Lie groups and Lie algebras for physicists /:
The book is intended for graduate students of theoretical physics (with a background in quantum mechanics) as well as researchers interested in applications of Lie group theory and Lie algebras in physics. The emphasis is on the inter-relations of representation theories of Lie groups and the corres...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New Jersey :
World Scientific,
[2014]
|
Schlagworte: | |
Online-Zugang: | DE-862 DE-863 |
Zusammenfassung: | The book is intended for graduate students of theoretical physics (with a background in quantum mechanics) as well as researchers interested in applications of Lie group theory and Lie algebras in physics. The emphasis is on the inter-relations of representation theories of Lie groups and the corresponding Lie algebras. |
Beschreibung: | 1 online resource |
ISBN: | 9789814603287 9814603287 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn892970906 | ||
003 | OCoLC | ||
005 | 20250103110447.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 141015t20142015nju o 000 0 eng d | ||
040 | |a N$T |b eng |e rda |e pn |c N$T |d E7B |d YDXCP |d OTZ |d OCLCF |d EBLCP |d DEBSZ |d OCLCQ |d IDEBK |d AGLDB |d LIP |d OCLCQ |d OCLCO |d VTS |d CEF |d OCLCQ |d STF |d M8D |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d CLOUD |d OCLCO | ||
019 | |a 893332816 |a 953680001 | ||
020 | |a 9789814603287 |q (electronic bk.) | ||
020 | |a 9814603287 |q (electronic bk.) | ||
020 | |z 9789814603270 | ||
035 | |a (OCoLC)892970906 |z (OCoLC)893332816 |z (OCoLC)953680001 | ||
050 | 4 | |a QA252.3 | |
072 | 7 | |a MAT |x 002040 |2 bisacsh | |
082 | 7 | |a 512.55 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Das, Ashok, |e author. |1 https://id.oclc.org/worldcat/entity/E39PCjFcvgJTHtdMVrHmPYQfxC |0 http://id.loc.gov/authorities/names/n2012216603 | |
245 | 1 | 0 | |a Lie groups and Lie algebras for physicists / |c Ashok Das, Susumu Okubo. |
264 | 1 | |a New Jersey : |b World Scientific, |c [2014] | |
264 | 4 | |c ©2014 | |
264 | 4 | |c ©2015 | |
300 | |a 1 online resource | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
588 | 0 | |a Online resource; title from PDF title page (EBSCO, viewed October 15, 2014). | |
505 | 0 | |a 1. Introduction to groups. 1.1. Definition of a group. 1.2. Examples of commonly used groups in physics. 1.3. Group manifold. 1.4. References -- 2. Representation of groups. 2.1. Matrix representation of a group. 2.2. Unitary and irreducible representations. 2.3. Group integration. 2.4. Peter-Weyl theorem. 2.5. Orthogonality relations. 2.6. Character of a representation. 2.7. References -- 3. Lie algebras. 3.1. Definition of a Lie algebra. 3.2. Examples of commonly used Lie algebras in physics. 3.3. Structure constants and the Killing form. 3.4. Simple and semi-simple Lie algebras. 3.5. Universal enveloping Lie algebra. 3.6. References -- 4. Relationship between Lie algebras and Lie groups. 4.1. Infinitesimal group and the Lie algebra. 4.2. Lie groups from Lie algebras. 4.3. Baker-Campbell-Hausdorff formula. 4.4. Ray representation. 4.5. References -- 5. Irreducible tensor representations and Young tableau. 5.1. Irreducible tensor representations of U(N). 5.2. Young tableau. 5.3. Irreducible tensor representations of SU(N). 5.4. Product representation and branching rule. 5.5. Representations of SO(N) groups. 5.6. Double valued representation of SO(3). 5.7. References -- 6. Clifford algebra. 6.1. Clifford algebra. 6.2. Charge conjugation. 6.3. Clifford algebra and the O(N) group. 6.4. References -- 7. Lorentz group and the Dirac equation. 7.1. Lorentz group. 7.2. Generalized Clifford algebra. 7.3. Dirac equation. 7.4. References -- 8. Yang-Mills gauge theory. 8.1. Gauge field dynamics. 8.2. Fermion dynamics. 8.3. Quantum chromodynamics. 8.4. References -- 9. Quark model and SU[symbol](3) symmetry. 9.1. SU[symbol] flavor symmetry. 9.2. SU[symbol](3) flavor symmetry breaking. 9.3. Some applications in nuclear physics. 9.4. References -- 10. Casimir invariants and adjoint operators. 10.1. Computation of the Casimir invariant I(p). 10.2. Symmetric Casimir invariants. 10.3. Casimir invariants of so(N). 10.4. Generalized Dynkin indices. 10.5. References -- 11. Root system of Lie algebras. 11.1. Cartan-Dynkin theory. 11.2. Lie algebra A[symbol] = su([symbol]+ 1). 11.3. Lie algebra D[symbol] = so(2[symbol]). 11.3.1. D4 = so(8) and the triality relation. 11.4. Lie algebra B[symbol] = so(2[symbol] + 1). 11.5. Lie algebra C[symbol] = sp(2[symbol]). 11.6. Exceptional Lie algebras. 11.7. References. | |
520 | |a The book is intended for graduate students of theoretical physics (with a background in quantum mechanics) as well as researchers interested in applications of Lie group theory and Lie algebras in physics. The emphasis is on the inter-relations of representation theories of Lie groups and the corresponding Lie algebras. | ||
650 | 0 | |a Lie algebras. |0 http://id.loc.gov/authorities/subjects/sh85076782 | |
650 | 0 | |a Group theory. |0 http://id.loc.gov/authorities/subjects/sh85057512 | |
650 | 6 | |a Algèbres de Lie. | |
650 | 6 | |a Théorie des groupes. | |
650 | 7 | |a MATHEMATICS |x Algebra |x Intermediate. |2 bisacsh | |
650 | 7 | |a Group theory |2 fast | |
650 | 7 | |a Lie algebras |2 fast | |
655 | 0 | |a Electronic books. | |
700 | 1 | |a Okubo, Susumu, |e author. | |
776 | 0 | 8 | |i Print version: |a Das, Ashok. |t Lie Groups and Lie Algebras for Physicists. |d Singapore : World Scientific Publishing Company, ©2014 |z 9789814603270 |
966 | 4 | 0 | |l DE-862 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=862331 |3 Volltext |
966 | 4 | 0 | |l DE-863 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=862331 |3 Volltext |
938 | |a cloudLibrary |b CLDL |n 9789814603294 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL1812627 | ||
938 | |a ebrary |b EBRY |n ebr10951409 | ||
938 | |a EBSCOhost |b EBSC |n 862331 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis29887456 | ||
938 | |a YBP Library Services |b YANK |n 12102387 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-862 | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn892970906 |
---|---|
_version_ | 1829095013530730496 |
adam_text | |
any_adam_object | |
author | Das, Ashok Okubo, Susumu |
author_GND | http://id.loc.gov/authorities/names/n2012216603 |
author_facet | Das, Ashok Okubo, Susumu |
author_role | aut aut |
author_sort | Das, Ashok |
author_variant | a d ad s o so |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA252 |
callnumber-raw | QA252.3 |
callnumber-search | QA252.3 |
callnumber-sort | QA 3252.3 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | 1. Introduction to groups. 1.1. Definition of a group. 1.2. Examples of commonly used groups in physics. 1.3. Group manifold. 1.4. References -- 2. Representation of groups. 2.1. Matrix representation of a group. 2.2. Unitary and irreducible representations. 2.3. Group integration. 2.4. Peter-Weyl theorem. 2.5. Orthogonality relations. 2.6. Character of a representation. 2.7. References -- 3. Lie algebras. 3.1. Definition of a Lie algebra. 3.2. Examples of commonly used Lie algebras in physics. 3.3. Structure constants and the Killing form. 3.4. Simple and semi-simple Lie algebras. 3.5. Universal enveloping Lie algebra. 3.6. References -- 4. Relationship between Lie algebras and Lie groups. 4.1. Infinitesimal group and the Lie algebra. 4.2. Lie groups from Lie algebras. 4.3. Baker-Campbell-Hausdorff formula. 4.4. Ray representation. 4.5. References -- 5. Irreducible tensor representations and Young tableau. 5.1. Irreducible tensor representations of U(N). 5.2. Young tableau. 5.3. Irreducible tensor representations of SU(N). 5.4. Product representation and branching rule. 5.5. Representations of SO(N) groups. 5.6. Double valued representation of SO(3). 5.7. References -- 6. Clifford algebra. 6.1. Clifford algebra. 6.2. Charge conjugation. 6.3. Clifford algebra and the O(N) group. 6.4. References -- 7. Lorentz group and the Dirac equation. 7.1. Lorentz group. 7.2. Generalized Clifford algebra. 7.3. Dirac equation. 7.4. References -- 8. Yang-Mills gauge theory. 8.1. Gauge field dynamics. 8.2. Fermion dynamics. 8.3. Quantum chromodynamics. 8.4. References -- 9. Quark model and SU[symbol](3) symmetry. 9.1. SU[symbol] flavor symmetry. 9.2. SU[symbol](3) flavor symmetry breaking. 9.3. Some applications in nuclear physics. 9.4. References -- 10. Casimir invariants and adjoint operators. 10.1. Computation of the Casimir invariant I(p). 10.2. Symmetric Casimir invariants. 10.3. Casimir invariants of so(N). 10.4. Generalized Dynkin indices. 10.5. References -- 11. Root system of Lie algebras. 11.1. Cartan-Dynkin theory. 11.2. Lie algebra A[symbol] = su([symbol]+ 1). 11.3. Lie algebra D[symbol] = so(2[symbol]). 11.3.1. D4 = so(8) and the triality relation. 11.4. Lie algebra B[symbol] = so(2[symbol] + 1). 11.5. Lie algebra C[symbol] = sp(2[symbol]). 11.6. Exceptional Lie algebras. 11.7. References. |
ctrlnum | (OCoLC)892970906 |
dewey-full | 512.55 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.55 |
dewey-search | 512.55 |
dewey-sort | 3512.55 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05052cam a2200577 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn892970906</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20250103110447.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">141015t20142015nju o 000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OTZ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">EBLCP</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">IDEBK</subfield><subfield code="d">AGLDB</subfield><subfield code="d">LIP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">VTS</subfield><subfield code="d">CEF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">STF</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">CLOUD</subfield><subfield code="d">OCLCO</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">893332816</subfield><subfield code="a">953680001</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814603287</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814603287</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789814603270</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)892970906</subfield><subfield code="z">(OCoLC)893332816</subfield><subfield code="z">(OCoLC)953680001</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA252.3</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">002040</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512.55</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Das, Ashok,</subfield><subfield code="e">author.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjFcvgJTHtdMVrHmPYQfxC</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2012216603</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lie groups and Lie algebras for physicists /</subfield><subfield code="c">Ashok Das, Susumu Okubo.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New Jersey :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">[2014]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2014</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Online resource; title from PDF title page (EBSCO, viewed October 15, 2014).</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">1. Introduction to groups. 1.1. Definition of a group. 1.2. Examples of commonly used groups in physics. 1.3. Group manifold. 1.4. References -- 2. Representation of groups. 2.1. Matrix representation of a group. 2.2. Unitary and irreducible representations. 2.3. Group integration. 2.4. Peter-Weyl theorem. 2.5. Orthogonality relations. 2.6. Character of a representation. 2.7. References -- 3. Lie algebras. 3.1. Definition of a Lie algebra. 3.2. Examples of commonly used Lie algebras in physics. 3.3. Structure constants and the Killing form. 3.4. Simple and semi-simple Lie algebras. 3.5. Universal enveloping Lie algebra. 3.6. References -- 4. Relationship between Lie algebras and Lie groups. 4.1. Infinitesimal group and the Lie algebra. 4.2. Lie groups from Lie algebras. 4.3. Baker-Campbell-Hausdorff formula. 4.4. Ray representation. 4.5. References -- 5. Irreducible tensor representations and Young tableau. 5.1. Irreducible tensor representations of U(N). 5.2. Young tableau. 5.3. Irreducible tensor representations of SU(N). 5.4. Product representation and branching rule. 5.5. Representations of SO(N) groups. 5.6. Double valued representation of SO(3). 5.7. References -- 6. Clifford algebra. 6.1. Clifford algebra. 6.2. Charge conjugation. 6.3. Clifford algebra and the O(N) group. 6.4. References -- 7. Lorentz group and the Dirac equation. 7.1. Lorentz group. 7.2. Generalized Clifford algebra. 7.3. Dirac equation. 7.4. References -- 8. Yang-Mills gauge theory. 8.1. Gauge field dynamics. 8.2. Fermion dynamics. 8.3. Quantum chromodynamics. 8.4. References -- 9. Quark model and SU[symbol](3) symmetry. 9.1. SU[symbol] flavor symmetry. 9.2. SU[symbol](3) flavor symmetry breaking. 9.3. Some applications in nuclear physics. 9.4. References -- 10. Casimir invariants and adjoint operators. 10.1. Computation of the Casimir invariant I(p). 10.2. Symmetric Casimir invariants. 10.3. Casimir invariants of so(N). 10.4. Generalized Dynkin indices. 10.5. References -- 11. Root system of Lie algebras. 11.1. Cartan-Dynkin theory. 11.2. Lie algebra A[symbol] = su([symbol]+ 1). 11.3. Lie algebra D[symbol] = so(2[symbol]). 11.3.1. D4 = so(8) and the triality relation. 11.4. Lie algebra B[symbol] = so(2[symbol] + 1). 11.5. Lie algebra C[symbol] = sp(2[symbol]). 11.6. Exceptional Lie algebras. 11.7. References.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The book is intended for graduate students of theoretical physics (with a background in quantum mechanics) as well as researchers interested in applications of Lie group theory and Lie algebras in physics. The emphasis is on the inter-relations of representation theories of Lie groups and the corresponding Lie algebras.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Lie algebras.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85076782</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Group theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85057512</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Algèbres de Lie.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie des groupes.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Algebra</subfield><subfield code="x">Intermediate.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Group theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lie algebras</subfield><subfield code="2">fast</subfield></datafield><datafield tag="655" ind1=" " ind2="0"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Okubo, Susumu,</subfield><subfield code="e">author.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Das, Ashok.</subfield><subfield code="t">Lie Groups and Lie Algebras for Physicists.</subfield><subfield code="d">Singapore : World Scientific Publishing Company, ©2014</subfield><subfield code="z">9789814603270</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-862</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=862331</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-863</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=862331</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">cloudLibrary</subfield><subfield code="b">CLDL</subfield><subfield code="n">9789814603294</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL1812627</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10951409</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">862331</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis29887456</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">12102387</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-862</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
genre | Electronic books. |
genre_facet | Electronic books. |
id | ZDB-4-EBA-ocn892970906 |
illustrated | Not Illustrated |
indexdate | 2025-04-11T08:42:16Z |
institution | BVB |
isbn | 9789814603287 9814603287 |
language | English |
oclc_num | 892970906 |
open_access_boolean | |
owner | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
owner_facet | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
physical | 1 online resource |
psigel | ZDB-4-EBA FWS_PDA_EBA ZDB-4-EBA |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | World Scientific, |
record_format | marc |
spelling | Das, Ashok, author. https://id.oclc.org/worldcat/entity/E39PCjFcvgJTHtdMVrHmPYQfxC http://id.loc.gov/authorities/names/n2012216603 Lie groups and Lie algebras for physicists / Ashok Das, Susumu Okubo. New Jersey : World Scientific, [2014] ©2014 ©2015 1 online resource text txt rdacontent computer c rdamedia online resource cr rdacarrier Online resource; title from PDF title page (EBSCO, viewed October 15, 2014). 1. Introduction to groups. 1.1. Definition of a group. 1.2. Examples of commonly used groups in physics. 1.3. Group manifold. 1.4. References -- 2. Representation of groups. 2.1. Matrix representation of a group. 2.2. Unitary and irreducible representations. 2.3. Group integration. 2.4. Peter-Weyl theorem. 2.5. Orthogonality relations. 2.6. Character of a representation. 2.7. References -- 3. Lie algebras. 3.1. Definition of a Lie algebra. 3.2. Examples of commonly used Lie algebras in physics. 3.3. Structure constants and the Killing form. 3.4. Simple and semi-simple Lie algebras. 3.5. Universal enveloping Lie algebra. 3.6. References -- 4. Relationship between Lie algebras and Lie groups. 4.1. Infinitesimal group and the Lie algebra. 4.2. Lie groups from Lie algebras. 4.3. Baker-Campbell-Hausdorff formula. 4.4. Ray representation. 4.5. References -- 5. Irreducible tensor representations and Young tableau. 5.1. Irreducible tensor representations of U(N). 5.2. Young tableau. 5.3. Irreducible tensor representations of SU(N). 5.4. Product representation and branching rule. 5.5. Representations of SO(N) groups. 5.6. Double valued representation of SO(3). 5.7. References -- 6. Clifford algebra. 6.1. Clifford algebra. 6.2. Charge conjugation. 6.3. Clifford algebra and the O(N) group. 6.4. References -- 7. Lorentz group and the Dirac equation. 7.1. Lorentz group. 7.2. Generalized Clifford algebra. 7.3. Dirac equation. 7.4. References -- 8. Yang-Mills gauge theory. 8.1. Gauge field dynamics. 8.2. Fermion dynamics. 8.3. Quantum chromodynamics. 8.4. References -- 9. Quark model and SU[symbol](3) symmetry. 9.1. SU[symbol] flavor symmetry. 9.2. SU[symbol](3) flavor symmetry breaking. 9.3. Some applications in nuclear physics. 9.4. References -- 10. Casimir invariants and adjoint operators. 10.1. Computation of the Casimir invariant I(p). 10.2. Symmetric Casimir invariants. 10.3. Casimir invariants of so(N). 10.4. Generalized Dynkin indices. 10.5. References -- 11. Root system of Lie algebras. 11.1. Cartan-Dynkin theory. 11.2. Lie algebra A[symbol] = su([symbol]+ 1). 11.3. Lie algebra D[symbol] = so(2[symbol]). 11.3.1. D4 = so(8) and the triality relation. 11.4. Lie algebra B[symbol] = so(2[symbol] + 1). 11.5. Lie algebra C[symbol] = sp(2[symbol]). 11.6. Exceptional Lie algebras. 11.7. References. The book is intended for graduate students of theoretical physics (with a background in quantum mechanics) as well as researchers interested in applications of Lie group theory and Lie algebras in physics. The emphasis is on the inter-relations of representation theories of Lie groups and the corresponding Lie algebras. Lie algebras. http://id.loc.gov/authorities/subjects/sh85076782 Group theory. http://id.loc.gov/authorities/subjects/sh85057512 Algèbres de Lie. Théorie des groupes. MATHEMATICS Algebra Intermediate. bisacsh Group theory fast Lie algebras fast Electronic books. Okubo, Susumu, author. Print version: Das, Ashok. Lie Groups and Lie Algebras for Physicists. Singapore : World Scientific Publishing Company, ©2014 9789814603270 |
spellingShingle | Das, Ashok Okubo, Susumu Lie groups and Lie algebras for physicists / 1. Introduction to groups. 1.1. Definition of a group. 1.2. Examples of commonly used groups in physics. 1.3. Group manifold. 1.4. References -- 2. Representation of groups. 2.1. Matrix representation of a group. 2.2. Unitary and irreducible representations. 2.3. Group integration. 2.4. Peter-Weyl theorem. 2.5. Orthogonality relations. 2.6. Character of a representation. 2.7. References -- 3. Lie algebras. 3.1. Definition of a Lie algebra. 3.2. Examples of commonly used Lie algebras in physics. 3.3. Structure constants and the Killing form. 3.4. Simple and semi-simple Lie algebras. 3.5. Universal enveloping Lie algebra. 3.6. References -- 4. Relationship between Lie algebras and Lie groups. 4.1. Infinitesimal group and the Lie algebra. 4.2. Lie groups from Lie algebras. 4.3. Baker-Campbell-Hausdorff formula. 4.4. Ray representation. 4.5. References -- 5. Irreducible tensor representations and Young tableau. 5.1. Irreducible tensor representations of U(N). 5.2. Young tableau. 5.3. Irreducible tensor representations of SU(N). 5.4. Product representation and branching rule. 5.5. Representations of SO(N) groups. 5.6. Double valued representation of SO(3). 5.7. References -- 6. Clifford algebra. 6.1. Clifford algebra. 6.2. Charge conjugation. 6.3. Clifford algebra and the O(N) group. 6.4. References -- 7. Lorentz group and the Dirac equation. 7.1. Lorentz group. 7.2. Generalized Clifford algebra. 7.3. Dirac equation. 7.4. References -- 8. Yang-Mills gauge theory. 8.1. Gauge field dynamics. 8.2. Fermion dynamics. 8.3. Quantum chromodynamics. 8.4. References -- 9. Quark model and SU[symbol](3) symmetry. 9.1. SU[symbol] flavor symmetry. 9.2. SU[symbol](3) flavor symmetry breaking. 9.3. Some applications in nuclear physics. 9.4. References -- 10. Casimir invariants and adjoint operators. 10.1. Computation of the Casimir invariant I(p). 10.2. Symmetric Casimir invariants. 10.3. Casimir invariants of so(N). 10.4. Generalized Dynkin indices. 10.5. References -- 11. Root system of Lie algebras. 11.1. Cartan-Dynkin theory. 11.2. Lie algebra A[symbol] = su([symbol]+ 1). 11.3. Lie algebra D[symbol] = so(2[symbol]). 11.3.1. D4 = so(8) and the triality relation. 11.4. Lie algebra B[symbol] = so(2[symbol] + 1). 11.5. Lie algebra C[symbol] = sp(2[symbol]). 11.6. Exceptional Lie algebras. 11.7. References. Lie algebras. http://id.loc.gov/authorities/subjects/sh85076782 Group theory. http://id.loc.gov/authorities/subjects/sh85057512 Algèbres de Lie. Théorie des groupes. MATHEMATICS Algebra Intermediate. bisacsh Group theory fast Lie algebras fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85076782 http://id.loc.gov/authorities/subjects/sh85057512 |
title | Lie groups and Lie algebras for physicists / |
title_auth | Lie groups and Lie algebras for physicists / |
title_exact_search | Lie groups and Lie algebras for physicists / |
title_full | Lie groups and Lie algebras for physicists / Ashok Das, Susumu Okubo. |
title_fullStr | Lie groups and Lie algebras for physicists / Ashok Das, Susumu Okubo. |
title_full_unstemmed | Lie groups and Lie algebras for physicists / Ashok Das, Susumu Okubo. |
title_short | Lie groups and Lie algebras for physicists / |
title_sort | lie groups and lie algebras for physicists |
topic | Lie algebras. http://id.loc.gov/authorities/subjects/sh85076782 Group theory. http://id.loc.gov/authorities/subjects/sh85057512 Algèbres de Lie. Théorie des groupes. MATHEMATICS Algebra Intermediate. bisacsh Group theory fast Lie algebras fast |
topic_facet | Lie algebras. Group theory. Algèbres de Lie. Théorie des groupes. MATHEMATICS Algebra Intermediate. Group theory Lie algebras Electronic books. |
work_keys_str_mv | AT dasashok liegroupsandliealgebrasforphysicists AT okubosusumu liegroupsandliealgebrasforphysicists |