diagnosis and Monitoring Concepts -- |g 18.4. |t Environmental Issues -- |g 18.4.1. |t Materials Availability -- |g 18.4.2. |t Life Cycle Analysis -- |g 18.4.3. |t Critical Legislative Restriction -- |g 18.4.4. |t Recycling Quotas -- |g 18.4.5. |t Energy Needed for the Production -- |g 18.5. |t Cost Issues (Today, in 5 years, and in 10 years) -- |g 18.5.1. |t Material Costs, Costs per Power and per Energy, Investment, and Throughput Costs of Kilowatt-hour -- |g 18.6. |t Actual Status -- |g 18.6.1. |t Overview of Industrial Activities (Existing Applications and Markets) -- |g 18.6.2. |t R & D Activities (Major Research Institutions and Companies) -- |g 18.6.3. |t Worldwide Annual Turnover with the Storage Technology, Installed Capacity -- |t Further Reading -- |g 19. |t Electrochemical Double-layer Capacitors / |r Peter Kurzweil -- |g 19.1. |t Technical Description -- |g 19.1.1. |t Basic Concepts of Double-Layer-Capacitance -- |g 19.1.2. |t Carbon Materials -- |g 19.1.3. |t Metal Oxide Technology -- |g 19.1.4. |t Solid-State and Polymer Technology -- |g 19.1.5. |t Electrolyte Solution -- |g 19.1.6. |t Separator -- |g 19.1.7. |t Cell and Stack Designs -- |g 19.1.8. |t Typical Applications -- |g 19.2. |t Electrical Performance, Lifetime, and Ageing Aspects -- |g 19.2.1. |t Specific Energy -- |g 19.2.2. |t Power and Efficiency -- |g 19.2.3. |t Lifetime and Ageing Processes -- |g 19.2.4. |t Capacitance -- |g 19.2.5. |t Self-discharge Rate -- |g 19.2.6. |t Dynamic Behaviour -- |g 19.2.7. |t Modelling of Double-layer Capacitors -- |g 19.3. |t Accessories -- |g 19.3.1. |t Diagnosis and Monitoring Concepts -- |g 19.3.2. |t Safety Issues -- |g 19.4. |t Environmental Issues -- |g 19.4.1. |t Materials Availability -- |g 19.4.2. |t Life-Cycle Analysis -- |g 19.4.3. |t Legislative Restriction -- |g 19.5. |t Cost Issues -- |g 19.5.1. |t Costs Per Energy and Power -- |g 19.6. |t Actual Status -- |g 19.6.1. |t International Performance Data -- |g 19.6.2. |t Practical Electrode Fabrication -- |g 19.6.3. |t Worldwide Annual Turnover -- |t Symbols and Units -- |t Abbreviations and Acronyms -- |t Further Reading -- |g pt. |
505 | 0 | 0 | |g III |t System Aspects -- |g 20. |t Battery Management and Battery Diagnostics / |r Angel Kirchev -- |g 20.1. |t Introduction -- |g 20.2. |t Battery Parameters -- Monitoring and Control -- |g 20.2.1. |t Battery Voltage -- |g 20.2.2. |t Charge and Discharge Current -- |g 20.2.3. |t Battery Capacity -- |g 20.2.4. |t Battery Resistance and Battery Impedance -- |g 20.2.5. |t Battery Power and Battery Energy -- |g 20.2.6. |t Battery Temperature -- |g 20.3. |t Battery Management of Electrochemical Energy Storage Systems -- |g 20.3.1. |t General -- |g 20.3.2. |t Battery Management of Aqueous Electrochemical Energy Storage Systems -- |g 20.3.3. |t Battery Management of Non-aqueous Electrochemical Energy Storage Systems -- |g 20.4. |t Battery Diagnostics -- |g 20.4.1. |t Data Storage vs Energy Storage -- |g 20.4.2. |t Non-invasive Battery Diagnostics -- |g 20.4.3. |t Invasive Battery Diagnostics -- |g 20.5. |t Implementation of Battery Management and Battery Diagnostics -- |g 20.6. |t Conclusions -- |t References -- |g 21. |t Life-Cycle Cost Calculation and Comparison for Different Reference Cases and Market Segments / |r Dirk Uwe Sauer -- |g 21.1. |t Motivation -- |g 21.2. |t Methodology -- |g 21.2.1. |t Parameters Characterizing the Storage Technology -- |g 21.2.2. |t Parameters Characterizing the Storage Application -- |g 21.2.3. |t Calculated Parameters -- |g 21.2.4. |t LCC Calculation -- |g 21.3. |t Reference Cases -- |g 21.3.1. |t Long-term Storage -- |g 21.3.2. |t High-Voltage Grid Load-Levelling -- |g 21.3.3. |t Medium-Voltage Grid Peak-Shaving -- |g 21.3.4. |t Decentralized Storage Systems in Low-Voltage Grids -- |g 21.3.5. |t Electrical Network and Interest Rate -- |g 21.4. |t Example Results -- |g 21.4.1. |t Long-term Storage -- |g 21.4.2. |t High-Voltage Grid Load-Levelling -- |g 21.4.3. |t Medium-Voltage Grid Peak-Shaving -- |g 21.4.4. |t Decentralized Storages in Low-Voltage Grid -- |g 21.5. |t Sensitivity Analysis -- |g 21.5.1. |t Dependence on Electricity Price -- |g 21.5.2. |t Dependence on Capital Costs (Interest Rate) -- |g 21.5.3. |t Dependence on Number of Cycles -- |g 22. |t 'Double-Use' of Storage Systems / |r Dirk Uwe Sauer -- |g 22.1. |t Introduction -- |g 22.2. |t Uninterruptible Power Supply Systems -- |g 22.3. |t Electric Vehicle Batteries -- Vehicle-to-Grid -- |g 22.3.1. |t Introduction -- |g 22.3.2. |t Car Usage -- |g 22.3.3. |t Vehicle Availability -- |g 22.3.4. |t Vehicle-to-Grid Concept -- |g 22.3.5. |t Applications Where Double-Use is not Useful or is of Only Limited Use -- |g 22.4. |t Photovoltaic Home Storage -- |g 22.4.1. |t Introduction -- |g 22.4.2. |t System Designs and Benefits -- |g 22.4.3. |t Unloading the Grid and Grid Services. |
505 | 0 | 0 | |g Note continued: |g 22.5. |t Second Life of Vehicle Batteries -- |g 22.5.1. |t Strengths and Opportunities of 'Second-Life' Applications -- |g 22.5.2. |t Weakness and Threats of 'Second-Life' Applications -- |g 22.5.3. |t Summary on 'Second-Life' Opportunities -- |t References. |
650 | 0 | |a Renewable energy sources. |0 http://id.loc.gov/authorities/subjects/sh85112837 | |
650 | 2 | |a Renewable Energy |0 https://id.nlm.nih.gov/mesh/D059205 | |
650 | 6 | |a Énergies renouvelables. | |
650 | 7 | |a TECHNOLOGY & ENGINEERING |x Mechanical. |2 bisacsh | |
650 | 7 | |a Renewable energy sources |2 fast | |
700 | 1 | |a Moseley, Patrick T., |e editor. |1 https://id.oclc.org/worldcat/entity/E39PCjDKgh3Yh9BYGt43QXdVcq |0 http://id.loc.gov/authorities/names/no2015027664 | |
700 | 1 | |a Garche, Jürgen, |e editor. |1 https://id.oclc.org/worldcat/entity/E39PCjCktYC436dc7Dd3dvRwJC |0 http://id.loc.gov/authorities/names/n84120468 | |
700 | 1 | |a Adelmann, Peter, |e contributor. | |
758 | |i has work: |a Electrochemical energy storage for renewable sources and grid balancing (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGyjVTXvbXkFQ3WT86CkH3 |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |t Electrochemical energy storage for renewable sources and grid balancing. |d Amsterdam, Netherlands : Elsevier, ©2015 |h xvi, 473 pages |z 9780444626165 |
856 | 1 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://www.sciencedirect.com/science/book/9780444626165 |3 Volltext | |
856 | 1 | |l CBO01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://www.sciencedirect.com/science/book/9780444626165 |3 Volltext | |
856 | 1 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=485309 |3 Volltext | |
856 | 1 | |l CBO01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=485309 |3 Volltext | |
936 | |a BATCHLOAD | ||
938 | |a Coutts Information Services |b COUT |n 30046872 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL1826797 | ||
938 | |a ebrary |b EBRY |n ebr10966243 | ||
938 | |a EBSCOhost |b EBSC |n 485309 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis30046872 | ||
938 | |a YBP Library Services |b YANK |n 12140003 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn896853409 |
---|---|
_version_ | 1813903668950335488 |
adam_text | |
any_adam_object | |
author2 | Moseley, Patrick T. Garche, Jürgen Adelmann, Peter |
author2_role | edt edt ctb |
author2_variant | p t m pt ptm j g jg p a pa |
author_GND | http://id.loc.gov/authorities/names/no2015027664 http://id.loc.gov/authorities/names/n84120468 |
author_additional | Anthony Price -- Dirk Uwe Sauer -- Albert Moser -- Peter Adelmann -- Bert Droste-Franke -- Jurgen Garche -- Erik Wolf -- Ludwig Jorissen -- Jason Willey -- Ferdi Schuth -- Patrick T. Moseley -- Michael Lippert -- David A.J. Rand -- Peter Kurzweil -- Maria Skyllas-Kazacos -- Hajime Arai -- Angel Kirchev -- |
author_facet | Moseley, Patrick T. Garche, Jürgen Adelmann, Peter |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | T - Technology |
callnumber-label | TJ808 |
callnumber-raw | TJ808 .E443 2014eb |
callnumber-search | TJ808 .E443 2014eb |
callnumber-sort | TJ 3808 E443 42014EB |
callnumber-subject | TJ - Mechanical Engineering and Machinery |
collection | ZDB-4-EBA |
contents | Introduction -- Renewable Energies, Markets and Storage Technology Classification -- The Exploitation of Renewable Sources of Energy for Power Generation / Energy and Society -- Energy and Electricity -- Power System History and Operation -- Electricity Generation -- Power Systems Operation -- Integration of Renewable Energy into Power Networks -- The Role of Energy Storage -- International Comparisons -- Types and Applications of Energy Storage -- Thermal Energy Storage -- Hydrogen Energy Storage as an Energy Vector -- Compressed Air Energy Storage -- Mechanical Systems -- Novel Electrochemical Storage -- Commercialization of Energy Storage -- References -- Classification of Storage Systems / Introduction and Motivation -- Flexibility Options -- Different Types of Classifications -- Classification According to the Needs of the Grid -- Classification According to the Supply Time of the Storage System -- Classification as Single-purpose and Double-use Storage Systems -- Classification According to the Position in the Grid and the Service Offers -- Conclusion -- Challenges of Power Systems / Power System Requirements -- The Role of Storage Systems for Future Challenges in the Electrical Network -- Transmission System -- Distribution Network -- Demand-Side Management and Other Alternatives to Storage Systems -- Demand-Side Management -- Thermal Storage Systems -- Supply of Reserve Power -- Reserve Qualities -- Reserve Power in Germany -- Applications and Markets for Grid-Connected Storage Systems / Introduction -- Frequency Control -- Instantaneous Reserve/Spinning Reserve -- Primary Control Reserve -- Secondary Control Reserve -- Tertiary/Minute Control Reserve -- Self-supply -- Market Situation -- Market Size -- Operation Profile -- Barriers to Entry -- Competitors -- Uninterruptible Power Supply -- Competition -- Arbitrage/Energy Trading -- Load Levelling/Peak-Shaving -- Other Markets and Applications -- Microgrids -- Island Grids/Off-grid/Weak Grids -- Transmission and Distribution Upgrade Deferral -- Stabilizing Conventional Generation/Ramp Rate Support -- Ancillary Services -- Existing Markets for Storage Systems in Off-Grid Applications / Different Sources of Renewable Energy -- Impact of the User -- Telecom Repeaters -- Rural Schools and Rural Hospitals -- Solar-Powered Street Lights -- Applications in the Leisure Market -- Rural Electrification: Mini-Grids -- Solar Home Systems -- Pico Solar Systems -- Market Overview of 'Off-Grid' Systems -- Review of the Need for Storage Capacity Depending on the Share of Renewable Energies / Introductory Remarks -- Selected Studies with German Focus -- Selected Studies with European Focus -- Discussion of Study Results -- Required Electric and Storage Power -- Energy Capacity Need -- Transferability of the Results to Other Regions -- Conclusions -- Abbreviations -- Storage Technologies -- Overview of Non-electrochemical Storage Technologies / 'Electrical' Storage Systems -- Superconductive Magnetic Energy Storage -- Capacitors -- 'Mechanical' Storage Systems -- Pumped Hydro -- Compressed Air Energy Storage (CAES) -- Flywheels -- 'Thermoelectric' Energy Storage -- Storage Technologies at the Concept Stage -- Summary -- Hydrogen Production from Renewable Energies-Electrolyzer Technologies / General Approach -- Historical Background -- Fundamentals of Water Electrolysis -- Thermodynamic Consideration -- Kinetic Losses Inside an Electrolysis Cell -- Efficiency of a Water Electrolyzer -- Alkaline Water Electrolysis -- Cell Components and Stack Design -- System Layout and Peripheral Components -- Gas Quality, Efficiency, and Lifetime -- Regenerative Loads -- PEM Water Electrolysis -- High-Temperature Water Electrolysis -- Electrical Performance, Efficiency and Lifetime -- Manufacturers and Developers of Electrolyzers -- Cost Issues -- Acronyms/Abbreviations -- Large-Scale Hydrogen Energy Storage / Electrolyzer -- PEM Electrolysis Principle -- Parameters of an Envisaged Large-Scale Electrolyzer System -- Development Roadmap for PEM Electrolyzer Systems at Siemens -- Hydrogen Gas Storage -- Underground Hydrogen Storage in Salt Caverns -- Utilization of Artificial, Mined Underground Salt Caverns and Their Potential -- Reconversion of the Hydrogen into Electricity -- Aspects Related to the Electricity Grid -- Power to Gas Solution -- Cost Issues: Levellized Cost of Energy -- Actual Status and Outlook -- Acknowledgment -- Hydrogen Conversion into Electricity and Thermal Energy by Fuel Cells: Use of H2-Systems and Batteries / Electrochemical Power Sources -- Hydrogen-Based Energy Storage Systems -- Hydrogen Production by Water Electrolysis -- Hydrogen Storage -- Fuel Cells -- Energy Flow in the Hydrogen Energy Storage System -- Demonstration Projects -- Freiburg Energy-Independent Solar Home -- PAFC in Combined Heat and Power Generation in Hamburg -- The Phoebus Project -- Utsira Island -- Myrthe -- Hydrogen Community Lolland -- MW-Scale PEMFC Demonstration by FirstEnergy Corporation -- MW-PEMFC System Operated by Solvay -- Case Study: A General Energy Storage System Layout for Maximized Use of Renewable Energies -- Short-term Energy Storage Options -- Storage Efficiency Considerations of the Hybrid System -- Case Study of a PV-Based System Minimizing Grid Interaction -- Energy Harvest from a Photovoltaic System -- Battery Storage -- Electrolyzer and Hydrogen Storage System -- Fuel Cell System -- Operating Strategy -- Simulation Result -- PEM Electrolyzers and PEM Regenerative Fuel Cells Industrial View / General Technology Description -- Background of Water Electrolysis -- Cell and System Designs -- Typical Applications -- Electrical Performance and Lifetime -- Efficiency -- Energy and Power Densities -- Lifetime and Ageing Processes -- Dynamic Behaviour -- Necessary Accessories -- Electronics -- Monitoring Systems -- Safety Devices -- Diagnostics -- Environmental Issues -- Materials Availability -- Life-Cycle Analysis Critical Legislative Restriction -- Energy for System Production -- Installation Costs -- Operation Costs -- Actual Status -- Overview of Industrial Activities (Existing Applications and Markets) -- R & D Activities (Major Research Institutions and Companies) -- Energy Carriers Made from Hydrogen / Hydrogen Production and Distribution -- Methane -- Methanol -- Dimethyl Ether -- Fischer-Tropsch Synfuels -- Higher Alcohols and Ethers -- Ammonia -- Conclusion and Outlook -- Energy Storage with Lead-Acid Batteries / Fundamentals of Lead-Acid Technology -- Basic Cell Reactions -- Materials of Construction -- Cell and Battery Designs -- Electrical Performance and Ageing -- Specific Energy/Power; Energy/Power Density -- Lifetime: Influence of Operating Conditions on Aging Processes -- Capacity -- Self-Discharge. Dynamic Behavioer -- Battery Management -- State-of-Charge Measurement -- Charging Methods -- Safety -- Past/Present Applications, Activities and Markets -- Notable Past Battery Energy Storage System Installations -- Notable Present Battery Energy Storage System Installations -- Remote Area Power Supplies Systems -- Research and Development Activities -- Contribution of Lead-Acid to Global Energy Storage -- Acronyms and Initialisms -- Symbols -- Further reading -- Nickel-Cadmium and Nickel-Metal Hydride Battery Energy Storage / Ni-Cd and Ni-MH Technologies -- Ni-Cd and Ni-MH Basic Reactions -- Materials -- Alkaline Cell and Battery Designs -- Electrical Performance and Lifetime and Ageing Aspects -- General Charge-Discharge Characteristics -- Lifetime: Ageing Processes -- Storage Conditions -- Self-discharge -- Environmental Considerations -- Legislative Considerations -- Recycling -- Overview of Alkaline Batteries for Energy Storage -- Further Reading -- High-Temperature Sodium Batteries for Energy Storage / Fundamentals of High-Temperature Sodium Battery Technology -- Sodium-Sulphur -- Sodium -- Metal-Halide -- Beta Alumina -- Specific Energy/Power, Energy/Power Density -- Lifetime: Influence of Operating Conditions on Ageing Processes -- Self-Discharge -- Availability of Materials -- Life-Cycle Analysis -- Legislative Restriction -- Energy Required for Production -- Sodium-Metal-Halide -- Current Status -- Present Applications and Markets -- Concluding Remarks -- Symbols and Units -- Lithium Battery Energy Storage: State-of-the-Art Including Lithium-Air and Lithium-Sulphur Systems / Energy Storage in Lithium Batteries -- Basic Cell Chemistry -- Positive Electrode Materials -- Negative Electrode Materials -- Electrolytes -- Separators -- Electrical Performance, Lifetime, and Ageing -- Power-to-Energy Ratio -- Capacity Depending on Temperature and Discharge Rate -- Self-Discharge Rate -- Accessories -- Electronics and Charging Devices -- Diagnosis and Monitoring Concepts -- Availability of Lithium -- Life Cycle Analysis -- Cost Projections -- Anode Materials (Negative) -- Cathode Materials (Positive) -- Electrolyte -- State-of-the-Art -- Industrial Activities -- Research Activities and Challenges -- Worldwide Annual Turnover -- Abbreviations and Symbols -- Redox Flow Batteries / Flow Battery Chemistries -- Zinc-Based Flow Batteries -- Redox Flow Batteries -- Cost Considerations -- Summary and Conclusions -- Further readings -- Metal Storage/Metal Air (Zn, Fe, Al, Mg) / General Technical Description of the Technology -- Basic Reactions -- Electrical Performance, Lifetime, and Ageing Aspects -- Efficiency as f(T, I) -- Energy and Power Densities (Volume, Gravimetric) -- Lifetime: Ageing Processes, Operating Conditions Affecting Ageing (T, DoD) -- Self-discharge Rate (Dependence on Temperature, Starting at Full-Charged System and Starting at 50% State of Charge) -- Charging Devices -- Necessary Monitoring Systems -- Needs for Diagnosis and Monitoring Concepts -- Recycling Quotas -- Energy Needed for the Production -- Cost Issues (Today, in 5 years, and in 10 years) -- Material Costs, Costs per Power and per Energy, Investment, and Throughput Costs of Kilowatt-hour -- Worldwide Annual Turnover with the Storage Technology, Installed Capacity -- Electrochemical Double-layer Capacitors / Technical Description -- Basic Concepts of Double-Layer-Capacitance -- Carbon Materials -- Metal Oxide Technology -- Solid-State and Polymer Technology -- Electrolyte Solution -- Separator -- Cell and Stack Designs -- Specific Energy -- Power and Efficiency -- Capacitance -- Self-discharge Rate -- Modelling of Double-layer Capacitors -- Safety Issues -- Costs Per Energy and Power -- International Performance Data -- Practical Electrode Fabrication -- Abbreviations and Acronyms -- System Aspects -- Battery Management and Battery Diagnostics / Battery Parameters -- Monitoring and Control -- Battery Voltage -- Charge and Discharge Current -- Battery Capacity -- Battery Resistance and Battery Impedance -- Battery Power and Battery Energy -- Battery Temperature -- Battery Management of Electrochemical Energy Storage Systems -- General -- Battery Management of Aqueous Electrochemical Energy Storage Systems -- Battery Management of Non-aqueous Electrochemical Energy Storage Systems -- Battery Diagnostics -- Data Storage vs Energy Storage -- Non-invasive Battery Diagnostics -- Invasive Battery Diagnostics -- Implementation of Battery Management and Battery Diagnostics -- Life-Cycle Cost Calculation and Comparison for Different Reference Cases and Market Segments / Motivation -- Methodology -- Parameters Characterizing the Storage Technology -- Parameters Characterizing the Storage Application -- Calculated Parameters -- LCC Calculation -- Reference Cases -- Long-term Storage -- High-Voltage Grid Load-Levelling -- Medium-Voltage Grid Peak-Shaving -- Decentralized Storage Systems in Low-Voltage Grids -- Electrical Network and Interest Rate -- Example Results -- Decentralized Storages in Low-Voltage Grid -- Sensitivity Analysis -- Dependence on Electricity Price -- Dependence on Capital Costs (Interest Rate) -- Dependence on Number of Cycles -- 'Double-Use' of Storage Systems / Uninterruptible Power Supply Systems -- Electric Vehicle Batteries -- Vehicle-to-Grid -- Car Usage -- Vehicle Availability -- Vehicle-to-Grid Concept -- Applications Where Double-Use is not Useful or is of Only Limited Use -- Photovoltaic Home Storage -- System Designs and Benefits -- Unloading the Grid and Grid Services. Second Life of Vehicle Batteries -- Strengths and Opportunities of 'Second-Life' Applications -- Weakness and Threats of 'Second-Life' Applications -- Summary on 'Second-Life' Opportunities -- References. |
ctrlnum | (OCoLC)896853409 |
dewey-full | 333.7932 |
dewey-hundreds | 300 - Social sciences |
dewey-ones | 333 - Economics of land and energy |
dewey-raw | 333.7932 |
dewey-search | 333.7932 |
dewey-sort | 3333.7932 |
dewey-tens | 330 - Economics |
discipline | Wirtschaftswissenschaften |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>24698cam a2200709 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn896853409</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20240705115654.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cn|||||||||</controlfield><controlfield tag="008">141112t20152015ne a ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">E7B</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">E7B</subfield><subfield code="d">UIU</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">EBLCP</subfield><subfield code="d">N$T</subfield><subfield code="d">IDEBK</subfield><subfield code="d">CDX</subfield><subfield code="d">COO</subfield><subfield code="d">TEFOD</subfield><subfield code="d">ITD</subfield><subfield code="d">WAU</subfield><subfield code="d">CSAIL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MERUC</subfield><subfield code="d">BUF</subfield><subfield code="d">U3W</subfield><subfield code="d">D6H</subfield><subfield code="d">COCUF</subfield><subfield code="d">CNNOR</subfield><subfield code="d">STF</subfield><subfield code="d">LOA</subfield><subfield code="d">ZCU</subfield><subfield code="d">ICG</subfield><subfield code="d">K6U</subfield><subfield code="d">VT2</subfield><subfield code="d">YDXCP</subfield><subfield code="d">CNCEN</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">G3B</subfield><subfield code="d">LVT</subfield><subfield code="d">S8J</subfield><subfield code="d">S9I</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LQU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">HS0</subfield><subfield code="d">UWK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">QGK</subfield><subfield code="d">SNK</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SXB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">894171654</subfield><subfield code="a">897016051</subfield><subfield code="a">965479094</subfield><subfield code="a">1105182060</subfield><subfield code="a">1105569820</subfield><subfield code="a">1162267342</subfield><subfield code="a">1165233844</subfield><subfield code="a">1166210550</subfield><subfield code="a">1241888326</subfield><subfield code="a">1259100372</subfield><subfield code="a">1290094745</subfield><subfield code="a">1300472619</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780444626103</subfield><subfield code="q">(e-book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0444626107</subfield><subfield code="q">(e-book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0444638075</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780444638076</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780444626165</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0444626166</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781322270036</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1322270031</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)896853409</subfield><subfield code="z">(OCoLC)894171654</subfield><subfield code="z">(OCoLC)897016051</subfield><subfield code="z">(OCoLC)965479094</subfield><subfield code="z">(OCoLC)1105182060</subfield><subfield code="z">(OCoLC)1105569820</subfield><subfield code="z">(OCoLC)1162267342</subfield><subfield code="z">(OCoLC)1165233844</subfield><subfield code="z">(OCoLC)1166210550</subfield><subfield code="z">(OCoLC)1241888326</subfield><subfield code="z">(OCoLC)1259100372</subfield><subfield code="z">(OCoLC)1290094745</subfield><subfield code="z">(OCoLC)1300472619</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">D7BF4D1A-0028-4470-98D0-C258B2F3E681</subfield><subfield code="b">OverDrive, Inc.</subfield><subfield code="n">http://www.overdrive.com</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">TJ808</subfield><subfield code="b">.E443 2014eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">TEC</subfield><subfield code="x">009070</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">333.7932</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Electrochemical energy storage for renewable sources and grid balancing /</subfield><subfield code="c">edited by Patrick T. Moseley, Jürgen Garche ; contributors Peter Adelmann [and thirty five others].</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam, Netherlands :</subfield><subfield code="b">Elsevier,</subfield><subfield code="c">2015.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (493 pages) :</subfield><subfield code="b">illustrations (some color)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references at the end of each chapters and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Online resource; title from PDF title page (ebrary, viewed November 12, 2014).</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"Electricity from renewable sources of energy is plagued by fluctuations (due to variations in wind strength or the intensity of insolation) resulting in a lack of stability if the energy supplied from such sources is used in 'real time'. An important solution to this problem is to store the energy electrochemically (in a secondary battery or in hydrogen and its derivatives) and to make use of it in a controlled fashion at some time after it has been initially gathered and stored. Electrochemical battery storage systems are the major technologies for decentralized storage systems and hydrogen is the only solution for long-term storage systems to provide energy during extended periods of low wind speeds or solar insolation. Future electricity grid design has to include storage systems as a major component for grid stability and for security of supply. The technology of systems designed to achieve this regulation of the supply of renewable energy, and a survey of the markets that they will serve, is the subject of this book. It includes economic aspects to guide the development of technology in the right direction"--Provided by publisher</subfield></datafield><datafield tag="505" ind1="0" ind2="0"><subfield code="g">Machine-generated contents note:</subfield><subfield code="g">pt. I</subfield><subfield code="t">Introduction -- Renewable Energies, Markets and Storage Technology Classification --</subfield><subfield code="g">1.</subfield><subfield code="t">The Exploitation of Renewable Sources of Energy for Power Generation /</subfield><subfield code="r">Anthony Price --</subfield><subfield code="g">1.1.</subfield><subfield code="t">Energy and Society --</subfield><subfield code="g">1.2.</subfield><subfield code="t">Energy and Electricity --</subfield><subfield code="g">1.2.1.</subfield><subfield code="t">Power System History and Operation --</subfield><subfield code="g">1.2.2.</subfield><subfield code="t">Electricity Generation --</subfield><subfield code="g">1.2.3.</subfield><subfield code="t">Power Systems Operation --</subfield><subfield code="g">1.2.4.</subfield><subfield code="t">Integration of Renewable Energy into Power Networks --</subfield><subfield code="g">1.3.</subfield><subfield code="t">The Role of Energy Storage --</subfield><subfield code="g">1.4.</subfield><subfield code="t">International Comparisons --</subfield><subfield code="g">1.5.</subfield><subfield code="t">Types and Applications of Energy Storage --</subfield><subfield code="g">1.5.1.</subfield><subfield code="t">Thermal Energy Storage --</subfield><subfield code="g">1.5.2.</subfield><subfield code="t">Hydrogen Energy Storage as an Energy Vector --</subfield><subfield code="g">1.5.3.</subfield><subfield code="t">Compressed Air Energy Storage --</subfield><subfield code="g">1.5.4.</subfield><subfield code="t">Mechanical Systems --</subfield><subfield code="g">1.5.5.</subfield><subfield code="t">Novel Electrochemical Storage --</subfield><subfield code="g">1.6.</subfield><subfield code="t">Commercialization of Energy Storage --</subfield><subfield code="t">References --</subfield><subfield code="g">2.</subfield><subfield code="t">Classification of Storage Systems /</subfield><subfield code="r">Dirk Uwe Sauer --</subfield><subfield code="g">2.1.</subfield><subfield code="t">Introduction and Motivation --</subfield><subfield code="g">2.2.</subfield><subfield code="t">Flexibility Options --</subfield><subfield code="g">2.3.</subfield><subfield code="t">Different Types of Classifications --</subfield><subfield code="g">2.3.1.</subfield><subfield code="t">Classification According to the Needs of the Grid --</subfield><subfield code="g">2.3.2.</subfield><subfield code="t">Classification According to the Supply Time of the Storage System --</subfield><subfield code="g">2.3.3.</subfield><subfield code="t">Classification as Single-purpose and Double-use Storage Systems --</subfield><subfield code="g">2.3.4.</subfield><subfield code="t">Classification According to the Position in the Grid and the Service Offers --</subfield><subfield code="g">2.4.</subfield><subfield code="t">Conclusion --</subfield><subfield code="g">3.</subfield><subfield code="t">Challenges of Power Systems /</subfield><subfield code="r">Albert Moser --</subfield><subfield code="g">3.1.</subfield><subfield code="t">Power System Requirements --</subfield><subfield code="g">3.2.</subfield><subfield code="t">The Role of Storage Systems for Future Challenges in the Electrical Network --</subfield><subfield code="g">3.2.1.</subfield><subfield code="t">Transmission System --</subfield><subfield code="g">3.2.2.</subfield><subfield code="t">Distribution Network --</subfield><subfield code="g">3.3.</subfield><subfield code="t">Demand-Side Management and Other Alternatives to Storage Systems --</subfield><subfield code="g">3.3.1.</subfield><subfield code="t">Demand-Side Management --</subfield><subfield code="g">3.3.2.</subfield><subfield code="t">Thermal Storage Systems --</subfield><subfield code="g">3.4.</subfield><subfield code="t">Supply of Reserve Power --</subfield><subfield code="g">3.4.1.</subfield><subfield code="t">Reserve Qualities --</subfield><subfield code="g">3.4.2.</subfield><subfield code="t">Reserve Power in Germany --</subfield><subfield code="t">References --</subfield><subfield code="g">4.</subfield><subfield code="t">Applications and Markets for Grid-Connected Storage Systems /</subfield><subfield code="r">Dirk Uwe Sauer --</subfield><subfield code="g">4.1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">4.2.</subfield><subfield code="t">Frequency Control --</subfield><subfield code="g">4.2.1.</subfield><subfield code="t">Instantaneous Reserve/Spinning Reserve --</subfield><subfield code="g">4.2.2.</subfield><subfield code="t">Primary Control Reserve --</subfield><subfield code="g">4.2.3.</subfield><subfield code="t">Secondary Control Reserve --</subfield><subfield code="g">4.2.4.</subfield><subfield code="t">Tertiary/Minute Control Reserve --</subfield><subfield code="g">4.3.</subfield><subfield code="t">Self-supply --</subfield><subfield code="g">4.3.1.</subfield><subfield code="t">Market Situation --</subfield><subfield code="g">4.3.2.</subfield><subfield code="t">Market Size --</subfield><subfield code="g">4.3.3.</subfield><subfield code="t">Operation Profile --</subfield><subfield code="g">4.3.4.</subfield><subfield code="t">Barriers to Entry --</subfield><subfield code="g">4.3.5.</subfield><subfield code="t">Competitors --</subfield><subfield code="g">4.4.</subfield><subfield code="t">Uninterruptible Power Supply --</subfield><subfield code="g">4.4.1.</subfield><subfield code="t">Market Situation --</subfield><subfield code="g">4.4.2.</subfield><subfield code="t">Operation Profile --</subfield><subfield code="g">4.4.3.</subfield><subfield code="t">Competition --</subfield><subfield code="g">4.5.</subfield><subfield code="t">Arbitrage/Energy Trading --</subfield><subfield code="g">4.5.1.</subfield><subfield code="t">Market Situation --</subfield><subfield code="g">4.5.2.</subfield><subfield code="t">Market Size --</subfield><subfield code="g">4.5.3.</subfield><subfield code="t">Operation Profile --</subfield><subfield code="g">4.5.4.</subfield><subfield code="t">Barriers to Entry --</subfield><subfield code="g">4.5.5.</subfield><subfield code="t">Competitors --</subfield><subfield code="g">4.6.</subfield><subfield code="t">Load Levelling/Peak-Shaving --</subfield><subfield code="g">4.6.1.</subfield><subfield code="t">Market Situation --</subfield><subfield code="g">4.6.2.</subfield><subfield code="t">Operation Profile --</subfield><subfield code="g">4.6.3.</subfield><subfield code="t">Competitors --</subfield><subfield code="g">4.7.</subfield><subfield code="t">Other Markets and Applications --</subfield><subfield code="g">4.7.1.</subfield><subfield code="t">Microgrids --</subfield><subfield code="g">4.7.2.</subfield><subfield code="t">Island Grids/Off-grid/Weak Grids --</subfield><subfield code="g">4.7.3.</subfield><subfield code="t">Transmission and Distribution Upgrade Deferral --</subfield><subfield code="g">4.7.4.</subfield><subfield code="t">Stabilizing Conventional Generation/Ramp Rate Support --</subfield><subfield code="g">4.7.5.</subfield><subfield code="t">Ancillary Services --</subfield><subfield code="t">References --</subfield><subfield code="g">5.</subfield><subfield code="t">Existing Markets for Storage Systems in Off-Grid Applications /</subfield><subfield code="r">Peter Adelmann --</subfield><subfield code="g">5.1.</subfield><subfield code="t">Different Sources of Renewable Energy --</subfield><subfield code="g">5.2.</subfield><subfield code="t">Impact of the User --</subfield><subfield code="g">5.2.1.</subfield><subfield code="t">Telecom Repeaters --</subfield><subfield code="g">5.2.2.</subfield><subfield code="t">Rural Schools and Rural Hospitals --</subfield><subfield code="g">5.2.3.</subfield><subfield code="t">Solar-Powered Street Lights --</subfield><subfield code="g">5.2.4.</subfield><subfield code="t">Applications in the Leisure Market --</subfield><subfield code="g">5.2.5.</subfield><subfield code="t">Rural Electrification: Mini-Grids --</subfield><subfield code="g">5.2.6.</subfield><subfield code="t">Solar Home Systems --</subfield><subfield code="g">5.2.7.</subfield><subfield code="t">Pico Solar Systems --</subfield><subfield code="g">5.2.8.</subfield><subfield code="t">Market Overview of 'Off-Grid' Systems --</subfield><subfield code="g">6.</subfield><subfield code="t">Review of the Need for Storage Capacity Depending on the Share of Renewable Energies /</subfield><subfield code="r">Bert Droste-Franke --</subfield><subfield code="g">6.1.</subfield><subfield code="t">Introductory Remarks --</subfield><subfield code="g">6.2.</subfield><subfield code="t">Selected Studies with German Focus --</subfield><subfield code="g">6.3.</subfield><subfield code="t">Selected Studies with European Focus --</subfield><subfield code="g">6.4.</subfield><subfield code="t">Discussion of Study Results --</subfield><subfield code="g">6.4.1.</subfield><subfield code="t">Required Electric and Storage Power --</subfield><subfield code="g">6.4.2.</subfield><subfield code="t">Energy Capacity Need --</subfield><subfield code="g">6.4.3.</subfield><subfield code="t">Transferability of the Results to Other Regions --</subfield><subfield code="g">6.5.</subfield><subfield code="t">Conclusions --</subfield><subfield code="t">Abbreviations --</subfield><subfield code="t">References --</subfield><subfield code="g">pt. II</subfield><subfield code="t">Storage Technologies --</subfield><subfield code="g">7.</subfield><subfield code="t">Overview of Non-electrochemical Storage Technologies /</subfield><subfield code="r">Dirk Uwe Sauer --</subfield><subfield code="g">7.1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">7.2.</subfield><subfield code="t">'Electrical' Storage Systems --</subfield><subfield code="g">7.2.1.</subfield><subfield code="t">Superconductive Magnetic Energy Storage --</subfield><subfield code="g">7.2.2.</subfield><subfield code="t">Capacitors --</subfield><subfield code="g">7.3.</subfield><subfield code="t">'Mechanical' Storage Systems --</subfield><subfield code="g">7.3.1.</subfield><subfield code="t">Pumped Hydro --</subfield><subfield code="g">7.3.2.</subfield><subfield code="t">Compressed Air Energy Storage (CAES) --</subfield><subfield code="g">7.3.3.</subfield><subfield code="t">Flywheels --</subfield><subfield code="g">7.4.</subfield><subfield code="t">'Thermoelectric' Energy Storage --</subfield><subfield code="g">7.5.</subfield><subfield code="t">Storage Technologies at the Concept Stage --</subfield><subfield code="g">7.6.</subfield><subfield code="t">Summary --</subfield><subfield code="t">References --</subfield><subfield code="g">8.</subfield><subfield code="t">Hydrogen Production from Renewable Energies-Electrolyzer Technologies /</subfield><subfield code="r">Jurgen Garche --</subfield><subfield code="g">8.1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">8.1.1.</subfield><subfield code="t">General Approach --</subfield><subfield code="g">8.1.2.</subfield><subfield code="t">Historical Background --</subfield><subfield code="g">8.2.</subfield><subfield code="t">Fundamentals of Water Electrolysis --</subfield><subfield code="g">8.2.1.</subfield><subfield code="t">Thermodynamic Consideration --</subfield><subfield code="g">8.2.2.</subfield><subfield code="t">Kinetic Losses Inside an Electrolysis Cell --</subfield><subfield code="g">8.2.3.</subfield><subfield code="t">Efficiency of a Water Electrolyzer --</subfield><subfield code="g">8.3.</subfield><subfield code="t">Alkaline Water Electrolysis --</subfield><subfield code="g">8.3.1.</subfield><subfield code="t">Cell Components and Stack Design --</subfield><subfield code="g">8.3.2.</subfield><subfield code="t">System Layout and Peripheral Components --</subfield><subfield code="g">8.3.3.</subfield><subfield code="t">Gas Quality, Efficiency, and Lifetime --</subfield><subfield code="g">8.3.4.</subfield><subfield code="t">Regenerative Loads --</subfield><subfield code="g">8.4.</subfield><subfield code="t">PEM Water Electrolysis --</subfield><subfield code="g">8.4.1.</subfield><subfield code="t">Cell Components and Stack Design --</subfield><subfield code="g">8.4.2.</subfield><subfield code="t">System Layout and Peripheral Components --</subfield><subfield code="g">8.4.3.</subfield><subfield code="t">Gas Quality, Efficiency, and Lifetime --</subfield><subfield code="g">8.4.4.</subfield><subfield code="t">Regenerative Loads --</subfield><subfield code="g">8.5.</subfield><subfield code="t">High-Temperature Water Electrolysis --</subfield><subfield code="g">8.5.1.</subfield><subfield code="t">Cell Components and Stack Design --</subfield><subfield code="g">8.5.2.</subfield><subfield code="t">System Layout and Peripheral Components --</subfield><subfield code="g">8.5.3.</subfield><subfield code="t">Electrical Performance, Efficiency and Lifetime --</subfield><subfield code="g">8.5.4.</subfield><subfield code="t">Regenerative Loads --</subfield><subfield code="g">8.6.</subfield><subfield code="t">Manufacturers and Developers of Electrolyzers --</subfield><subfield code="g">8.7.</subfield><subfield code="t">Cost Issues --</subfield><subfield code="g">8.8.</subfield><subfield code="t">Summary --</subfield><subfield code="t">Acronyms/Abbreviations --</subfield><subfield code="t">References --</subfield><subfield code="g">9.</subfield><subfield code="t">Large-Scale Hydrogen Energy Storage /</subfield><subfield code="r">Erik Wolf --</subfield><subfield code="g">9.1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">9.2.</subfield><subfield code="t">Electrolyzer --</subfield><subfield code="g">9.2.1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">9.2.2.</subfield><subfield code="t">PEM Electrolysis Principle --</subfield><subfield code="g">9.2.3.</subfield><subfield code="t">Parameters of an Envisaged Large-Scale Electrolyzer System --</subfield><subfield code="g">9.2.4.</subfield><subfield code="t">Development Roadmap for PEM Electrolyzer Systems at Siemens --</subfield><subfield code="g">9.3.</subfield><subfield code="t">Hydrogen Gas Storage --</subfield><subfield code="g">9.3.1.</subfield><subfield code="t">Underground Hydrogen Storage in Salt Caverns --</subfield><subfield code="g">9.3.2.</subfield><subfield code="t">Utilization of Artificial, Mined Underground Salt Caverns and Their Potential --</subfield><subfield code="g">9.4.</subfield><subfield code="t">Reconversion of the Hydrogen into Electricity --</subfield><subfield code="g">9.4.1.</subfield><subfield code="t">Aspects Related to the Electricity Grid --</subfield><subfield code="g">9.4.2.</subfield><subfield code="t">Power to Gas Solution --</subfield><subfield code="g">9.5.</subfield><subfield code="t">Cost Issues: Levellized Cost of Energy --</subfield><subfield code="g">9.6.</subfield><subfield code="t">Actual Status and Outlook --</subfield><subfield code="t">Acknowledgment --</subfield><subfield code="t">References --</subfield><subfield code="g">10.</subfield><subfield code="t">Hydrogen Conversion into Electricity and Thermal Energy by Fuel Cells: Use of H2-Systems and Batteries /</subfield><subfield code="r">Ludwig Jorissen --</subfield><subfield code="g">10.1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">10.2.</subfield><subfield code="t">Electrochemical Power Sources --</subfield><subfield code="g">10.3.</subfield><subfield code="t">Hydrogen-Based Energy Storage Systems --</subfield><subfield code="g">10.3.1.</subfield><subfield code="t">Hydrogen Production by Water Electrolysis --</subfield><subfield code="g">10.3.2.</subfield><subfield code="t">Hydrogen Storage --</subfield><subfield code="g">10.3.3.</subfield><subfield code="t">Fuel Cells --</subfield><subfield code="g">10.4.</subfield><subfield code="t">Energy Flow in the Hydrogen Energy Storage System --</subfield><subfield code="g">10.5.</subfield><subfield code="t">Demonstration Projects --</subfield><subfield code="g">10.5.1.</subfield><subfield code="t">Freiburg Energy-Independent Solar Home --</subfield><subfield code="g">10.5.2.</subfield><subfield code="t">PAFC in Combined Heat and Power Generation in Hamburg --</subfield><subfield code="g">10.5.3.</subfield><subfield code="t">The Phoebus Project --</subfield><subfield code="g">10.5.4.</subfield><subfield code="t">Utsira Island --</subfield><subfield code="g">10.5.5.</subfield><subfield code="t">Myrthe --</subfield><subfield code="g">10.5.6.</subfield><subfield code="t">Hydrogen Community Lolland --</subfield><subfield code="g">10.5.7.</subfield><subfield code="t">MW-Scale PEMFC Demonstration by FirstEnergy Corporation --</subfield><subfield code="g">10.5.3.</subfield><subfield code="t">MW-PEMFC System Operated by Solvay --</subfield><subfield code="g">10.6.</subfield><subfield code="t">Case Study: A General Energy Storage System Layout for Maximized Use of Renewable Energies --</subfield><subfield code="g">10.6.1.</subfield><subfield code="t">Short-term Energy Storage Options --</subfield><subfield code="g">10.6.2.</subfield><subfield code="t">Storage Efficiency Considerations of the Hybrid System --</subfield><subfield code="g">10.7.</subfield><subfield code="t">Case Study of a PV-Based System Minimizing Grid Interaction --</subfield><subfield code="g">10.7.1.</subfield><subfield code="t">Energy Harvest from a Photovoltaic System --</subfield><subfield code="g">10.7.2.</subfield><subfield code="t">Battery Storage --</subfield><subfield code="g">10.7.3.</subfield><subfield code="t">Electrolyzer and Hydrogen Storage System --</subfield><subfield code="g">10.7.4.</subfield><subfield code="t">Fuel Cell System --</subfield><subfield code="g">10.7.5.</subfield><subfield code="t">Operating Strategy --</subfield><subfield code="g">10.7.6.</subfield><subfield code="t">Simulation Result --</subfield><subfield code="g">10.8.</subfield><subfield code="t">Conclusions --</subfield><subfield code="g">10.9.</subfield><subfield code="t">Summary --</subfield><subfield code="t">References --</subfield><subfield code="g">11.</subfield><subfield code="t">PEM Electrolyzers and PEM Regenerative Fuel Cells Industrial View /</subfield><subfield code="r">Jason Willey --</subfield><subfield code="g">11.1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">11.2.</subfield><subfield code="t">General Technology Description --</subfield><subfield code="g">11.2.1.</subfield><subfield code="t">Background of Water Electrolysis --</subfield><subfield code="g">11.2.2.</subfield><subfield code="t">Cell and System Designs --</subfield><subfield code="g">11.2.3.</subfield><subfield code="t">Typical Applications --</subfield><subfield code="g">11.3.</subfield><subfield code="t">Electrical Performance and Lifetime --</subfield><subfield code="g">11.3.1.</subfield><subfield code="t">Efficiency --</subfield><subfield code="g">11.3.2.</subfield><subfield code="t">Energy and Power Densities --</subfield><subfield code="g">11.3.3.</subfield><subfield code="t">Lifetime and Ageing Processes --</subfield><subfield code="g">11.3.4.</subfield><subfield code="t">Dynamic Behaviour --</subfield><subfield code="g">11.4.</subfield><subfield code="t">Necessary Accessories --</subfield><subfield code="g">11.4.1.</subfield><subfield code="t">Electronics --</subfield><subfield code="g">11.4.2.</subfield><subfield code="t">Monitoring Systems --</subfield><subfield code="g">11.4.3.</subfield><subfield code="t">Safety Devices --</subfield><subfield code="g">11.4.4.</subfield><subfield code="t">Diagnostics --</subfield><subfield code="g">11.5.</subfield><subfield code="t">Environmental Issues --</subfield><subfield code="g">11.5.1.</subfield><subfield code="t">Materials Availability --</subfield><subfield code="g">11.5.2.</subfield><subfield code="t">Life-Cycle Analysis </subfield></datafield><datafield tag="505" ind1="0" ind2="0"><subfield code="g">--</subfield><subfield code="g">11.5.3.</subfield><subfield code="t">Critical Legislative Restriction --</subfield><subfield code="g">11.5.4.</subfield><subfield code="t">Energy for System Production --</subfield><subfield code="g">11.6.</subfield><subfield code="t">Cost Issues --</subfield><subfield code="g">11.6.1.</subfield><subfield code="t">Installation Costs --</subfield><subfield code="g">11.6.2.</subfield><subfield code="t">Operation Costs --</subfield><subfield code="g">11.7.</subfield><subfield code="t">Actual Status --</subfield><subfield code="g">11.7.1.</subfield><subfield code="t">Overview of Industrial Activities (Existing Applications and Markets) --</subfield><subfield code="g">11.7.2.</subfield><subfield code="t">R & D Activities (Major Research Institutions and Companies) --</subfield><subfield code="g">11.8.</subfield><subfield code="t">Summary --</subfield><subfield code="t">References --</subfield><subfield code="g">12.</subfield><subfield code="t">Energy Carriers Made from Hydrogen /</subfield><subfield code="r">Ferdi Schuth --</subfield><subfield code="g">12.1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">12.2.</subfield><subfield code="t">Hydrogen Production and Distribution --</subfield><subfield code="g">12.3.</subfield><subfield code="t">Methane --</subfield><subfield code="g">12.4.</subfield><subfield code="t">Methanol --</subfield><subfield code="g">12.5.</subfield><subfield code="t">Dimethyl Ether --</subfield><subfield code="g">12.6.</subfield><subfield code="t">Fischer-Tropsch Synfuels --</subfield><subfield code="g">12.7.</subfield><subfield code="t">Higher Alcohols and Ethers --</subfield><subfield code="g">12.8.</subfield><subfield code="t">Ammonia --</subfield><subfield code="g">12.9.</subfield><subfield code="t">Conclusion and Outlook --</subfield><subfield code="t">Abbreviations --</subfield><subfield code="t">References --</subfield><subfield code="g">13.</subfield><subfield code="t">Energy Storage with Lead-Acid Batteries /</subfield><subfield code="r">Patrick T. Moseley --</subfield><subfield code="g">13.1.</subfield><subfield code="t">Fundamentals of Lead-Acid Technology --</subfield><subfield code="g">13.1.1.</subfield><subfield code="t">Basic Cell Reactions --</subfield><subfield code="g">13.1.2.</subfield><subfield code="t">Materials of Construction --</subfield><subfield code="g">13.1.3.</subfield><subfield code="t">Cell and Battery Designs --</subfield><subfield code="g">13.1.4.</subfield><subfield code="t">Typical Applications --</subfield><subfield code="g">13.2.</subfield><subfield code="t">Electrical Performance and Ageing --</subfield><subfield code="g">13.2.1.</subfield><subfield code="t">Efficiency --</subfield><subfield code="g">13.2.2.</subfield><subfield code="t">Specific Energy/Power; Energy/Power Density --</subfield><subfield code="g">13.2.3.</subfield><subfield code="t">Lifetime: Influence of Operating Conditions on Aging Processes --</subfield><subfield code="g">13.2.4.</subfield><subfield code="t">Capacity --</subfield><subfield code="g">13.2.5.</subfield><subfield code="t">Self-Discharge.</subfield></datafield><datafield tag="505" ind1="0" ind2="0"><subfield code="g">Note continued:</subfield><subfield code="g">13.2.6.</subfield><subfield code="t">Dynamic Behavioer --</subfield><subfield code="g">13.3.</subfield><subfield code="t">Battery Management --</subfield><subfield code="g">13.3.1.</subfield><subfield code="t">State-of-Charge Measurement --</subfield><subfield code="g">13.3.2.</subfield><subfield code="t">Charging Methods --</subfield><subfield code="g">13.3.3.</subfield><subfield code="t">Safety --</subfield><subfield code="g">13.4.</subfield><subfield code="t">Environmental Issues --</subfield><subfield code="g">13.5.</subfield><subfield code="t">Cost Issues --</subfield><subfield code="g">13.6.</subfield><subfield code="t">Past/Present Applications, Activities and Markets --</subfield><subfield code="g">13.6.1.</subfield><subfield code="t">Notable Past Battery Energy Storage System Installations --</subfield><subfield code="g">13.6.2.</subfield><subfield code="t">Notable Present Battery Energy Storage System Installations --</subfield><subfield code="g">13.6.3.</subfield><subfield code="t">Remote Area Power Supplies Systems --</subfield><subfield code="g">13.6.4.</subfield><subfield code="t">Research and Development Activities --</subfield><subfield code="g">13.6.5.</subfield><subfield code="t">Contribution of Lead-Acid to Global Energy Storage --</subfield><subfield code="t">Acronyms and Initialisms --</subfield><subfield code="t">Symbols --</subfield><subfield code="t">Further reading --</subfield><subfield code="g">14.</subfield><subfield code="t">Nickel-Cadmium and Nickel-Metal Hydride Battery Energy Storage /</subfield><subfield code="r">Michael Lippert --</subfield><subfield code="g">14.1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">14.2.</subfield><subfield code="t">Ni-Cd and Ni-MH Technologies --</subfield><subfield code="g">14.2.1.</subfield><subfield code="t">Ni-Cd and Ni-MH Basic Reactions --</subfield><subfield code="g">14.2.2.</subfield><subfield code="t">Materials --</subfield><subfield code="g">14.2.3.</subfield><subfield code="t">Alkaline Cell and Battery Designs --</subfield><subfield code="g">14.3.</subfield><subfield code="t">Electrical Performance and Lifetime and Ageing Aspects --</subfield><subfield code="g">14.3.1.</subfield><subfield code="t">General Charge-Discharge Characteristics --</subfield><subfield code="g">14.3.2.</subfield><subfield code="t">Lifetime: Ageing Processes --</subfield><subfield code="g">14.3.3.</subfield><subfield code="t">Storage Conditions --</subfield><subfield code="g">14.3.4.</subfield><subfield code="t">Self-discharge --</subfield><subfield code="g">14.4.</subfield><subfield code="t">Environmental Considerations --</subfield><subfield code="g">14.4.1.</subfield><subfield code="t">Materials Availability --</subfield><subfield code="g">14.4.2.</subfield><subfield code="t">Legislative Considerations --</subfield><subfield code="g">14.4.3.</subfield><subfield code="t">Recycling --</subfield><subfield code="g">14.5.</subfield><subfield code="t">Actual Status --</subfield><subfield code="g">14.5.1.</subfield><subfield code="t">Overview of Alkaline Batteries for Energy Storage --</subfield><subfield code="g">14.6.</subfield><subfield code="t">Conclusion --</subfield><subfield code="t">Further Reading --</subfield><subfield code="g">15.</subfield><subfield code="t">High-Temperature Sodium Batteries for Energy Storage /</subfield><subfield code="r">David A.J. Rand --</subfield><subfield code="g">15.1.</subfield><subfield code="t">Fundamentals of High-Temperature Sodium Battery Technology --</subfield><subfield code="g">15.1.1.</subfield><subfield code="t">Sodium-Sulphur --</subfield><subfield code="g">15.1.2.</subfield><subfield code="t">Sodium -- Metal-Halide --</subfield><subfield code="g">15.1.3.</subfield><subfield code="t">Beta Alumina --</subfield><subfield code="g">15.1.4.</subfield><subfield code="t">Basic Cell Reactions --</subfield><subfield code="g">15.1.5.</subfield><subfield code="t">Materials of Construction --</subfield><subfield code="g">15.1.6.</subfield><subfield code="t">Cell and Battery Designs --</subfield><subfield code="g">15.1.7.</subfield><subfield code="t">Typical Applications --</subfield><subfield code="g">15.2.</subfield><subfield code="t">Electrical Performance and Ageing --</subfield><subfield code="g">15.2.1.</subfield><subfield code="t">Efficiency --</subfield><subfield code="g">15.2.2.</subfield><subfield code="t">Specific Energy/Power, Energy/Power Density --</subfield><subfield code="g">15.2.3.</subfield><subfield code="t">Lifetime: Influence of Operating Conditions on Ageing Processes --</subfield><subfield code="g">15.2.4.</subfield><subfield code="t">Self-Discharge --</subfield><subfield code="g">15.3.</subfield><subfield code="t">Battery Management --</subfield><subfield code="g">15.3.1.</subfield><subfield code="t">State-of-Charge Measurement --</subfield><subfield code="g">15.3.2.</subfield><subfield code="t">Safety --</subfield><subfield code="g">15.4.</subfield><subfield code="t">Environmental Issues --</subfield><subfield code="g">15.4.1.</subfield><subfield code="t">Availability of Materials --</subfield><subfield code="g">15.4.2.</subfield><subfield code="t">Life-Cycle Analysis --</subfield><subfield code="g">15.4.3.</subfield><subfield code="t">Legislative Restriction --</subfield><subfield code="g">15.4.4.</subfield><subfield code="t">Recycling --</subfield><subfield code="g">15.4.5.</subfield><subfield code="t">Energy Required for Production --</subfield><subfield code="g">15.5.</subfield><subfield code="t">Cost Issues --</subfield><subfield code="g">15.5.1.</subfield><subfield code="t">Sodium-Sulphur --</subfield><subfield code="g">15.5.2.</subfield><subfield code="t">Sodium-Metal-Halide --</subfield><subfield code="g">15.6.</subfield><subfield code="t">Current Status --</subfield><subfield code="g">15.6.1.</subfield><subfield code="t">Present Applications and Markets --</subfield><subfield code="g">15.6.2.</subfield><subfield code="t">Research and Development Activities --</subfield><subfield code="g">15.7.</subfield><subfield code="t">Concluding Remarks --</subfield><subfield code="t">Acronyms and Initialisms --</subfield><subfield code="t">Symbols and Units --</subfield><subfield code="t">References --</subfield><subfield code="t">Further Reading --</subfield><subfield code="g">16.</subfield><subfield code="t">Lithium Battery Energy Storage: State-of-the-Art Including Lithium-Air and Lithium-Sulphur Systems /</subfield><subfield code="r">Peter Kurzweil --</subfield><subfield code="g">16.1.</subfield><subfield code="t">Energy Storage in Lithium Batteries --</subfield><subfield code="g">16.1.1.</subfield><subfield code="t">Basic Cell Chemistry --</subfield><subfield code="g">16.1.2.</subfield><subfield code="t">Positive Electrode Materials --</subfield><subfield code="g">16.1.3.</subfield><subfield code="t">Negative Electrode Materials --</subfield><subfield code="g">16.1.4.</subfield><subfield code="t">Electrolytes --</subfield><subfield code="g">16.1.5.</subfield><subfield code="t">Separators --</subfield><subfield code="g">16.1.6.</subfield><subfield code="t">Cell and Battery Designs --</subfield><subfield code="g">16.1.7.</subfield><subfield code="t">Typical Applications --</subfield><subfield code="g">16.2.</subfield><subfield code="t">Electrical Performance, Lifetime, and Ageing --</subfield><subfield code="g">16.2.1.</subfield><subfield code="t">Efficiency --</subfield><subfield code="g">16.2.2.</subfield><subfield code="t">Power-to-Energy Ratio --</subfield><subfield code="g">16.2.3.</subfield><subfield code="t">Energy and Power Densities --</subfield><subfield code="g">16.2.4.</subfield><subfield code="t">Lifetime and Ageing Processes --</subfield><subfield code="g">16.2.5.</subfield><subfield code="t">Capacity Depending on Temperature and Discharge Rate --</subfield><subfield code="g">16.2.6.</subfield><subfield code="t">Self-Discharge Rate --</subfield><subfield code="g">16.2.7.</subfield><subfield code="t">Dynamic Behaviour --</subfield><subfield code="g">16.3.</subfield><subfield code="t">Accessories --</subfield><subfield code="g">16.3.1.</subfield><subfield code="t">Electronics and Charging Devices --</subfield><subfield code="g">16.3.2.</subfield><subfield code="t">Monitoring Systems --</subfield><subfield code="g">16.3.3.</subfield><subfield code="t">Safety Devices --</subfield><subfield code="g">16.3.4.</subfield><subfield code="t">Diagnosis and Monitoring Concepts --</subfield><subfield code="g">16.4.</subfield><subfield code="t">Environmental Issues --</subfield><subfield code="g">16.4.1.</subfield><subfield code="t">Availability of Lithium --</subfield><subfield code="g">16.4.2.</subfield><subfield code="t">Life Cycle Analysis --</subfield><subfield code="g">16.4.3.</subfield><subfield code="t">Legislative Restriction --</subfield><subfield code="g">16.4.4.</subfield><subfield code="t">Recycling --</subfield><subfield code="g">16.5.</subfield><subfield code="t">Cost Issues --</subfield><subfield code="g">16.5.1.</subfield><subfield code="t">Cost Projections --</subfield><subfield code="g">16.5.2.</subfield><subfield code="t">Anode Materials (Negative) --</subfield><subfield code="g">16.5.3.</subfield><subfield code="t">Cathode Materials (Positive) --</subfield><subfield code="g">16.5.4.</subfield><subfield code="t">Electrolyte --</subfield><subfield code="g">16.6.</subfield><subfield code="t">State-of-the-Art --</subfield><subfield code="g">16.6.1.</subfield><subfield code="t">Industrial Activities --</subfield><subfield code="g">16.6.2.</subfield><subfield code="t">Research Activities and Challenges --</subfield><subfield code="g">16.6.3.</subfield><subfield code="t">Worldwide Annual Turnover --</subfield><subfield code="t">Abbreviations and Symbols --</subfield><subfield code="t">References --</subfield><subfield code="g">17.</subfield><subfield code="t">Redox Flow Batteries /</subfield><subfield code="r">Maria Skyllas-Kazacos --</subfield><subfield code="g">17.1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">17.2.</subfield><subfield code="t">Flow Battery Chemistries --</subfield><subfield code="g">17.2.1.</subfield><subfield code="t">Zinc-Based Flow Batteries --</subfield><subfield code="g">17.2.2.</subfield><subfield code="t">Redox Flow Batteries --</subfield><subfield code="g">17.3.</subfield><subfield code="t">Cost Considerations --</subfield><subfield code="g">17.4.</subfield><subfield code="t">Summary and Conclusions --</subfield><subfield code="t">References --</subfield><subfield code="t">Further readings --</subfield><subfield code="g">18.</subfield><subfield code="t">Metal Storage/Metal Air (Zn, Fe, Al, Mg) /</subfield><subfield code="r">Hajime Arai --</subfield><subfield code="g">18.1.</subfield><subfield code="t">General Technical Description of the Technology --</subfield><subfield code="g">18.1.1.</subfield><subfield code="t">Basic Reactions --</subfield><subfield code="g">18.1.2.</subfield><subfield code="t">Materials --</subfield><subfield code="g">18.1.3.</subfield><subfield code="t">Cell and Battery Designs --</subfield><subfield code="g">18.1.4.</subfield><subfield code="t">Typical Applications --</subfield><subfield code="g">18.2.</subfield><subfield code="t">Electrical Performance, Lifetime, and Ageing Aspects --</subfield><subfield code="g">18.2.1.</subfield><subfield code="t">Efficiency as f(T, I) --</subfield><subfield code="g">18.2.2.</subfield><subfield code="t">Power-to-Energy Ratio --</subfield><subfield code="g">18.2.3.</subfield><subfield code="t">Energy and Power Densities (Volume, Gravimetric) --</subfield><subfield code="g">18.2.4.</subfield><subfield code="t">Lifetime: Ageing Processes, Operating Conditions Affecting Ageing (T, DoD) --</subfield><subfield code="g">18.2.5.</subfield><subfield code="t">Capacity Depending on Temperature and Discharge Rate --</subfield><subfield code="g">18.2.6.</subfield><subfield code="t">Self-discharge Rate (Dependence on Temperature, Starting at Full-Charged System and Starting at 50% State of Charge) --</subfield><subfield code="g">18.2.7.</subfield><subfield code="t">Dynamic Behaviour --</subfield><subfield code="g">18.3.</subfield><subfield code="t">Necessary Accessories --</subfield><subfield code="g">18.3.1.</subfield><subfield code="t">Electronics --</subfield><subfield code="g">18.3.2.</subfield><subfield code="t">Charging Devices --</subfield><subfield code="g">18.3.3.</subfield><subfield code="t">Necessary Monitoring Systems --</subfield><subfield code="g">18.3.4.</subfield><subfield code="t">Safety Devices --</subfield><subfield code="g">18.3.5.</subfield><subfield code="t">Needs for Diagnosis and Monitoring Concepts --</subfield><subfield code="g">18.4.</subfield><subfield code="t">Environmental Issues --</subfield><subfield code="g">18.4.1.</subfield><subfield code="t">Materials Availability --</subfield><subfield code="g">18.4.2.</subfield><subfield code="t">Life Cycle Analysis --</subfield><subfield code="g">18.4.3.</subfield><subfield code="t">Critical Legislative Restriction --</subfield><subfield code="g">18.4.4.</subfield><subfield code="t">Recycling Quotas --</subfield><subfield code="g">18.4.5.</subfield><subfield code="t">Energy Needed for the Production --</subfield><subfield code="g">18.5.</subfield><subfield code="t">Cost Issues (Today, in 5 years, and in 10 years) --</subfield><subfield code="g">18.5.1.</subfield><subfield code="t">Material Costs, Costs per Power and per Energy, Investment, and Throughput Costs of Kilowatt-hour --</subfield><subfield code="g">18.6.</subfield><subfield code="t">Actual Status --</subfield><subfield code="g">18.6.1.</subfield><subfield code="t">Overview of Industrial Activities (Existing Applications and Markets) --</subfield><subfield code="g">18.6.2.</subfield><subfield code="t">R & D Activities (Major Research Institutions and Companies) --</subfield><subfield code="g">18.6.3.</subfield><subfield code="t">Worldwide Annual Turnover with the Storage Technology, Installed Capacity --</subfield><subfield code="t">Further Reading --</subfield><subfield code="g">19.</subfield><subfield code="t">Electrochemical Double-layer Capacitors /</subfield><subfield code="r">Peter Kurzweil --</subfield><subfield code="g">19.1.</subfield><subfield code="t">Technical Description --</subfield><subfield code="g">19.1.1.</subfield><subfield code="t">Basic Concepts of Double-Layer-Capacitance --</subfield><subfield code="g">19.1.2.</subfield><subfield code="t">Carbon Materials --</subfield><subfield code="g">19.1.3.</subfield><subfield code="t">Metal Oxide Technology --</subfield><subfield code="g">19.1.4.</subfield><subfield code="t">Solid-State and Polymer Technology --</subfield><subfield code="g">19.1.5.</subfield><subfield code="t">Electrolyte Solution --</subfield><subfield code="g">19.1.6.</subfield><subfield code="t">Separator --</subfield><subfield code="g">19.1.7.</subfield><subfield code="t">Cell and Stack Designs --</subfield><subfield code="g">19.1.8.</subfield><subfield code="t">Typical Applications --</subfield><subfield code="g">19.2.</subfield><subfield code="t">Electrical Performance, Lifetime, and Ageing Aspects --</subfield><subfield code="g">19.2.1.</subfield><subfield code="t">Specific Energy --</subfield><subfield code="g">19.2.2.</subfield><subfield code="t">Power and Efficiency --</subfield><subfield code="g">19.2.3.</subfield><subfield code="t">Lifetime and Ageing Processes --</subfield><subfield code="g">19.2.4.</subfield><subfield code="t">Capacitance --</subfield><subfield code="g">19.2.5.</subfield><subfield code="t">Self-discharge Rate --</subfield><subfield code="g">19.2.6.</subfield><subfield code="t">Dynamic Behaviour --</subfield><subfield code="g">19.2.7.</subfield><subfield code="t">Modelling of Double-layer Capacitors --</subfield><subfield code="g">19.3.</subfield><subfield code="t">Accessories --</subfield><subfield code="g">19.3.1.</subfield><subfield code="t">Diagnosis and Monitoring Concepts --</subfield><subfield code="g">19.3.2.</subfield><subfield code="t">Safety Issues --</subfield><subfield code="g">19.4.</subfield><subfield code="t">Environmental Issues --</subfield><subfield code="g">19.4.1.</subfield><subfield code="t">Materials Availability --</subfield><subfield code="g">19.4.2.</subfield><subfield code="t">Life-Cycle Analysis --</subfield><subfield code="g">19.4.3.</subfield><subfield code="t">Legislative Restriction --</subfield><subfield code="g">19.5.</subfield><subfield code="t">Cost Issues --</subfield><subfield code="g">19.5.1.</subfield><subfield code="t">Costs Per Energy and Power --</subfield><subfield code="g">19.6.</subfield><subfield code="t">Actual Status --</subfield><subfield code="g">19.6.1.</subfield><subfield code="t">International Performance Data --</subfield><subfield code="g">19.6.2.</subfield><subfield code="t">Practical Electrode Fabrication --</subfield><subfield code="g">19.6.3.</subfield><subfield code="t">Worldwide Annual Turnover --</subfield><subfield code="t">Symbols and Units --</subfield><subfield code="t">Abbreviations and Acronyms --</subfield><subfield code="t">Further Reading --</subfield><subfield code="g">pt. </subfield></datafield><datafield tag="505" ind1="0" ind2="0"><subfield code="g">III</subfield><subfield code="t">System Aspects --</subfield><subfield code="g">20.</subfield><subfield code="t">Battery Management and Battery Diagnostics /</subfield><subfield code="r">Angel Kirchev --</subfield><subfield code="g">20.1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">20.2.</subfield><subfield code="t">Battery Parameters -- Monitoring and Control --</subfield><subfield code="g">20.2.1.</subfield><subfield code="t">Battery Voltage --</subfield><subfield code="g">20.2.2.</subfield><subfield code="t">Charge and Discharge Current --</subfield><subfield code="g">20.2.3.</subfield><subfield code="t">Battery Capacity --</subfield><subfield code="g">20.2.4.</subfield><subfield code="t">Battery Resistance and Battery Impedance --</subfield><subfield code="g">20.2.5.</subfield><subfield code="t">Battery Power and Battery Energy --</subfield><subfield code="g">20.2.6.</subfield><subfield code="t">Battery Temperature --</subfield><subfield code="g">20.3.</subfield><subfield code="t">Battery Management of Electrochemical Energy Storage Systems --</subfield><subfield code="g">20.3.1.</subfield><subfield code="t">General --</subfield><subfield code="g">20.3.2.</subfield><subfield code="t">Battery Management of Aqueous Electrochemical Energy Storage Systems --</subfield><subfield code="g">20.3.3.</subfield><subfield code="t">Battery Management of Non-aqueous Electrochemical Energy Storage Systems --</subfield><subfield code="g">20.4.</subfield><subfield code="t">Battery Diagnostics --</subfield><subfield code="g">20.4.1.</subfield><subfield code="t">Data Storage vs Energy Storage --</subfield><subfield code="g">20.4.2.</subfield><subfield code="t">Non-invasive Battery Diagnostics --</subfield><subfield code="g">20.4.3.</subfield><subfield code="t">Invasive Battery Diagnostics --</subfield><subfield code="g">20.5.</subfield><subfield code="t">Implementation of Battery Management and Battery Diagnostics --</subfield><subfield code="g">20.6.</subfield><subfield code="t">Conclusions --</subfield><subfield code="t">References --</subfield><subfield code="g">21.</subfield><subfield code="t">Life-Cycle Cost Calculation and Comparison for Different Reference Cases and Market Segments /</subfield><subfield code="r">Dirk Uwe Sauer --</subfield><subfield code="g">21.1.</subfield><subfield code="t">Motivation --</subfield><subfield code="g">21.2.</subfield><subfield code="t">Methodology --</subfield><subfield code="g">21.2.1.</subfield><subfield code="t">Parameters Characterizing the Storage Technology --</subfield><subfield code="g">21.2.2.</subfield><subfield code="t">Parameters Characterizing the Storage Application --</subfield><subfield code="g">21.2.3.</subfield><subfield code="t">Calculated Parameters --</subfield><subfield code="g">21.2.4.</subfield><subfield code="t">LCC Calculation --</subfield><subfield code="g">21.3.</subfield><subfield code="t">Reference Cases --</subfield><subfield code="g">21.3.1.</subfield><subfield code="t">Long-term Storage --</subfield><subfield code="g">21.3.2.</subfield><subfield code="t">High-Voltage Grid Load-Levelling --</subfield><subfield code="g">21.3.3.</subfield><subfield code="t">Medium-Voltage Grid Peak-Shaving --</subfield><subfield code="g">21.3.4.</subfield><subfield code="t">Decentralized Storage Systems in Low-Voltage Grids --</subfield><subfield code="g">21.3.5.</subfield><subfield code="t">Electrical Network and Interest Rate --</subfield><subfield code="g">21.4.</subfield><subfield code="t">Example Results --</subfield><subfield code="g">21.4.1.</subfield><subfield code="t">Long-term Storage --</subfield><subfield code="g">21.4.2.</subfield><subfield code="t">High-Voltage Grid Load-Levelling --</subfield><subfield code="g">21.4.3.</subfield><subfield code="t">Medium-Voltage Grid Peak-Shaving --</subfield><subfield code="g">21.4.4.</subfield><subfield code="t">Decentralized Storages in Low-Voltage Grid --</subfield><subfield code="g">21.5.</subfield><subfield code="t">Sensitivity Analysis --</subfield><subfield code="g">21.5.1.</subfield><subfield code="t">Dependence on Electricity Price --</subfield><subfield code="g">21.5.2.</subfield><subfield code="t">Dependence on Capital Costs (Interest Rate) --</subfield><subfield code="g">21.5.3.</subfield><subfield code="t">Dependence on Number of Cycles --</subfield><subfield code="g">22.</subfield><subfield code="t">'Double-Use' of Storage Systems /</subfield><subfield code="r">Dirk Uwe Sauer --</subfield><subfield code="g">22.1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">22.2.</subfield><subfield code="t">Uninterruptible Power Supply Systems --</subfield><subfield code="g">22.3.</subfield><subfield code="t">Electric Vehicle Batteries -- Vehicle-to-Grid --</subfield><subfield code="g">22.3.1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">22.3.2.</subfield><subfield code="t">Car Usage --</subfield><subfield code="g">22.3.3.</subfield><subfield code="t">Vehicle Availability --</subfield><subfield code="g">22.3.4.</subfield><subfield code="t">Vehicle-to-Grid Concept --</subfield><subfield code="g">22.3.5.</subfield><subfield code="t">Applications Where Double-Use is not Useful or is of Only Limited Use --</subfield><subfield code="g">22.4.</subfield><subfield code="t">Photovoltaic Home Storage --</subfield><subfield code="g">22.4.1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">22.4.2.</subfield><subfield code="t">System Designs and Benefits --</subfield><subfield code="g">22.4.3.</subfield><subfield code="t">Unloading the Grid and Grid Services.</subfield></datafield><datafield tag="505" ind1="0" ind2="0"><subfield code="g">Note continued:</subfield><subfield code="g">22.5.</subfield><subfield code="t">Second Life of Vehicle Batteries --</subfield><subfield code="g">22.5.1.</subfield><subfield code="t">Strengths and Opportunities of 'Second-Life' Applications --</subfield><subfield code="g">22.5.2.</subfield><subfield code="t">Weakness and Threats of 'Second-Life' Applications --</subfield><subfield code="g">22.5.3.</subfield><subfield code="t">Summary on 'Second-Life' Opportunities --</subfield><subfield code="t">References.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Renewable energy sources.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85112837</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Renewable Energy</subfield><subfield code="0">https://id.nlm.nih.gov/mesh/D059205</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Énergies renouvelables.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING</subfield><subfield code="x">Mechanical.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Renewable energy sources</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Moseley, Patrick T.,</subfield><subfield code="e">editor.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjDKgh3Yh9BYGt43QXdVcq</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2015027664</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Garche, Jürgen,</subfield><subfield code="e">editor.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjCktYC436dc7Dd3dvRwJC</subfield><subfield code="0">http://id.loc.gov/authorities/names/n84120468</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Adelmann, Peter,</subfield><subfield code="e">contributor.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Electrochemical energy storage for renewable sources and grid balancing (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGyjVTXvbXkFQ3WT86CkH3</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="t">Electrochemical energy storage for renewable sources and grid balancing.</subfield><subfield code="d">Amsterdam, Netherlands : Elsevier, ©2015</subfield><subfield code="h">xvi, 473 pages</subfield><subfield code="z">9780444626165</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://www.sciencedirect.com/science/book/9780444626165</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">CBO01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://www.sciencedirect.com/science/book/9780444626165</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=485309</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">CBO01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=485309</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="936" ind1=" " ind2=" "><subfield code="a">BATCHLOAD</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">30046872</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL1826797</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10966243</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">485309</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis30046872</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">12140003</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn896853409 |
illustrated | Illustrated |
indexdate | 2024-10-25T16:22:21Z |
institution | BVB |
isbn | 9780444626103 0444626107 0444638075 9780444638076 |
language | English |
oclc_num | 896853409 |
open_access_boolean | |
owner | MAIN |
owner_facet | MAIN |
physical | 1 online resource (493 pages) : illustrations (some color) |
psigel | ZDB-4-EBA |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | Elsevier, |
record_format | marc |
spelling | Electrochemical energy storage for renewable sources and grid balancing / edited by Patrick T. Moseley, Jürgen Garche ; contributors Peter Adelmann [and thirty five others]. Amsterdam, Netherlands : Elsevier, 2015. ©2015 1 online resource (493 pages) : illustrations (some color) text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references at the end of each chapters and index. Online resource; title from PDF title page (ebrary, viewed November 12, 2014). "Electricity from renewable sources of energy is plagued by fluctuations (due to variations in wind strength or the intensity of insolation) resulting in a lack of stability if the energy supplied from such sources is used in 'real time'. An important solution to this problem is to store the energy electrochemically (in a secondary battery or in hydrogen and its derivatives) and to make use of it in a controlled fashion at some time after it has been initially gathered and stored. Electrochemical battery storage systems are the major technologies for decentralized storage systems and hydrogen is the only solution for long-term storage systems to provide energy during extended periods of low wind speeds or solar insolation. Future electricity grid design has to include storage systems as a major component for grid stability and for security of supply. The technology of systems designed to achieve this regulation of the supply of renewable energy, and a survey of the markets that they will serve, is the subject of this book. It includes economic aspects to guide the development of technology in the right direction"--Provided by publisher Machine-generated contents note: pt. I Introduction -- Renewable Energies, Markets and Storage Technology Classification -- 1. The Exploitation of Renewable Sources of Energy for Power Generation / Anthony Price -- 1.1. Energy and Society -- 1.2. Energy and Electricity -- 1.2.1. Power System History and Operation -- 1.2.2. Electricity Generation -- 1.2.3. Power Systems Operation -- 1.2.4. Integration of Renewable Energy into Power Networks -- 1.3. The Role of Energy Storage -- 1.4. International Comparisons -- 1.5. Types and Applications of Energy Storage -- 1.5.1. Thermal Energy Storage -- 1.5.2. Hydrogen Energy Storage as an Energy Vector -- 1.5.3. Compressed Air Energy Storage -- 1.5.4. Mechanical Systems -- 1.5.5. Novel Electrochemical Storage -- 1.6. Commercialization of Energy Storage -- References -- 2. Classification of Storage Systems / Dirk Uwe Sauer -- 2.1. Introduction and Motivation -- 2.2. Flexibility Options -- 2.3. Different Types of Classifications -- 2.3.1. Classification According to the Needs of the Grid -- 2.3.2. Classification According to the Supply Time of the Storage System -- 2.3.3. Classification as Single-purpose and Double-use Storage Systems -- 2.3.4. Classification According to the Position in the Grid and the Service Offers -- 2.4. Conclusion -- 3. Challenges of Power Systems / Albert Moser -- 3.1. Power System Requirements -- 3.2. The Role of Storage Systems for Future Challenges in the Electrical Network -- 3.2.1. Transmission System -- 3.2.2. Distribution Network -- 3.3. Demand-Side Management and Other Alternatives to Storage Systems -- 3.3.1. Demand-Side Management -- 3.3.2. Thermal Storage Systems -- 3.4. Supply of Reserve Power -- 3.4.1. Reserve Qualities -- 3.4.2. Reserve Power in Germany -- References -- 4. Applications and Markets for Grid-Connected Storage Systems / Dirk Uwe Sauer -- 4.1. Introduction -- 4.2. Frequency Control -- 4.2.1. Instantaneous Reserve/Spinning Reserve -- 4.2.2. Primary Control Reserve -- 4.2.3. Secondary Control Reserve -- 4.2.4. Tertiary/Minute Control Reserve -- 4.3. Self-supply -- 4.3.1. Market Situation -- 4.3.2. Market Size -- 4.3.3. Operation Profile -- 4.3.4. Barriers to Entry -- 4.3.5. Competitors -- 4.4. Uninterruptible Power Supply -- 4.4.1. Market Situation -- 4.4.2. Operation Profile -- 4.4.3. Competition -- 4.5. Arbitrage/Energy Trading -- 4.5.1. Market Situation -- 4.5.2. Market Size -- 4.5.3. Operation Profile -- 4.5.4. Barriers to Entry -- 4.5.5. Competitors -- 4.6. Load Levelling/Peak-Shaving -- 4.6.1. Market Situation -- 4.6.2. Operation Profile -- 4.6.3. Competitors -- 4.7. Other Markets and Applications -- 4.7.1. Microgrids -- 4.7.2. Island Grids/Off-grid/Weak Grids -- 4.7.3. Transmission and Distribution Upgrade Deferral -- 4.7.4. Stabilizing Conventional Generation/Ramp Rate Support -- 4.7.5. Ancillary Services -- References -- 5. Existing Markets for Storage Systems in Off-Grid Applications / Peter Adelmann -- 5.1. Different Sources of Renewable Energy -- 5.2. Impact of the User -- 5.2.1. Telecom Repeaters -- 5.2.2. Rural Schools and Rural Hospitals -- 5.2.3. Solar-Powered Street Lights -- 5.2.4. Applications in the Leisure Market -- 5.2.5. Rural Electrification: Mini-Grids -- 5.2.6. Solar Home Systems -- 5.2.7. Pico Solar Systems -- 5.2.8. Market Overview of 'Off-Grid' Systems -- 6. Review of the Need for Storage Capacity Depending on the Share of Renewable Energies / Bert Droste-Franke -- 6.1. Introductory Remarks -- 6.2. Selected Studies with German Focus -- 6.3. Selected Studies with European Focus -- 6.4. Discussion of Study Results -- 6.4.1. Required Electric and Storage Power -- 6.4.2. Energy Capacity Need -- 6.4.3. Transferability of the Results to Other Regions -- 6.5. Conclusions -- Abbreviations -- References -- pt. II Storage Technologies -- 7. Overview of Non-electrochemical Storage Technologies / Dirk Uwe Sauer -- 7.1. Introduction -- 7.2. 'Electrical' Storage Systems -- 7.2.1. Superconductive Magnetic Energy Storage -- 7.2.2. Capacitors -- 7.3. 'Mechanical' Storage Systems -- 7.3.1. Pumped Hydro -- 7.3.2. Compressed Air Energy Storage (CAES) -- 7.3.3. Flywheels -- 7.4. 'Thermoelectric' Energy Storage -- 7.5. Storage Technologies at the Concept Stage -- 7.6. Summary -- References -- 8. Hydrogen Production from Renewable Energies-Electrolyzer Technologies / Jurgen Garche -- 8.1. Introduction -- 8.1.1. General Approach -- 8.1.2. Historical Background -- 8.2. Fundamentals of Water Electrolysis -- 8.2.1. Thermodynamic Consideration -- 8.2.2. Kinetic Losses Inside an Electrolysis Cell -- 8.2.3. Efficiency of a Water Electrolyzer -- 8.3. Alkaline Water Electrolysis -- 8.3.1. Cell Components and Stack Design -- 8.3.2. System Layout and Peripheral Components -- 8.3.3. Gas Quality, Efficiency, and Lifetime -- 8.3.4. Regenerative Loads -- 8.4. PEM Water Electrolysis -- 8.4.1. Cell Components and Stack Design -- 8.4.2. System Layout and Peripheral Components -- 8.4.3. Gas Quality, Efficiency, and Lifetime -- 8.4.4. Regenerative Loads -- 8.5. High-Temperature Water Electrolysis -- 8.5.1. Cell Components and Stack Design -- 8.5.2. System Layout and Peripheral Components -- 8.5.3. Electrical Performance, Efficiency and Lifetime -- 8.5.4. Regenerative Loads -- 8.6. Manufacturers and Developers of Electrolyzers -- 8.7. Cost Issues -- 8.8. Summary -- Acronyms/Abbreviations -- References -- 9. Large-Scale Hydrogen Energy Storage / Erik Wolf -- 9.1. Introduction -- 9.2. Electrolyzer -- 9.2.1. Introduction -- 9.2.2. PEM Electrolysis Principle -- 9.2.3. Parameters of an Envisaged Large-Scale Electrolyzer System -- 9.2.4. Development Roadmap for PEM Electrolyzer Systems at Siemens -- 9.3. Hydrogen Gas Storage -- 9.3.1. Underground Hydrogen Storage in Salt Caverns -- 9.3.2. Utilization of Artificial, Mined Underground Salt Caverns and Their Potential -- 9.4. Reconversion of the Hydrogen into Electricity -- 9.4.1. Aspects Related to the Electricity Grid -- 9.4.2. Power to Gas Solution -- 9.5. Cost Issues: Levellized Cost of Energy -- 9.6. Actual Status and Outlook -- Acknowledgment -- References -- 10. Hydrogen Conversion into Electricity and Thermal Energy by Fuel Cells: Use of H2-Systems and Batteries / Ludwig Jorissen -- 10.1. Introduction -- 10.2. Electrochemical Power Sources -- 10.3. Hydrogen-Based Energy Storage Systems -- 10.3.1. Hydrogen Production by Water Electrolysis -- 10.3.2. Hydrogen Storage -- 10.3.3. Fuel Cells -- 10.4. Energy Flow in the Hydrogen Energy Storage System -- 10.5. Demonstration Projects -- 10.5.1. Freiburg Energy-Independent Solar Home -- 10.5.2. PAFC in Combined Heat and Power Generation in Hamburg -- 10.5.3. The Phoebus Project -- 10.5.4. Utsira Island -- 10.5.5. Myrthe -- 10.5.6. Hydrogen Community Lolland -- 10.5.7. MW-Scale PEMFC Demonstration by FirstEnergy Corporation -- 10.5.3. MW-PEMFC System Operated by Solvay -- 10.6. Case Study: A General Energy Storage System Layout for Maximized Use of Renewable Energies -- 10.6.1. Short-term Energy Storage Options -- 10.6.2. Storage Efficiency Considerations of the Hybrid System -- 10.7. Case Study of a PV-Based System Minimizing Grid Interaction -- 10.7.1. Energy Harvest from a Photovoltaic System -- 10.7.2. Battery Storage -- 10.7.3. Electrolyzer and Hydrogen Storage System -- 10.7.4. Fuel Cell System -- 10.7.5. Operating Strategy -- 10.7.6. Simulation Result -- 10.8. Conclusions -- 10.9. Summary -- References -- 11. PEM Electrolyzers and PEM Regenerative Fuel Cells Industrial View / Jason Willey -- 11.1. Introduction -- 11.2. General Technology Description -- 11.2.1. Background of Water Electrolysis -- 11.2.2. Cell and System Designs -- 11.2.3. Typical Applications -- 11.3. Electrical Performance and Lifetime -- 11.3.1. Efficiency -- 11.3.2. Energy and Power Densities -- 11.3.3. Lifetime and Ageing Processes -- 11.3.4. Dynamic Behaviour -- 11.4. Necessary Accessories -- 11.4.1. Electronics -- 11.4.2. Monitoring Systems -- 11.4.3. Safety Devices -- 11.4.4. Diagnostics -- 11.5. Environmental Issues -- 11.5.1. Materials Availability -- 11.5.2. Life-Cycle Analysis -- 11.5.3. Critical Legislative Restriction -- 11.5.4. Energy for System Production -- 11.6. Cost Issues -- 11.6.1. Installation Costs -- 11.6.2. Operation Costs -- 11.7. Actual Status -- 11.7.1. Overview of Industrial Activities (Existing Applications and Markets) -- 11.7.2. R & D Activities (Major Research Institutions and Companies) -- 11.8. Summary -- References -- 12. Energy Carriers Made from Hydrogen / Ferdi Schuth -- 12.1. Introduction -- 12.2. Hydrogen Production and Distribution -- 12.3. Methane -- 12.4. Methanol -- 12.5. Dimethyl Ether -- 12.6. Fischer-Tropsch Synfuels -- 12.7. Higher Alcohols and Ethers -- 12.8. Ammonia -- 12.9. Conclusion and Outlook -- Abbreviations -- References -- 13. Energy Storage with Lead-Acid Batteries / Patrick T. Moseley -- 13.1. Fundamentals of Lead-Acid Technology -- 13.1.1. Basic Cell Reactions -- 13.1.2. Materials of Construction -- 13.1.3. Cell and Battery Designs -- 13.1.4. Typical Applications -- 13.2. Electrical Performance and Ageing -- 13.2.1. Efficiency -- 13.2.2. Specific Energy/Power; Energy/Power Density -- 13.2.3. Lifetime: Influence of Operating Conditions on Aging Processes -- 13.2.4. Capacity -- 13.2.5. Self-Discharge. Note continued: 13.2.6. Dynamic Behavioer -- 13.3. Battery Management -- 13.3.1. State-of-Charge Measurement -- 13.3.2. Charging Methods -- 13.3.3. Safety -- 13.4. Environmental Issues -- 13.5. Cost Issues -- 13.6. Past/Present Applications, Activities and Markets -- 13.6.1. Notable Past Battery Energy Storage System Installations -- 13.6.2. Notable Present Battery Energy Storage System Installations -- 13.6.3. Remote Area Power Supplies Systems -- 13.6.4. Research and Development Activities -- 13.6.5. Contribution of Lead-Acid to Global Energy Storage -- Acronyms and Initialisms -- Symbols -- Further reading -- 14. Nickel-Cadmium and Nickel-Metal Hydride Battery Energy Storage / Michael Lippert -- 14.1. Introduction -- 14.2. Ni-Cd and Ni-MH Technologies -- 14.2.1. Ni-Cd and Ni-MH Basic Reactions -- 14.2.2. Materials -- 14.2.3. Alkaline Cell and Battery Designs -- 14.3. Electrical Performance and Lifetime and Ageing Aspects -- 14.3.1. General Charge-Discharge Characteristics -- 14.3.2. Lifetime: Ageing Processes -- 14.3.3. Storage Conditions -- 14.3.4. Self-discharge -- 14.4. Environmental Considerations -- 14.4.1. Materials Availability -- 14.4.2. Legislative Considerations -- 14.4.3. Recycling -- 14.5. Actual Status -- 14.5.1. Overview of Alkaline Batteries for Energy Storage -- 14.6. Conclusion -- Further Reading -- 15. High-Temperature Sodium Batteries for Energy Storage / David A.J. Rand -- 15.1. Fundamentals of High-Temperature Sodium Battery Technology -- 15.1.1. Sodium-Sulphur -- 15.1.2. Sodium -- Metal-Halide -- 15.1.3. Beta Alumina -- 15.1.4. Basic Cell Reactions -- 15.1.5. Materials of Construction -- 15.1.6. Cell and Battery Designs -- 15.1.7. Typical Applications -- 15.2. Electrical Performance and Ageing -- 15.2.1. Efficiency -- 15.2.2. Specific Energy/Power, Energy/Power Density -- 15.2.3. Lifetime: Influence of Operating Conditions on Ageing Processes -- 15.2.4. Self-Discharge -- 15.3. Battery Management -- 15.3.1. State-of-Charge Measurement -- 15.3.2. Safety -- 15.4. Environmental Issues -- 15.4.1. Availability of Materials -- 15.4.2. Life-Cycle Analysis -- 15.4.3. Legislative Restriction -- 15.4.4. Recycling -- 15.4.5. Energy Required for Production -- 15.5. Cost Issues -- 15.5.1. Sodium-Sulphur -- 15.5.2. Sodium-Metal-Halide -- 15.6. Current Status -- 15.6.1. Present Applications and Markets -- 15.6.2. Research and Development Activities -- 15.7. Concluding Remarks -- Acronyms and Initialisms -- Symbols and Units -- References -- Further Reading -- 16. Lithium Battery Energy Storage: State-of-the-Art Including Lithium-Air and Lithium-Sulphur Systems / Peter Kurzweil -- 16.1. Energy Storage in Lithium Batteries -- 16.1.1. Basic Cell Chemistry -- 16.1.2. Positive Electrode Materials -- 16.1.3. Negative Electrode Materials -- 16.1.4. Electrolytes -- 16.1.5. Separators -- 16.1.6. Cell and Battery Designs -- 16.1.7. Typical Applications -- 16.2. Electrical Performance, Lifetime, and Ageing -- 16.2.1. Efficiency -- 16.2.2. Power-to-Energy Ratio -- 16.2.3. Energy and Power Densities -- 16.2.4. Lifetime and Ageing Processes -- 16.2.5. Capacity Depending on Temperature and Discharge Rate -- 16.2.6. Self-Discharge Rate -- 16.2.7. Dynamic Behaviour -- 16.3. Accessories -- 16.3.1. Electronics and Charging Devices -- 16.3.2. Monitoring Systems -- 16.3.3. Safety Devices -- 16.3.4. Diagnosis and Monitoring Concepts -- 16.4. Environmental Issues -- 16.4.1. Availability of Lithium -- 16.4.2. Life Cycle Analysis -- 16.4.3. Legislative Restriction -- 16.4.4. Recycling -- 16.5. Cost Issues -- 16.5.1. Cost Projections -- 16.5.2. Anode Materials (Negative) -- 16.5.3. Cathode Materials (Positive) -- 16.5.4. Electrolyte -- 16.6. State-of-the-Art -- 16.6.1. Industrial Activities -- 16.6.2. Research Activities and Challenges -- 16.6.3. Worldwide Annual Turnover -- Abbreviations and Symbols -- References -- 17. Redox Flow Batteries / Maria Skyllas-Kazacos -- 17.1. Introduction -- 17.2. Flow Battery Chemistries -- 17.2.1. Zinc-Based Flow Batteries -- 17.2.2. Redox Flow Batteries -- 17.3. Cost Considerations -- 17.4. Summary and Conclusions -- References -- Further readings -- 18. Metal Storage/Metal Air (Zn, Fe, Al, Mg) / Hajime Arai -- 18.1. General Technical Description of the Technology -- 18.1.1. Basic Reactions -- 18.1.2. Materials -- 18.1.3. Cell and Battery Designs -- 18.1.4. Typical Applications -- 18.2. Electrical Performance, Lifetime, and Ageing Aspects -- 18.2.1. Efficiency as f(T, I) -- 18.2.2. Power-to-Energy Ratio -- 18.2.3. Energy and Power Densities (Volume, Gravimetric) -- 18.2.4. Lifetime: Ageing Processes, Operating Conditions Affecting Ageing (T, DoD) -- 18.2.5. Capacity Depending on Temperature and Discharge Rate -- 18.2.6. Self-discharge Rate (Dependence on Temperature, Starting at Full-Charged System and Starting at 50% State of Charge) -- 18.2.7. Dynamic Behaviour -- 18.3. Necessary Accessories -- 18.3.1. Electronics -- 18.3.2. Charging Devices -- 18.3.3. Necessary Monitoring Systems -- 18.3.4. Safety Devices -- 18.3.5. Needs for Diagnosis and Monitoring Concepts -- 18.4. Environmental Issues -- 18.4.1. Materials Availability -- 18.4.2. Life Cycle Analysis -- 18.4.3. Critical Legislative Restriction -- 18.4.4. Recycling Quotas -- 18.4.5. Energy Needed for the Production -- 18.5. Cost Issues (Today, in 5 years, and in 10 years) -- 18.5.1. Material Costs, Costs per Power and per Energy, Investment, and Throughput Costs of Kilowatt-hour -- 18.6. Actual Status -- 18.6.1. Overview of Industrial Activities (Existing Applications and Markets) -- 18.6.2. R & D Activities (Major Research Institutions and Companies) -- 18.6.3. Worldwide Annual Turnover with the Storage Technology, Installed Capacity -- Further Reading -- 19. Electrochemical Double-layer Capacitors / Peter Kurzweil -- 19.1. Technical Description -- 19.1.1. Basic Concepts of Double-Layer-Capacitance -- 19.1.2. Carbon Materials -- 19.1.3. Metal Oxide Technology -- 19.1.4. Solid-State and Polymer Technology -- 19.1.5. Electrolyte Solution -- 19.1.6. Separator -- 19.1.7. Cell and Stack Designs -- 19.1.8. Typical Applications -- 19.2. Electrical Performance, Lifetime, and Ageing Aspects -- 19.2.1. Specific Energy -- 19.2.2. Power and Efficiency -- 19.2.3. Lifetime and Ageing Processes -- 19.2.4. Capacitance -- 19.2.5. Self-discharge Rate -- 19.2.6. Dynamic Behaviour -- 19.2.7. Modelling of Double-layer Capacitors -- 19.3. Accessories -- 19.3.1. Diagnosis and Monitoring Concepts -- 19.3.2. Safety Issues -- 19.4. Environmental Issues -- 19.4.1. Materials Availability -- 19.4.2. Life-Cycle Analysis -- 19.4.3. Legislative Restriction -- 19.5. Cost Issues -- 19.5.1. Costs Per Energy and Power -- 19.6. Actual Status -- 19.6.1. International Performance Data -- 19.6.2. Practical Electrode Fabrication -- 19.6.3. Worldwide Annual Turnover -- Symbols and Units -- Abbreviations and Acronyms -- Further Reading -- pt. III System Aspects -- 20. Battery Management and Battery Diagnostics / Angel Kirchev -- 20.1. Introduction -- 20.2. Battery Parameters -- Monitoring and Control -- 20.2.1. Battery Voltage -- 20.2.2. Charge and Discharge Current -- 20.2.3. Battery Capacity -- 20.2.4. Battery Resistance and Battery Impedance -- 20.2.5. Battery Power and Battery Energy -- 20.2.6. Battery Temperature -- 20.3. Battery Management of Electrochemical Energy Storage Systems -- 20.3.1. General -- 20.3.2. Battery Management of Aqueous Electrochemical Energy Storage Systems -- 20.3.3. Battery Management of Non-aqueous Electrochemical Energy Storage Systems -- 20.4. Battery Diagnostics -- 20.4.1. Data Storage vs Energy Storage -- 20.4.2. Non-invasive Battery Diagnostics -- 20.4.3. Invasive Battery Diagnostics -- 20.5. Implementation of Battery Management and Battery Diagnostics -- 20.6. Conclusions -- References -- 21. Life-Cycle Cost Calculation and Comparison for Different Reference Cases and Market Segments / Dirk Uwe Sauer -- 21.1. Motivation -- 21.2. Methodology -- 21.2.1. Parameters Characterizing the Storage Technology -- 21.2.2. Parameters Characterizing the Storage Application -- 21.2.3. Calculated Parameters -- 21.2.4. LCC Calculation -- 21.3. Reference Cases -- 21.3.1. Long-term Storage -- 21.3.2. High-Voltage Grid Load-Levelling -- 21.3.3. Medium-Voltage Grid Peak-Shaving -- 21.3.4. Decentralized Storage Systems in Low-Voltage Grids -- 21.3.5. Electrical Network and Interest Rate -- 21.4. Example Results -- 21.4.1. Long-term Storage -- 21.4.2. High-Voltage Grid Load-Levelling -- 21.4.3. Medium-Voltage Grid Peak-Shaving -- 21.4.4. Decentralized Storages in Low-Voltage Grid -- 21.5. Sensitivity Analysis -- 21.5.1. Dependence on Electricity Price -- 21.5.2. Dependence on Capital Costs (Interest Rate) -- 21.5.3. Dependence on Number of Cycles -- 22. 'Double-Use' of Storage Systems / Dirk Uwe Sauer -- 22.1. Introduction -- 22.2. Uninterruptible Power Supply Systems -- 22.3. Electric Vehicle Batteries -- Vehicle-to-Grid -- 22.3.1. Introduction -- 22.3.2. Car Usage -- 22.3.3. Vehicle Availability -- 22.3.4. Vehicle-to-Grid Concept -- 22.3.5. Applications Where Double-Use is not Useful or is of Only Limited Use -- 22.4. Photovoltaic Home Storage -- 22.4.1. Introduction -- 22.4.2. System Designs and Benefits -- 22.4.3. Unloading the Grid and Grid Services. Note continued: 22.5. Second Life of Vehicle Batteries -- 22.5.1. Strengths and Opportunities of 'Second-Life' Applications -- 22.5.2. Weakness and Threats of 'Second-Life' Applications -- 22.5.3. Summary on 'Second-Life' Opportunities -- References. Renewable energy sources. http://id.loc.gov/authorities/subjects/sh85112837 Renewable Energy https://id.nlm.nih.gov/mesh/D059205 Énergies renouvelables. TECHNOLOGY & ENGINEERING Mechanical. bisacsh Renewable energy sources fast Moseley, Patrick T., editor. https://id.oclc.org/worldcat/entity/E39PCjDKgh3Yh9BYGt43QXdVcq http://id.loc.gov/authorities/names/no2015027664 Garche, Jürgen, editor. https://id.oclc.org/worldcat/entity/E39PCjCktYC436dc7Dd3dvRwJC http://id.loc.gov/authorities/names/n84120468 Adelmann, Peter, contributor. has work: Electrochemical energy storage for renewable sources and grid balancing (Text) https://id.oclc.org/worldcat/entity/E39PCGyjVTXvbXkFQ3WT86CkH3 https://id.oclc.org/worldcat/ontology/hasWork Print version: Electrochemical energy storage for renewable sources and grid balancing. Amsterdam, Netherlands : Elsevier, ©2015 xvi, 473 pages 9780444626165 FWS01 ZDB-4-EBA FWS_PDA_EBA https://www.sciencedirect.com/science/book/9780444626165 Volltext CBO01 ZDB-4-EBA FWS_PDA_EBA https://www.sciencedirect.com/science/book/9780444626165 Volltext FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=485309 Volltext CBO01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=485309 Volltext |
spellingShingle | Electrochemical energy storage for renewable sources and grid balancing / Introduction -- Renewable Energies, Markets and Storage Technology Classification -- The Exploitation of Renewable Sources of Energy for Power Generation / Energy and Society -- Energy and Electricity -- Power System History and Operation -- Electricity Generation -- Power Systems Operation -- Integration of Renewable Energy into Power Networks -- The Role of Energy Storage -- International Comparisons -- Types and Applications of Energy Storage -- Thermal Energy Storage -- Hydrogen Energy Storage as an Energy Vector -- Compressed Air Energy Storage -- Mechanical Systems -- Novel Electrochemical Storage -- Commercialization of Energy Storage -- References -- Classification of Storage Systems / Introduction and Motivation -- Flexibility Options -- Different Types of Classifications -- Classification According to the Needs of the Grid -- Classification According to the Supply Time of the Storage System -- Classification as Single-purpose and Double-use Storage Systems -- Classification According to the Position in the Grid and the Service Offers -- Conclusion -- Challenges of Power Systems / Power System Requirements -- The Role of Storage Systems for Future Challenges in the Electrical Network -- Transmission System -- Distribution Network -- Demand-Side Management and Other Alternatives to Storage Systems -- Demand-Side Management -- Thermal Storage Systems -- Supply of Reserve Power -- Reserve Qualities -- Reserve Power in Germany -- Applications and Markets for Grid-Connected Storage Systems / Introduction -- Frequency Control -- Instantaneous Reserve/Spinning Reserve -- Primary Control Reserve -- Secondary Control Reserve -- Tertiary/Minute Control Reserve -- Self-supply -- Market Situation -- Market Size -- Operation Profile -- Barriers to Entry -- Competitors -- Uninterruptible Power Supply -- Competition -- Arbitrage/Energy Trading -- Load Levelling/Peak-Shaving -- Other Markets and Applications -- Microgrids -- Island Grids/Off-grid/Weak Grids -- Transmission and Distribution Upgrade Deferral -- Stabilizing Conventional Generation/Ramp Rate Support -- Ancillary Services -- Existing Markets for Storage Systems in Off-Grid Applications / Different Sources of Renewable Energy -- Impact of the User -- Telecom Repeaters -- Rural Schools and Rural Hospitals -- Solar-Powered Street Lights -- Applications in the Leisure Market -- Rural Electrification: Mini-Grids -- Solar Home Systems -- Pico Solar Systems -- Market Overview of 'Off-Grid' Systems -- Review of the Need for Storage Capacity Depending on the Share of Renewable Energies / Introductory Remarks -- Selected Studies with German Focus -- Selected Studies with European Focus -- Discussion of Study Results -- Required Electric and Storage Power -- Energy Capacity Need -- Transferability of the Results to Other Regions -- Conclusions -- Abbreviations -- Storage Technologies -- Overview of Non-electrochemical Storage Technologies / 'Electrical' Storage Systems -- Superconductive Magnetic Energy Storage -- Capacitors -- 'Mechanical' Storage Systems -- Pumped Hydro -- Compressed Air Energy Storage (CAES) -- Flywheels -- 'Thermoelectric' Energy Storage -- Storage Technologies at the Concept Stage -- Summary -- Hydrogen Production from Renewable Energies-Electrolyzer Technologies / General Approach -- Historical Background -- Fundamentals of Water Electrolysis -- Thermodynamic Consideration -- Kinetic Losses Inside an Electrolysis Cell -- Efficiency of a Water Electrolyzer -- Alkaline Water Electrolysis -- Cell Components and Stack Design -- System Layout and Peripheral Components -- Gas Quality, Efficiency, and Lifetime -- Regenerative Loads -- PEM Water Electrolysis -- High-Temperature Water Electrolysis -- Electrical Performance, Efficiency and Lifetime -- Manufacturers and Developers of Electrolyzers -- Cost Issues -- Acronyms/Abbreviations -- Large-Scale Hydrogen Energy Storage / Electrolyzer -- PEM Electrolysis Principle -- Parameters of an Envisaged Large-Scale Electrolyzer System -- Development Roadmap for PEM Electrolyzer Systems at Siemens -- Hydrogen Gas Storage -- Underground Hydrogen Storage in Salt Caverns -- Utilization of Artificial, Mined Underground Salt Caverns and Their Potential -- Reconversion of the Hydrogen into Electricity -- Aspects Related to the Electricity Grid -- Power to Gas Solution -- Cost Issues: Levellized Cost of Energy -- Actual Status and Outlook -- Acknowledgment -- Hydrogen Conversion into Electricity and Thermal Energy by Fuel Cells: Use of H2-Systems and Batteries / Electrochemical Power Sources -- Hydrogen-Based Energy Storage Systems -- Hydrogen Production by Water Electrolysis -- Hydrogen Storage -- Fuel Cells -- Energy Flow in the Hydrogen Energy Storage System -- Demonstration Projects -- Freiburg Energy-Independent Solar Home -- PAFC in Combined Heat and Power Generation in Hamburg -- The Phoebus Project -- Utsira Island -- Myrthe -- Hydrogen Community Lolland -- MW-Scale PEMFC Demonstration by FirstEnergy Corporation -- MW-PEMFC System Operated by Solvay -- Case Study: A General Energy Storage System Layout for Maximized Use of Renewable Energies -- Short-term Energy Storage Options -- Storage Efficiency Considerations of the Hybrid System -- Case Study of a PV-Based System Minimizing Grid Interaction -- Energy Harvest from a Photovoltaic System -- Battery Storage -- Electrolyzer and Hydrogen Storage System -- Fuel Cell System -- Operating Strategy -- Simulation Result -- PEM Electrolyzers and PEM Regenerative Fuel Cells Industrial View / General Technology Description -- Background of Water Electrolysis -- Cell and System Designs -- Typical Applications -- Electrical Performance and Lifetime -- Efficiency -- Energy and Power Densities -- Lifetime and Ageing Processes -- Dynamic Behaviour -- Necessary Accessories -- Electronics -- Monitoring Systems -- Safety Devices -- Diagnostics -- Environmental Issues -- Materials Availability -- Life-Cycle Analysis Critical Legislative Restriction -- Energy for System Production -- Installation Costs -- Operation Costs -- Actual Status -- Overview of Industrial Activities (Existing Applications and Markets) -- R & D Activities (Major Research Institutions and Companies) -- Energy Carriers Made from Hydrogen / Hydrogen Production and Distribution -- Methane -- Methanol -- Dimethyl Ether -- Fischer-Tropsch Synfuels -- Higher Alcohols and Ethers -- Ammonia -- Conclusion and Outlook -- Energy Storage with Lead-Acid Batteries / Fundamentals of Lead-Acid Technology -- Basic Cell Reactions -- Materials of Construction -- Cell and Battery Designs -- Electrical Performance and Ageing -- Specific Energy/Power; Energy/Power Density -- Lifetime: Influence of Operating Conditions on Aging Processes -- Capacity -- Self-Discharge. Dynamic Behavioer -- Battery Management -- State-of-Charge Measurement -- Charging Methods -- Safety -- Past/Present Applications, Activities and Markets -- Notable Past Battery Energy Storage System Installations -- Notable Present Battery Energy Storage System Installations -- Remote Area Power Supplies Systems -- Research and Development Activities -- Contribution of Lead-Acid to Global Energy Storage -- Acronyms and Initialisms -- Symbols -- Further reading -- Nickel-Cadmium and Nickel-Metal Hydride Battery Energy Storage / Ni-Cd and Ni-MH Technologies -- Ni-Cd and Ni-MH Basic Reactions -- Materials -- Alkaline Cell and Battery Designs -- Electrical Performance and Lifetime and Ageing Aspects -- General Charge-Discharge Characteristics -- Lifetime: Ageing Processes -- Storage Conditions -- Self-discharge -- Environmental Considerations -- Legislative Considerations -- Recycling -- Overview of Alkaline Batteries for Energy Storage -- Further Reading -- High-Temperature Sodium Batteries for Energy Storage / Fundamentals of High-Temperature Sodium Battery Technology -- Sodium-Sulphur -- Sodium -- Metal-Halide -- Beta Alumina -- Specific Energy/Power, Energy/Power Density -- Lifetime: Influence of Operating Conditions on Ageing Processes -- Self-Discharge -- Availability of Materials -- Life-Cycle Analysis -- Legislative Restriction -- Energy Required for Production -- Sodium-Metal-Halide -- Current Status -- Present Applications and Markets -- Concluding Remarks -- Symbols and Units -- Lithium Battery Energy Storage: State-of-the-Art Including Lithium-Air and Lithium-Sulphur Systems / Energy Storage in Lithium Batteries -- Basic Cell Chemistry -- Positive Electrode Materials -- Negative Electrode Materials -- Electrolytes -- Separators -- Electrical Performance, Lifetime, and Ageing -- Power-to-Energy Ratio -- Capacity Depending on Temperature and Discharge Rate -- Self-Discharge Rate -- Accessories -- Electronics and Charging Devices -- Diagnosis and Monitoring Concepts -- Availability of Lithium -- Life Cycle Analysis -- Cost Projections -- Anode Materials (Negative) -- Cathode Materials (Positive) -- Electrolyte -- State-of-the-Art -- Industrial Activities -- Research Activities and Challenges -- Worldwide Annual Turnover -- Abbreviations and Symbols -- Redox Flow Batteries / Flow Battery Chemistries -- Zinc-Based Flow Batteries -- Redox Flow Batteries -- Cost Considerations -- Summary and Conclusions -- Further readings -- Metal Storage/Metal Air (Zn, Fe, Al, Mg) / General Technical Description of the Technology -- Basic Reactions -- Electrical Performance, Lifetime, and Ageing Aspects -- Efficiency as f(T, I) -- Energy and Power Densities (Volume, Gravimetric) -- Lifetime: Ageing Processes, Operating Conditions Affecting Ageing (T, DoD) -- Self-discharge Rate (Dependence on Temperature, Starting at Full-Charged System and Starting at 50% State of Charge) -- Charging Devices -- Necessary Monitoring Systems -- Needs for Diagnosis and Monitoring Concepts -- Recycling Quotas -- Energy Needed for the Production -- Cost Issues (Today, in 5 years, and in 10 years) -- Material Costs, Costs per Power and per Energy, Investment, and Throughput Costs of Kilowatt-hour -- Worldwide Annual Turnover with the Storage Technology, Installed Capacity -- Electrochemical Double-layer Capacitors / Technical Description -- Basic Concepts of Double-Layer-Capacitance -- Carbon Materials -- Metal Oxide Technology -- Solid-State and Polymer Technology -- Electrolyte Solution -- Separator -- Cell and Stack Designs -- Specific Energy -- Power and Efficiency -- Capacitance -- Self-discharge Rate -- Modelling of Double-layer Capacitors -- Safety Issues -- Costs Per Energy and Power -- International Performance Data -- Practical Electrode Fabrication -- Abbreviations and Acronyms -- System Aspects -- Battery Management and Battery Diagnostics / Battery Parameters -- Monitoring and Control -- Battery Voltage -- Charge and Discharge Current -- Battery Capacity -- Battery Resistance and Battery Impedance -- Battery Power and Battery Energy -- Battery Temperature -- Battery Management of Electrochemical Energy Storage Systems -- General -- Battery Management of Aqueous Electrochemical Energy Storage Systems -- Battery Management of Non-aqueous Electrochemical Energy Storage Systems -- Battery Diagnostics -- Data Storage vs Energy Storage -- Non-invasive Battery Diagnostics -- Invasive Battery Diagnostics -- Implementation of Battery Management and Battery Diagnostics -- Life-Cycle Cost Calculation and Comparison for Different Reference Cases and Market Segments / Motivation -- Methodology -- Parameters Characterizing the Storage Technology -- Parameters Characterizing the Storage Application -- Calculated Parameters -- LCC Calculation -- Reference Cases -- Long-term Storage -- High-Voltage Grid Load-Levelling -- Medium-Voltage Grid Peak-Shaving -- Decentralized Storage Systems in Low-Voltage Grids -- Electrical Network and Interest Rate -- Example Results -- Decentralized Storages in Low-Voltage Grid -- Sensitivity Analysis -- Dependence on Electricity Price -- Dependence on Capital Costs (Interest Rate) -- Dependence on Number of Cycles -- 'Double-Use' of Storage Systems / Uninterruptible Power Supply Systems -- Electric Vehicle Batteries -- Vehicle-to-Grid -- Car Usage -- Vehicle Availability -- Vehicle-to-Grid Concept -- Applications Where Double-Use is not Useful or is of Only Limited Use -- Photovoltaic Home Storage -- System Designs and Benefits -- Unloading the Grid and Grid Services. Second Life of Vehicle Batteries -- Strengths and Opportunities of 'Second-Life' Applications -- Weakness and Threats of 'Second-Life' Applications -- Summary on 'Second-Life' Opportunities -- References. Renewable energy sources. http://id.loc.gov/authorities/subjects/sh85112837 Renewable Energy https://id.nlm.nih.gov/mesh/D059205 Énergies renouvelables. TECHNOLOGY & ENGINEERING Mechanical. bisacsh Renewable energy sources fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85112837 https://id.nlm.nih.gov/mesh/D059205 |
title | Electrochemical energy storage for renewable sources and grid balancing / |
title_alt | Introduction -- Renewable Energies, Markets and Storage Technology Classification -- The Exploitation of Renewable Sources of Energy for Power Generation / Energy and Society -- Energy and Electricity -- Power System History and Operation -- Electricity Generation -- Power Systems Operation -- Integration of Renewable Energy into Power Networks -- The Role of Energy Storage -- International Comparisons -- Types and Applications of Energy Storage -- Thermal Energy Storage -- Hydrogen Energy Storage as an Energy Vector -- Compressed Air Energy Storage -- Mechanical Systems -- Novel Electrochemical Storage -- Commercialization of Energy Storage -- References -- Classification of Storage Systems / Introduction and Motivation -- Flexibility Options -- Different Types of Classifications -- Classification According to the Needs of the Grid -- Classification According to the Supply Time of the Storage System -- Classification as Single-purpose and Double-use Storage Systems -- Classification According to the Position in the Grid and the Service Offers -- Conclusion -- Challenges of Power Systems / Power System Requirements -- The Role of Storage Systems for Future Challenges in the Electrical Network -- Transmission System -- Distribution Network -- Demand-Side Management and Other Alternatives to Storage Systems -- Demand-Side Management -- Thermal Storage Systems -- Supply of Reserve Power -- Reserve Qualities -- Reserve Power in Germany -- Applications and Markets for Grid-Connected Storage Systems / Introduction -- Frequency Control -- Instantaneous Reserve/Spinning Reserve -- Primary Control Reserve -- Secondary Control Reserve -- Tertiary/Minute Control Reserve -- Self-supply -- Market Situation -- Market Size -- Operation Profile -- Barriers to Entry -- Competitors -- Uninterruptible Power Supply -- Competition -- Arbitrage/Energy Trading -- Load Levelling/Peak-Shaving -- Other Markets and Applications -- Microgrids -- Island Grids/Off-grid/Weak Grids -- Transmission and Distribution Upgrade Deferral -- Stabilizing Conventional Generation/Ramp Rate Support -- Ancillary Services -- Existing Markets for Storage Systems in Off-Grid Applications / Different Sources of Renewable Energy -- Impact of the User -- Telecom Repeaters -- Rural Schools and Rural Hospitals -- Solar-Powered Street Lights -- Applications in the Leisure Market -- Rural Electrification: Mini-Grids -- Solar Home Systems -- Pico Solar Systems -- Market Overview of 'Off-Grid' Systems -- Review of the Need for Storage Capacity Depending on the Share of Renewable Energies / Introductory Remarks -- Selected Studies with German Focus -- Selected Studies with European Focus -- Discussion of Study Results -- Required Electric and Storage Power -- Energy Capacity Need -- Transferability of the Results to Other Regions -- Conclusions -- Abbreviations -- Storage Technologies -- Overview of Non-electrochemical Storage Technologies / 'Electrical' Storage Systems -- Superconductive Magnetic Energy Storage -- Capacitors -- 'Mechanical' Storage Systems -- Pumped Hydro -- Compressed Air Energy Storage (CAES) -- Flywheels -- 'Thermoelectric' Energy Storage -- Storage Technologies at the Concept Stage -- Summary -- Hydrogen Production from Renewable Energies-Electrolyzer Technologies / General Approach -- Historical Background -- Fundamentals of Water Electrolysis -- Thermodynamic Consideration -- Kinetic Losses Inside an Electrolysis Cell -- Efficiency of a Water Electrolyzer -- Alkaline Water Electrolysis -- Cell Components and Stack Design -- System Layout and Peripheral Components -- Gas Quality, Efficiency, and Lifetime -- Regenerative Loads -- PEM Water Electrolysis -- High-Temperature Water Electrolysis -- Electrical Performance, Efficiency and Lifetime -- Manufacturers and Developers of Electrolyzers -- Cost Issues -- Acronyms/Abbreviations -- Large-Scale Hydrogen Energy Storage / Electrolyzer -- PEM Electrolysis Principle -- Parameters of an Envisaged Large-Scale Electrolyzer System -- Development Roadmap for PEM Electrolyzer Systems at Siemens -- Hydrogen Gas Storage -- Underground Hydrogen Storage in Salt Caverns -- Utilization of Artificial, Mined Underground Salt Caverns and Their Potential -- Reconversion of the Hydrogen into Electricity -- Aspects Related to the Electricity Grid -- Power to Gas Solution -- Cost Issues: Levellized Cost of Energy -- Actual Status and Outlook -- Acknowledgment -- Hydrogen Conversion into Electricity and Thermal Energy by Fuel Cells: Use of H2-Systems and Batteries / Electrochemical Power Sources -- Hydrogen-Based Energy Storage Systems -- Hydrogen Production by Water Electrolysis -- Hydrogen Storage -- Fuel Cells -- Energy Flow in the Hydrogen Energy Storage System -- Demonstration Projects -- Freiburg Energy-Independent Solar Home -- PAFC in Combined Heat and Power Generation in Hamburg -- The Phoebus Project -- Utsira Island -- Myrthe -- Hydrogen Community Lolland -- MW-Scale PEMFC Demonstration by FirstEnergy Corporation -- MW-PEMFC System Operated by Solvay -- Case Study: A General Energy Storage System Layout for Maximized Use of Renewable Energies -- Short-term Energy Storage Options -- Storage Efficiency Considerations of the Hybrid System -- Case Study of a PV-Based System Minimizing Grid Interaction -- Energy Harvest from a Photovoltaic System -- Battery Storage -- Electrolyzer and Hydrogen Storage System -- Fuel Cell System -- Operating Strategy -- Simulation Result -- PEM Electrolyzers and PEM Regenerative Fuel Cells Industrial View / General Technology Description -- Background of Water Electrolysis -- Cell and System Designs -- Typical Applications -- Electrical Performance and Lifetime -- Efficiency -- Energy and Power Densities -- Lifetime and Ageing Processes -- Dynamic Behaviour -- Necessary Accessories -- Electronics -- Monitoring Systems -- Safety Devices -- Diagnostics -- Environmental Issues -- Materials Availability -- Life-Cycle Analysis Critical Legislative Restriction -- Energy for System Production -- Installation Costs -- Operation Costs -- Actual Status -- Overview of Industrial Activities (Existing Applications and Markets) -- R & D Activities (Major Research Institutions and Companies) -- Energy Carriers Made from Hydrogen / Hydrogen Production and Distribution -- Methane -- Methanol -- Dimethyl Ether -- Fischer-Tropsch Synfuels -- Higher Alcohols and Ethers -- Ammonia -- Conclusion and Outlook -- Energy Storage with Lead-Acid Batteries / Fundamentals of Lead-Acid Technology -- Basic Cell Reactions -- Materials of Construction -- Cell and Battery Designs -- Electrical Performance and Ageing -- Specific Energy/Power; Energy/Power Density -- Lifetime: Influence of Operating Conditions on Aging Processes -- Capacity -- Self-Discharge. Dynamic Behavioer -- Battery Management -- State-of-Charge Measurement -- Charging Methods -- Safety -- Past/Present Applications, Activities and Markets -- Notable Past Battery Energy Storage System Installations -- Notable Present Battery Energy Storage System Installations -- Remote Area Power Supplies Systems -- Research and Development Activities -- Contribution of Lead-Acid to Global Energy Storage -- Acronyms and Initialisms -- Symbols -- Further reading -- Nickel-Cadmium and Nickel-Metal Hydride Battery Energy Storage / Ni-Cd and Ni-MH Technologies -- Ni-Cd and Ni-MH Basic Reactions -- Materials -- Alkaline Cell and Battery Designs -- Electrical Performance and Lifetime and Ageing Aspects -- General Charge-Discharge Characteristics -- Lifetime: Ageing Processes -- Storage Conditions -- Self-discharge -- Environmental Considerations -- Legislative Considerations -- Recycling -- Overview of Alkaline Batteries for Energy Storage -- Further Reading -- High-Temperature Sodium Batteries for Energy Storage / Fundamentals of High-Temperature Sodium Battery Technology -- Sodium-Sulphur -- Sodium -- Metal-Halide -- Beta Alumina -- Specific Energy/Power, Energy/Power Density -- Lifetime: Influence of Operating Conditions on Ageing Processes -- Self-Discharge -- Availability of Materials -- Life-Cycle Analysis -- Legislative Restriction -- Energy Required for Production -- Sodium-Metal-Halide -- Current Status -- Present Applications and Markets -- Concluding Remarks -- Symbols and Units -- Lithium Battery Energy Storage: State-of-the-Art Including Lithium-Air and Lithium-Sulphur Systems / Energy Storage in Lithium Batteries -- Basic Cell Chemistry -- Positive Electrode Materials -- Negative Electrode Materials -- Electrolytes -- Separators -- Electrical Performance, Lifetime, and Ageing -- Power-to-Energy Ratio -- Capacity Depending on Temperature and Discharge Rate -- Self-Discharge Rate -- Accessories -- Electronics and Charging Devices -- Diagnosis and Monitoring Concepts -- Availability of Lithium -- Life Cycle Analysis -- Cost Projections -- Anode Materials (Negative) -- Cathode Materials (Positive) -- Electrolyte -- State-of-the-Art -- Industrial Activities -- Research Activities and Challenges -- Worldwide Annual Turnover -- Abbreviations and Symbols -- Redox Flow Batteries / Flow Battery Chemistries -- Zinc-Based Flow Batteries -- Redox Flow Batteries -- Cost Considerations -- Summary and Conclusions -- Further readings -- Metal Storage/Metal Air (Zn, Fe, Al, Mg) / General Technical Description of the Technology -- Basic Reactions -- Electrical Performance, Lifetime, and Ageing Aspects -- Efficiency as f(T, I) -- Energy and Power Densities (Volume, Gravimetric) -- Lifetime: Ageing Processes, Operating Conditions Affecting Ageing (T, DoD) -- Self-discharge Rate (Dependence on Temperature, Starting at Full-Charged System and Starting at 50% State of Charge) -- Charging Devices -- Necessary Monitoring Systems -- Needs for Diagnosis and Monitoring Concepts -- Recycling Quotas -- Energy Needed for the Production -- Cost Issues (Today, in 5 years, and in 10 years) -- Material Costs, Costs per Power and per Energy, Investment, and Throughput Costs of Kilowatt-hour -- Worldwide Annual Turnover with the Storage Technology, Installed Capacity -- Electrochemical Double-layer Capacitors / Technical Description -- Basic Concepts of Double-Layer-Capacitance -- Carbon Materials -- Metal Oxide Technology -- Solid-State and Polymer Technology -- Electrolyte Solution -- Separator -- Cell and Stack Designs -- Specific Energy -- Power and Efficiency -- Capacitance -- Self-discharge Rate -- Modelling of Double-layer Capacitors -- Safety Issues -- Costs Per Energy and Power -- International Performance Data -- Practical Electrode Fabrication -- Abbreviations and Acronyms -- System Aspects -- Battery Management and Battery Diagnostics / Battery Parameters -- Monitoring and Control -- Battery Voltage -- Charge and Discharge Current -- Battery Capacity -- Battery Resistance and Battery Impedance -- Battery Power and Battery Energy -- Battery Temperature -- Battery Management of Electrochemical Energy Storage Systems -- General -- Battery Management of Aqueous Electrochemical Energy Storage Systems -- Battery Management of Non-aqueous Electrochemical Energy Storage Systems -- Battery Diagnostics -- Data Storage vs Energy Storage -- Non-invasive Battery Diagnostics -- Invasive Battery Diagnostics -- Implementation of Battery Management and Battery Diagnostics -- Life-Cycle Cost Calculation and Comparison for Different Reference Cases and Market Segments / Motivation -- Methodology -- Parameters Characterizing the Storage Technology -- Parameters Characterizing the Storage Application -- Calculated Parameters -- LCC Calculation -- Reference Cases -- Long-term Storage -- High-Voltage Grid Load-Levelling -- Medium-Voltage Grid Peak-Shaving -- Decentralized Storage Systems in Low-Voltage Grids -- Electrical Network and Interest Rate -- Example Results -- Decentralized Storages in Low-Voltage Grid -- Sensitivity Analysis -- Dependence on Electricity Price -- Dependence on Capital Costs (Interest Rate) -- Dependence on Number of Cycles -- 'Double-Use' of Storage Systems / Uninterruptible Power Supply Systems -- Electric Vehicle Batteries -- Vehicle-to-Grid -- Car Usage -- Vehicle Availability -- Vehicle-to-Grid Concept -- Applications Where Double-Use is not Useful or is of Only Limited Use -- Photovoltaic Home Storage -- System Designs and Benefits -- Unloading the Grid and Grid Services. Second Life of Vehicle Batteries -- Strengths and Opportunities of 'Second-Life' Applications -- Weakness and Threats of 'Second-Life' Applications -- Summary on 'Second-Life' Opportunities -- References. |
title_auth | Electrochemical energy storage for renewable sources and grid balancing / |
title_exact_search | Electrochemical energy storage for renewable sources and grid balancing / |
title_full | Electrochemical energy storage for renewable sources and grid balancing / edited by Patrick T. Moseley, Jürgen Garche ; contributors Peter Adelmann [and thirty five others]. |
title_fullStr | Electrochemical energy storage for renewable sources and grid balancing / edited by Patrick T. Moseley, Jürgen Garche ; contributors Peter Adelmann [and thirty five others]. |
title_full_unstemmed | Electrochemical energy storage for renewable sources and grid balancing / edited by Patrick T. Moseley, Jürgen Garche ; contributors Peter Adelmann [and thirty five others]. |
title_short | Electrochemical energy storage for renewable sources and grid balancing / |
title_sort | electrochemical energy storage for renewable sources and grid balancing |
topic | Renewable energy sources. http://id.loc.gov/authorities/subjects/sh85112837 Renewable Energy https://id.nlm.nih.gov/mesh/D059205 Énergies renouvelables. TECHNOLOGY & ENGINEERING Mechanical. bisacsh Renewable energy sources fast |
topic_facet | Renewable energy sources. Renewable Energy Énergies renouvelables. TECHNOLOGY & ENGINEERING Mechanical. Renewable energy sources |
url | https://www.sciencedirect.com/science/book/9780444626165 https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=485309 |
work_keys_str_mv | AT moseleypatrickt electrochemicalenergystorageforrenewablesourcesandgridbalancing AT garchejurgen electrochemicalenergystorageforrenewablesourcesandgridbalancing AT adelmannpeter electrochemicalenergystorageforrenewablesourcesandgridbalancing |