Inverse problems :: Tikhonov theory and algorithms /
Inverse problems arise in practical applications whenever one needs to deduce unknowns from observables. This monograph is a valuable contribution to the highly topical field of computational inverse problems. Both mathematical theory and numerical algorithms for model-based inverse problems are dis...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
[Hackensack] New Jersey :
World Scientific,
2014.
|
Schriftenreihe: | Series on applied mathematics.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Inverse problems arise in practical applications whenever one needs to deduce unknowns from observables. This monograph is a valuable contribution to the highly topical field of computational inverse problems. Both mathematical theory and numerical algorithms for model-based inverse problems are discussed in detail. The mathematical theory focuses on nonsmooth Tikhonov regularization for linear and nonlinear inverse problems. The computational methods include nonsmooth optimization algorithms, direct inversion methods and uncertainty quantification via Bayesian inference. The book offers a com. |
Beschreibung: | 1 online resource |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9814596205 9789814596206 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn893487334 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr |n||||||||| | ||
008 | 141019s2014 nju ob 001 0 eng d | ||
040 | |a CN3GA |b eng |e pn |c CN3GA |d OCLCO |d N$T |d CDX |d OCLCF |d EBLCP |d YDXCP |d DEBSZ |d OCLCQ |d AGLDB |d OCLCQ |d VTS |d STF |d M8D |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO | ||
019 | |a 893332637 | ||
020 | |a 9814596205 |q (electronic bk.) | ||
020 | |a 9789814596206 |q (electronic bk.) | ||
020 | |z 9789814596190 |q (hardcover ; |q alk. paper) | ||
020 | |z 9814596191 |q (hardcover ; |q alk. paper) | ||
035 | |a (OCoLC)893487334 |z (OCoLC)893332637 | ||
050 | 4 | |a QA371 |b .I88 2014 | |
072 | 7 | |a MAT |x 005000 |2 bisacsh | |
072 | 7 | |a MAT |x 034000 |2 bisacsh | |
082 | 7 | |a 515/.357 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Ito, Kazufumi, |e author. | |
245 | 1 | 0 | |a Inverse problems : |b Tikhonov theory and algorithms / |c by Kazufumi Ito (North Carolina State University, USA) & Bangti Jin (University of California, Riverside, USA). |
264 | 1 | |a [Hackensack] New Jersey : |b World Scientific, |c 2014. | |
300 | |a 1 online resource | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Series on Applied Mathematics ; |v v. 22 | |
504 | |a Includes bibliographical references and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Preface; Contents; 1. Introduction; 2. Models in Inverse Problems; 2.1 Introduction; 2.2 Elliptic inverse problems; 2.2.1 Cauchy problem; 2.2.2 Inverse source problem; 2.2.3 Inverse scattering problem; 2.2.4 Inverse spectral problem; 2.3 Tomography; 2.3.1 Computerized tomography; 2.3.2 Emission tomography; 2.3.3 Electrical impedance tomography; 2.3.4 Optical tomography; 2.3.5 Photoacoustic tomography; 3. Tikhonov Theory for Linear Problems; 3.1 Well-posedness; 3.2 Value function calculus; 3.3 Basic estimates; 3.3.1 Classical source condition; 3.3.2 Higher-order source condition. | |
505 | 8 | |a 3.4 A posteriori parameter choice rules3.4.1 Discrepancy principle; 3.4.2 Hanke-Raus rule; 3.4.3 Quasi-optimality criterion; 3.5 Augmented Tikhonov regularization; 3.5.1 Augmented Tikhonov regularization; 3.5.2 Variational characterization; 3.5.3 Fixed point algorithm; 3.6 Multi-parameter Tikhonov regularization; 3.6.1 Balancing principle; 3.6.2 Error estimates; 3.6.3 Numerical algorithms; Bibliographical notes; 4. Tikhonov Theory for Nonlinear Inverse Problems; 4.1 Well-posedness; 4.2 Classical convergence rate analysis; 4.2.1 A priori parameter choice; 4.2.2 A posteriori parameter choice. | |
505 | 8 | |a 4.2.3 Structural properties4.3 A new convergence rate analysis; 4.3.1 Necessary optimality condition; 4.3.2 Source and nonlinearity conditions; 4.3.3 Convergence rate analysis; 4.4 A class of parameter identification problems; 4.4.1 A general class of nonlinear inverse problems; 4.4.2 Bilinear problems; 4.4.3 Three elliptic examples; 4.5 Convergence rate analysis in Banach spaces; 4.5.1 Extensions of the classical approach; 4.5.2 Variational inequalities; 4.6 Conditional stability; Bibliographical notes; 5. Nonsmooth Optimization; 5.1 Existence and necessary optimality condition. | |
505 | 8 | |a 5.1.1 Existence of minimizers5.1.2 Necessary optimality; 5.2 Nonsmooth optimization algorithms; 5.2.1 Augmented Lagrangian method; 5.2.2 Lagrange multiplier theory; 5.2.3 Exact penalty method; 5.2.4 Gauss-Newton method; 5.2.5 Semismooth Newton Method; 5.3 p sparsity optimization; 5.3.1 0 optimization; 5.3.2 p (0 <p <1)-optimization; 5.3.3 Primal-dual active set method; 5.4 Nonsmooth nonconvex optimization; 5.4.1 Biconjugate function and relaxation; 5.4.2 Semismooth Newton method; 5.4.3 Constrained optimization; 6. Direct Inversion Methods; 6.1 Inverse scattering methods. | |
505 | 8 | |a 6.1.1 The MUSIC algorithm6.1.2 Linear sampling method; 6.1.3 Direct sampling method; 6.2 Point source identification; 6.3 Numerical unique continuation; 6.4 Gel'fand-Levitan-Marchenko transformation; 6.4.1 Gel'fand-Levitan-Marchenko transformation; 6.4.2 Application to inverse Sturm-Liouville problem; Bibliographical notes; 7. Bayesian Inference; 7.1 Fundamentals of Bayesian inference; 7.2 Model selection; 7.3 Markov chain Monte Carlo; 7.3.1 Monte Carlo simulation; 7.3.2 MCMC algorithms; 7.3.3 Convergence analysis; 7.3.4 Accelerating MCMC algorithms; 7.4 Approximate inference. | |
520 | |a Inverse problems arise in practical applications whenever one needs to deduce unknowns from observables. This monograph is a valuable contribution to the highly topical field of computational inverse problems. Both mathematical theory and numerical algorithms for model-based inverse problems are discussed in detail. The mathematical theory focuses on nonsmooth Tikhonov regularization for linear and nonlinear inverse problems. The computational methods include nonsmooth optimization algorithms, direct inversion methods and uncertainty quantification via Bayesian inference. The book offers a com. | ||
650 | 0 | |a Inverse problems (Differential equations) |x Numerical solutions. |0 http://id.loc.gov/authorities/subjects/sh85067685 | |
650 | 6 | |a Problèmes inverses (Équations différentielles) |x Solutions numériques. | |
650 | 7 | |a MATHEMATICS |x Calculus. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Mathematical Analysis. |2 bisacsh | |
650 | 7 | |a Inverse problems (Differential equations) |x Numerical solutions |2 fast | |
700 | 1 | |a Jin, Bangti, |e author. | |
776 | 0 | 8 | |i Print version: |z 9789814596190 |z 9814596191 |w (DLC) 2014013310 |
830 | 0 | |a Series on applied mathematics. |0 http://id.loc.gov/authorities/names/n93008796 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=862357 |3 Volltext |
936 | |a BATCHLOAD | ||
938 | |a Coutts Information Services |b COUT |n 30005479 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL1812622 | ||
938 | |a EBSCOhost |b EBSC |n 862357 | ||
938 | |a YBP Library Services |b YANK |n 12102382 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn893487334 |
---|---|
_version_ | 1816882290833227776 |
adam_text | |
any_adam_object | |
author | Ito, Kazufumi Jin, Bangti |
author_facet | Ito, Kazufumi Jin, Bangti |
author_role | aut aut |
author_sort | Ito, Kazufumi |
author_variant | k i ki b j bj |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA371 |
callnumber-raw | QA371 .I88 2014 |
callnumber-search | QA371 .I88 2014 |
callnumber-sort | QA 3371 I88 42014 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Preface; Contents; 1. Introduction; 2. Models in Inverse Problems; 2.1 Introduction; 2.2 Elliptic inverse problems; 2.2.1 Cauchy problem; 2.2.2 Inverse source problem; 2.2.3 Inverse scattering problem; 2.2.4 Inverse spectral problem; 2.3 Tomography; 2.3.1 Computerized tomography; 2.3.2 Emission tomography; 2.3.3 Electrical impedance tomography; 2.3.4 Optical tomography; 2.3.5 Photoacoustic tomography; 3. Tikhonov Theory for Linear Problems; 3.1 Well-posedness; 3.2 Value function calculus; 3.3 Basic estimates; 3.3.1 Classical source condition; 3.3.2 Higher-order source condition. 3.4 A posteriori parameter choice rules3.4.1 Discrepancy principle; 3.4.2 Hanke-Raus rule; 3.4.3 Quasi-optimality criterion; 3.5 Augmented Tikhonov regularization; 3.5.1 Augmented Tikhonov regularization; 3.5.2 Variational characterization; 3.5.3 Fixed point algorithm; 3.6 Multi-parameter Tikhonov regularization; 3.6.1 Balancing principle; 3.6.2 Error estimates; 3.6.3 Numerical algorithms; Bibliographical notes; 4. Tikhonov Theory for Nonlinear Inverse Problems; 4.1 Well-posedness; 4.2 Classical convergence rate analysis; 4.2.1 A priori parameter choice; 4.2.2 A posteriori parameter choice. 4.2.3 Structural properties4.3 A new convergence rate analysis; 4.3.1 Necessary optimality condition; 4.3.2 Source and nonlinearity conditions; 4.3.3 Convergence rate analysis; 4.4 A class of parameter identification problems; 4.4.1 A general class of nonlinear inverse problems; 4.4.2 Bilinear problems; 4.4.3 Three elliptic examples; 4.5 Convergence rate analysis in Banach spaces; 4.5.1 Extensions of the classical approach; 4.5.2 Variational inequalities; 4.6 Conditional stability; Bibliographical notes; 5. Nonsmooth Optimization; 5.1 Existence and necessary optimality condition. 5.1.1 Existence of minimizers5.1.2 Necessary optimality; 5.2 Nonsmooth optimization algorithms; 5.2.1 Augmented Lagrangian method; 5.2.2 Lagrange multiplier theory; 5.2.3 Exact penalty method; 5.2.4 Gauss-Newton method; 5.2.5 Semismooth Newton Method; 5.3 p sparsity optimization; 5.3.1 0 optimization; 5.3.2 p (0 <p <1)-optimization; 5.3.3 Primal-dual active set method; 5.4 Nonsmooth nonconvex optimization; 5.4.1 Biconjugate function and relaxation; 5.4.2 Semismooth Newton method; 5.4.3 Constrained optimization; 6. Direct Inversion Methods; 6.1 Inverse scattering methods. 6.1.1 The MUSIC algorithm6.1.2 Linear sampling method; 6.1.3 Direct sampling method; 6.2 Point source identification; 6.3 Numerical unique continuation; 6.4 Gel'fand-Levitan-Marchenko transformation; 6.4.1 Gel'fand-Levitan-Marchenko transformation; 6.4.2 Application to inverse Sturm-Liouville problem; Bibliographical notes; 7. Bayesian Inference; 7.1 Fundamentals of Bayesian inference; 7.2 Model selection; 7.3 Markov chain Monte Carlo; 7.3.1 Monte Carlo simulation; 7.3.2 MCMC algorithms; 7.3.3 Convergence analysis; 7.3.4 Accelerating MCMC algorithms; 7.4 Approximate inference. |
ctrlnum | (OCoLC)893487334 |
dewey-full | 515/.357 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.357 |
dewey-search | 515/.357 |
dewey-sort | 3515 3357 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06017cam a2200613 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn893487334</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |n|||||||||</controlfield><controlfield tag="008">141019s2014 nju ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">CN3GA</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">CN3GA</subfield><subfield code="d">OCLCO</subfield><subfield code="d">N$T</subfield><subfield code="d">CDX</subfield><subfield code="d">OCLCF</subfield><subfield code="d">EBLCP</subfield><subfield code="d">YDXCP</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">STF</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">893332637</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814596205</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814596206</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789814596190</subfield><subfield code="q">(hardcover ;</subfield><subfield code="q">alk. paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9814596191</subfield><subfield code="q">(hardcover ;</subfield><subfield code="q">alk. paper)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)893487334</subfield><subfield code="z">(OCoLC)893332637</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA371</subfield><subfield code="b">.I88 2014</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">005000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">034000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515/.357</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ito, Kazufumi,</subfield><subfield code="e">author.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Inverse problems :</subfield><subfield code="b">Tikhonov theory and algorithms /</subfield><subfield code="c">by Kazufumi Ito (North Carolina State University, USA) & Bangti Jin (University of California, Riverside, USA).</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Hackensack] New Jersey :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">2014.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Series on Applied Mathematics ;</subfield><subfield code="v">v. 22</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Preface; Contents; 1. Introduction; 2. Models in Inverse Problems; 2.1 Introduction; 2.2 Elliptic inverse problems; 2.2.1 Cauchy problem; 2.2.2 Inverse source problem; 2.2.3 Inverse scattering problem; 2.2.4 Inverse spectral problem; 2.3 Tomography; 2.3.1 Computerized tomography; 2.3.2 Emission tomography; 2.3.3 Electrical impedance tomography; 2.3.4 Optical tomography; 2.3.5 Photoacoustic tomography; 3. Tikhonov Theory for Linear Problems; 3.1 Well-posedness; 3.2 Value function calculus; 3.3 Basic estimates; 3.3.1 Classical source condition; 3.3.2 Higher-order source condition.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.4 A posteriori parameter choice rules3.4.1 Discrepancy principle; 3.4.2 Hanke-Raus rule; 3.4.3 Quasi-optimality criterion; 3.5 Augmented Tikhonov regularization; 3.5.1 Augmented Tikhonov regularization; 3.5.2 Variational characterization; 3.5.3 Fixed point algorithm; 3.6 Multi-parameter Tikhonov regularization; 3.6.1 Balancing principle; 3.6.2 Error estimates; 3.6.3 Numerical algorithms; Bibliographical notes; 4. Tikhonov Theory for Nonlinear Inverse Problems; 4.1 Well-posedness; 4.2 Classical convergence rate analysis; 4.2.1 A priori parameter choice; 4.2.2 A posteriori parameter choice.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.2.3 Structural properties4.3 A new convergence rate analysis; 4.3.1 Necessary optimality condition; 4.3.2 Source and nonlinearity conditions; 4.3.3 Convergence rate analysis; 4.4 A class of parameter identification problems; 4.4.1 A general class of nonlinear inverse problems; 4.4.2 Bilinear problems; 4.4.3 Three elliptic examples; 4.5 Convergence rate analysis in Banach spaces; 4.5.1 Extensions of the classical approach; 4.5.2 Variational inequalities; 4.6 Conditional stability; Bibliographical notes; 5. Nonsmooth Optimization; 5.1 Existence and necessary optimality condition.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.1.1 Existence of minimizers5.1.2 Necessary optimality; 5.2 Nonsmooth optimization algorithms; 5.2.1 Augmented Lagrangian method; 5.2.2 Lagrange multiplier theory; 5.2.3 Exact penalty method; 5.2.4 Gauss-Newton method; 5.2.5 Semismooth Newton Method; 5.3 p sparsity optimization; 5.3.1 0 optimization; 5.3.2 p (0 <p <1)-optimization; 5.3.3 Primal-dual active set method; 5.4 Nonsmooth nonconvex optimization; 5.4.1 Biconjugate function and relaxation; 5.4.2 Semismooth Newton method; 5.4.3 Constrained optimization; 6. Direct Inversion Methods; 6.1 Inverse scattering methods.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6.1.1 The MUSIC algorithm6.1.2 Linear sampling method; 6.1.3 Direct sampling method; 6.2 Point source identification; 6.3 Numerical unique continuation; 6.4 Gel'fand-Levitan-Marchenko transformation; 6.4.1 Gel'fand-Levitan-Marchenko transformation; 6.4.2 Application to inverse Sturm-Liouville problem; Bibliographical notes; 7. Bayesian Inference; 7.1 Fundamentals of Bayesian inference; 7.2 Model selection; 7.3 Markov chain Monte Carlo; 7.3.1 Monte Carlo simulation; 7.3.2 MCMC algorithms; 7.3.3 Convergence analysis; 7.3.4 Accelerating MCMC algorithms; 7.4 Approximate inference.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Inverse problems arise in practical applications whenever one needs to deduce unknowns from observables. This monograph is a valuable contribution to the highly topical field of computational inverse problems. Both mathematical theory and numerical algorithms for model-based inverse problems are discussed in detail. The mathematical theory focuses on nonsmooth Tikhonov regularization for linear and nonlinear inverse problems. The computational methods include nonsmooth optimization algorithms, direct inversion methods and uncertainty quantification via Bayesian inference. The book offers a com.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Inverse problems (Differential equations)</subfield><subfield code="x">Numerical solutions.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85067685</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Problèmes inverses (Équations différentielles)</subfield><subfield code="x">Solutions numériques.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Calculus.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Mathematical Analysis.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Inverse problems (Differential equations)</subfield><subfield code="x">Numerical solutions</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jin, Bangti,</subfield><subfield code="e">author.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="z">9789814596190</subfield><subfield code="z">9814596191</subfield><subfield code="w">(DLC) 2014013310</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Series on applied mathematics.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n93008796</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=862357</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="936" ind1=" " ind2=" "><subfield code="a">BATCHLOAD</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">30005479</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL1812622</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">862357</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">12102382</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn893487334 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:26:16Z |
institution | BVB |
isbn | 9814596205 9789814596206 |
language | English |
oclc_num | 893487334 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource |
psigel | ZDB-4-EBA |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | World Scientific, |
record_format | marc |
series | Series on applied mathematics. |
series2 | Series on Applied Mathematics ; |
spelling | Ito, Kazufumi, author. Inverse problems : Tikhonov theory and algorithms / by Kazufumi Ito (North Carolina State University, USA) & Bangti Jin (University of California, Riverside, USA). [Hackensack] New Jersey : World Scientific, 2014. 1 online resource text txt rdacontent computer c rdamedia online resource cr rdacarrier Series on Applied Mathematics ; v. 22 Includes bibliographical references and index. Print version record. Preface; Contents; 1. Introduction; 2. Models in Inverse Problems; 2.1 Introduction; 2.2 Elliptic inverse problems; 2.2.1 Cauchy problem; 2.2.2 Inverse source problem; 2.2.3 Inverse scattering problem; 2.2.4 Inverse spectral problem; 2.3 Tomography; 2.3.1 Computerized tomography; 2.3.2 Emission tomography; 2.3.3 Electrical impedance tomography; 2.3.4 Optical tomography; 2.3.5 Photoacoustic tomography; 3. Tikhonov Theory for Linear Problems; 3.1 Well-posedness; 3.2 Value function calculus; 3.3 Basic estimates; 3.3.1 Classical source condition; 3.3.2 Higher-order source condition. 3.4 A posteriori parameter choice rules3.4.1 Discrepancy principle; 3.4.2 Hanke-Raus rule; 3.4.3 Quasi-optimality criterion; 3.5 Augmented Tikhonov regularization; 3.5.1 Augmented Tikhonov regularization; 3.5.2 Variational characterization; 3.5.3 Fixed point algorithm; 3.6 Multi-parameter Tikhonov regularization; 3.6.1 Balancing principle; 3.6.2 Error estimates; 3.6.3 Numerical algorithms; Bibliographical notes; 4. Tikhonov Theory for Nonlinear Inverse Problems; 4.1 Well-posedness; 4.2 Classical convergence rate analysis; 4.2.1 A priori parameter choice; 4.2.2 A posteriori parameter choice. 4.2.3 Structural properties4.3 A new convergence rate analysis; 4.3.1 Necessary optimality condition; 4.3.2 Source and nonlinearity conditions; 4.3.3 Convergence rate analysis; 4.4 A class of parameter identification problems; 4.4.1 A general class of nonlinear inverse problems; 4.4.2 Bilinear problems; 4.4.3 Three elliptic examples; 4.5 Convergence rate analysis in Banach spaces; 4.5.1 Extensions of the classical approach; 4.5.2 Variational inequalities; 4.6 Conditional stability; Bibliographical notes; 5. Nonsmooth Optimization; 5.1 Existence and necessary optimality condition. 5.1.1 Existence of minimizers5.1.2 Necessary optimality; 5.2 Nonsmooth optimization algorithms; 5.2.1 Augmented Lagrangian method; 5.2.2 Lagrange multiplier theory; 5.2.3 Exact penalty method; 5.2.4 Gauss-Newton method; 5.2.5 Semismooth Newton Method; 5.3 p sparsity optimization; 5.3.1 0 optimization; 5.3.2 p (0 <p <1)-optimization; 5.3.3 Primal-dual active set method; 5.4 Nonsmooth nonconvex optimization; 5.4.1 Biconjugate function and relaxation; 5.4.2 Semismooth Newton method; 5.4.3 Constrained optimization; 6. Direct Inversion Methods; 6.1 Inverse scattering methods. 6.1.1 The MUSIC algorithm6.1.2 Linear sampling method; 6.1.3 Direct sampling method; 6.2 Point source identification; 6.3 Numerical unique continuation; 6.4 Gel'fand-Levitan-Marchenko transformation; 6.4.1 Gel'fand-Levitan-Marchenko transformation; 6.4.2 Application to inverse Sturm-Liouville problem; Bibliographical notes; 7. Bayesian Inference; 7.1 Fundamentals of Bayesian inference; 7.2 Model selection; 7.3 Markov chain Monte Carlo; 7.3.1 Monte Carlo simulation; 7.3.2 MCMC algorithms; 7.3.3 Convergence analysis; 7.3.4 Accelerating MCMC algorithms; 7.4 Approximate inference. Inverse problems arise in practical applications whenever one needs to deduce unknowns from observables. This monograph is a valuable contribution to the highly topical field of computational inverse problems. Both mathematical theory and numerical algorithms for model-based inverse problems are discussed in detail. The mathematical theory focuses on nonsmooth Tikhonov regularization for linear and nonlinear inverse problems. The computational methods include nonsmooth optimization algorithms, direct inversion methods and uncertainty quantification via Bayesian inference. The book offers a com. Inverse problems (Differential equations) Numerical solutions. http://id.loc.gov/authorities/subjects/sh85067685 Problèmes inverses (Équations différentielles) Solutions numériques. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Inverse problems (Differential equations) Numerical solutions fast Jin, Bangti, author. Print version: 9789814596190 9814596191 (DLC) 2014013310 Series on applied mathematics. http://id.loc.gov/authorities/names/n93008796 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=862357 Volltext |
spellingShingle | Ito, Kazufumi Jin, Bangti Inverse problems : Tikhonov theory and algorithms / Series on applied mathematics. Preface; Contents; 1. Introduction; 2. Models in Inverse Problems; 2.1 Introduction; 2.2 Elliptic inverse problems; 2.2.1 Cauchy problem; 2.2.2 Inverse source problem; 2.2.3 Inverse scattering problem; 2.2.4 Inverse spectral problem; 2.3 Tomography; 2.3.1 Computerized tomography; 2.3.2 Emission tomography; 2.3.3 Electrical impedance tomography; 2.3.4 Optical tomography; 2.3.5 Photoacoustic tomography; 3. Tikhonov Theory for Linear Problems; 3.1 Well-posedness; 3.2 Value function calculus; 3.3 Basic estimates; 3.3.1 Classical source condition; 3.3.2 Higher-order source condition. 3.4 A posteriori parameter choice rules3.4.1 Discrepancy principle; 3.4.2 Hanke-Raus rule; 3.4.3 Quasi-optimality criterion; 3.5 Augmented Tikhonov regularization; 3.5.1 Augmented Tikhonov regularization; 3.5.2 Variational characterization; 3.5.3 Fixed point algorithm; 3.6 Multi-parameter Tikhonov regularization; 3.6.1 Balancing principle; 3.6.2 Error estimates; 3.6.3 Numerical algorithms; Bibliographical notes; 4. Tikhonov Theory for Nonlinear Inverse Problems; 4.1 Well-posedness; 4.2 Classical convergence rate analysis; 4.2.1 A priori parameter choice; 4.2.2 A posteriori parameter choice. 4.2.3 Structural properties4.3 A new convergence rate analysis; 4.3.1 Necessary optimality condition; 4.3.2 Source and nonlinearity conditions; 4.3.3 Convergence rate analysis; 4.4 A class of parameter identification problems; 4.4.1 A general class of nonlinear inverse problems; 4.4.2 Bilinear problems; 4.4.3 Three elliptic examples; 4.5 Convergence rate analysis in Banach spaces; 4.5.1 Extensions of the classical approach; 4.5.2 Variational inequalities; 4.6 Conditional stability; Bibliographical notes; 5. Nonsmooth Optimization; 5.1 Existence and necessary optimality condition. 5.1.1 Existence of minimizers5.1.2 Necessary optimality; 5.2 Nonsmooth optimization algorithms; 5.2.1 Augmented Lagrangian method; 5.2.2 Lagrange multiplier theory; 5.2.3 Exact penalty method; 5.2.4 Gauss-Newton method; 5.2.5 Semismooth Newton Method; 5.3 p sparsity optimization; 5.3.1 0 optimization; 5.3.2 p (0 <p <1)-optimization; 5.3.3 Primal-dual active set method; 5.4 Nonsmooth nonconvex optimization; 5.4.1 Biconjugate function and relaxation; 5.4.2 Semismooth Newton method; 5.4.3 Constrained optimization; 6. Direct Inversion Methods; 6.1 Inverse scattering methods. 6.1.1 The MUSIC algorithm6.1.2 Linear sampling method; 6.1.3 Direct sampling method; 6.2 Point source identification; 6.3 Numerical unique continuation; 6.4 Gel'fand-Levitan-Marchenko transformation; 6.4.1 Gel'fand-Levitan-Marchenko transformation; 6.4.2 Application to inverse Sturm-Liouville problem; Bibliographical notes; 7. Bayesian Inference; 7.1 Fundamentals of Bayesian inference; 7.2 Model selection; 7.3 Markov chain Monte Carlo; 7.3.1 Monte Carlo simulation; 7.3.2 MCMC algorithms; 7.3.3 Convergence analysis; 7.3.4 Accelerating MCMC algorithms; 7.4 Approximate inference. Inverse problems (Differential equations) Numerical solutions. http://id.loc.gov/authorities/subjects/sh85067685 Problèmes inverses (Équations différentielles) Solutions numériques. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Inverse problems (Differential equations) Numerical solutions fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85067685 |
title | Inverse problems : Tikhonov theory and algorithms / |
title_auth | Inverse problems : Tikhonov theory and algorithms / |
title_exact_search | Inverse problems : Tikhonov theory and algorithms / |
title_full | Inverse problems : Tikhonov theory and algorithms / by Kazufumi Ito (North Carolina State University, USA) & Bangti Jin (University of California, Riverside, USA). |
title_fullStr | Inverse problems : Tikhonov theory and algorithms / by Kazufumi Ito (North Carolina State University, USA) & Bangti Jin (University of California, Riverside, USA). |
title_full_unstemmed | Inverse problems : Tikhonov theory and algorithms / by Kazufumi Ito (North Carolina State University, USA) & Bangti Jin (University of California, Riverside, USA). |
title_short | Inverse problems : |
title_sort | inverse problems tikhonov theory and algorithms |
title_sub | Tikhonov theory and algorithms / |
topic | Inverse problems (Differential equations) Numerical solutions. http://id.loc.gov/authorities/subjects/sh85067685 Problèmes inverses (Équations différentielles) Solutions numériques. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Inverse problems (Differential equations) Numerical solutions fast |
topic_facet | Inverse problems (Differential equations) Numerical solutions. Problèmes inverses (Équations différentielles) Solutions numériques. MATHEMATICS Calculus. MATHEMATICS Mathematical Analysis. Inverse problems (Differential equations) Numerical solutions |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=862357 |
work_keys_str_mv | AT itokazufumi inverseproblemstikhonovtheoryandalgorithms AT jinbangti inverseproblemstikhonovtheoryandalgorithms |