The numerical solution of the American option pricing problem :: finite difference and transform approaches /
The early exercise opportunity of an American option makes it challenging to price and an array of approaches have been proposed in the vast literature on this topic. In The Numerical Solution of the American Option Pricing Problem, Carl Chiarella, Boda Kang and Gunter Meyer focus on two numerical a...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | , |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New Jersey :
World Scientific Pub.,
2014.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | The early exercise opportunity of an American option makes it challenging to price and an array of approaches have been proposed in the vast literature on this topic. In The Numerical Solution of the American Option Pricing Problem, Carl Chiarella, Boda Kang and Gunter Meyer focus on two numerical approaches that have proved useful for finding all prices, hedge ratios and early exercise boundaries of an American option. One is a finite difference approach which is based on the numerical solution of the partial differential equations with the free boundary problem arising in American option pr. |
Beschreibung: | 1 online resource |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9789814452625 9814452629 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn892911419 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 141014s2014 nju ob 001 0 eng d | ||
040 | |a N$T |b eng |e rda |e pn |c N$T |d YDXCP |d CDX |d EBLCP |d OCLCO |d OCLCQ |d OCLCO |d OCLCQ |d D6H |d AGLDB |d OCLCQ |d VNS |d OCLCQ |d VTS |d M8D |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL | ||
019 | |a 893332782 | ||
020 | |a 9789814452625 |q (electronic bk.) | ||
020 | |a 9814452629 |q (electronic bk.) | ||
020 | |z 9789814452618 | ||
020 | |z 9814452610 | ||
035 | |a (OCoLC)892911419 |z (OCoLC)893332782 | ||
043 | |a n-us--- | ||
050 | 4 | |a HG6024.U6 |b C443 2014eb | |
072 | 7 | |a BUS |x 027000 |2 bisacsh | |
082 | 7 | |a 332.64/23 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Chiarella, Carl. | |
245 | 1 | 4 | |a The numerical solution of the American option pricing problem : |b finite difference and transform approaches / |c Carl Chiarella (University of Technology, Sydney, Australia), Boda Kang (University of York, UK), Gunter H Meyer (Georgia Institute of Technology, USA). |
264 | 1 | |a New Jersey : |b World Scientific Pub., |c 2014. | |
300 | |a 1 online resource | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references and index. | ||
505 | 0 | |a Introduction -- The Merton and Heston model for a call -- American call options under jump-diffusion processes -- American option prices under stochastic volatility and jump-diffusion dynamics-the transform approach -- Representation and numerical approximation of American option prices under Heston Fourier Cosine expansion approach -- A numerical approach to pricing American call options under SVJD -- Conclusions -- Bibliography -- Index. | |
588 | 0 | |a Print version record. | |
520 | |a The early exercise opportunity of an American option makes it challenging to price and an array of approaches have been proposed in the vast literature on this topic. In The Numerical Solution of the American Option Pricing Problem, Carl Chiarella, Boda Kang and Gunter Meyer focus on two numerical approaches that have proved useful for finding all prices, hedge ratios and early exercise boundaries of an American option. One is a finite difference approach which is based on the numerical solution of the partial differential equations with the free boundary problem arising in American option pr. | ||
650 | 0 | |a Options (Finance) |z United States. | |
650 | 0 | |a Options (Finance) |x Mathematical models. | |
650 | 6 | |a Options (Finances) |z États-Unis. | |
650 | 6 | |a Options (Finances) |x Modèles mathématiques. | |
650 | 7 | |a BUSINESS & ECONOMICS |x Finance. |2 bisacsh | |
650 | 7 | |a Options (Finance) |2 fast | |
650 | 7 | |a Options (Finance) |x Mathematical models |2 fast | |
651 | 7 | |a United States |2 fast |1 https://id.oclc.org/worldcat/entity/E39PBJtxgQXMWqmjMjjwXRHgrq | |
700 | 1 | |a Kang, Boda. | |
700 | 1 | |a Meyer, Gunter H. | |
758 | |i has work: |a The numerical solution of the American option pricing problem (Text) |1 https://id.oclc.org/worldcat/entity/E39PCG43RkqGFDV7vqW89DpCKm |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Chiarella, Carl. |t Numerical solution of the American option pricing problem |z 9789814452618 |w (DLC) 2014021380 |w (OCoLC)881591759 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=862306 |3 Volltext |
938 | |a Coutts Information Services |b COUT |n 30005457 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL1812610 | ||
938 | |a EBSCOhost |b EBSC |n 862306 | ||
938 | |a YBP Library Services |b YANK |n 12102351 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn892911419 |
---|---|
_version_ | 1816882290154799104 |
adam_text | |
any_adam_object | |
author | Chiarella, Carl |
author2 | Kang, Boda Meyer, Gunter H. |
author2_role | |
author2_variant | b k bk g h m gh ghm |
author_facet | Chiarella, Carl Kang, Boda Meyer, Gunter H. |
author_role | |
author_sort | Chiarella, Carl |
author_variant | c c cc |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | H - Social Science |
callnumber-label | HG6024 |
callnumber-raw | HG6024.U6 C443 2014eb |
callnumber-search | HG6024.U6 C443 2014eb |
callnumber-sort | HG 46024 U6 C443 42014EB |
callnumber-subject | HG - Finance |
collection | ZDB-4-EBA |
contents | Introduction -- The Merton and Heston model for a call -- American call options under jump-diffusion processes -- American option prices under stochastic volatility and jump-diffusion dynamics-the transform approach -- Representation and numerical approximation of American option prices under Heston Fourier Cosine expansion approach -- A numerical approach to pricing American call options under SVJD -- Conclusions -- Bibliography -- Index. |
ctrlnum | (OCoLC)892911419 |
dewey-full | 332.64/23 |
dewey-hundreds | 300 - Social sciences |
dewey-ones | 332 - Financial economics |
dewey-raw | 332.64/23 |
dewey-search | 332.64/23 |
dewey-sort | 3332.64 223 |
dewey-tens | 330 - Economics |
discipline | Wirtschaftswissenschaften |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03696cam a2200589 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn892911419</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">141014s2014 nju ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">CDX</subfield><subfield code="d">EBLCP</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">D6H</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VNS</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">893332782</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814452625</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814452629</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789814452618</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9814452610</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)892911419</subfield><subfield code="z">(OCoLC)893332782</subfield></datafield><datafield tag="043" ind1=" " ind2=" "><subfield code="a">n-us---</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">HG6024.U6</subfield><subfield code="b">C443 2014eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">BUS</subfield><subfield code="x">027000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">332.64/23</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chiarella, Carl.</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The numerical solution of the American option pricing problem :</subfield><subfield code="b">finite difference and transform approaches /</subfield><subfield code="c">Carl Chiarella (University of Technology, Sydney, Australia), Boda Kang (University of York, UK), Gunter H Meyer (Georgia Institute of Technology, USA).</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New Jersey :</subfield><subfield code="b">World Scientific Pub.,</subfield><subfield code="c">2014.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Introduction -- The Merton and Heston model for a call -- American call options under jump-diffusion processes -- American option prices under stochastic volatility and jump-diffusion dynamics-the transform approach -- Representation and numerical approximation of American option prices under Heston Fourier Cosine expansion approach -- A numerical approach to pricing American call options under SVJD -- Conclusions -- Bibliography -- Index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The early exercise opportunity of an American option makes it challenging to price and an array of approaches have been proposed in the vast literature on this topic. In The Numerical Solution of the American Option Pricing Problem, Carl Chiarella, Boda Kang and Gunter Meyer focus on two numerical approaches that have proved useful for finding all prices, hedge ratios and early exercise boundaries of an American option. One is a finite difference approach which is based on the numerical solution of the partial differential equations with the free boundary problem arising in American option pr.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Options (Finance)</subfield><subfield code="z">United States.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Options (Finance)</subfield><subfield code="x">Mathematical models.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Options (Finances)</subfield><subfield code="z">États-Unis.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Options (Finances)</subfield><subfield code="x">Modèles mathématiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">BUSINESS & ECONOMICS</subfield><subfield code="x">Finance.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Options (Finance)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Options (Finance)</subfield><subfield code="x">Mathematical models</subfield><subfield code="2">fast</subfield></datafield><datafield tag="651" ind1=" " ind2="7"><subfield code="a">United States</subfield><subfield code="2">fast</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJtxgQXMWqmjMjjwXRHgrq</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kang, Boda.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Meyer, Gunter H.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">The numerical solution of the American option pricing problem (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCG43RkqGFDV7vqW89DpCKm</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Chiarella, Carl.</subfield><subfield code="t">Numerical solution of the American option pricing problem</subfield><subfield code="z">9789814452618</subfield><subfield code="w">(DLC) 2014021380</subfield><subfield code="w">(OCoLC)881591759</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=862306</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">30005457</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL1812610</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">862306</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">12102351</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
geographic | United States fast https://id.oclc.org/worldcat/entity/E39PBJtxgQXMWqmjMjjwXRHgrq |
geographic_facet | United States |
id | ZDB-4-EBA-ocn892911419 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:26:15Z |
institution | BVB |
isbn | 9789814452625 9814452629 |
language | English |
oclc_num | 892911419 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource |
psigel | ZDB-4-EBA |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | World Scientific Pub., |
record_format | marc |
spelling | Chiarella, Carl. The numerical solution of the American option pricing problem : finite difference and transform approaches / Carl Chiarella (University of Technology, Sydney, Australia), Boda Kang (University of York, UK), Gunter H Meyer (Georgia Institute of Technology, USA). New Jersey : World Scientific Pub., 2014. 1 online resource text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references and index. Introduction -- The Merton and Heston model for a call -- American call options under jump-diffusion processes -- American option prices under stochastic volatility and jump-diffusion dynamics-the transform approach -- Representation and numerical approximation of American option prices under Heston Fourier Cosine expansion approach -- A numerical approach to pricing American call options under SVJD -- Conclusions -- Bibliography -- Index. Print version record. The early exercise opportunity of an American option makes it challenging to price and an array of approaches have been proposed in the vast literature on this topic. In The Numerical Solution of the American Option Pricing Problem, Carl Chiarella, Boda Kang and Gunter Meyer focus on two numerical approaches that have proved useful for finding all prices, hedge ratios and early exercise boundaries of an American option. One is a finite difference approach which is based on the numerical solution of the partial differential equations with the free boundary problem arising in American option pr. Options (Finance) United States. Options (Finance) Mathematical models. Options (Finances) États-Unis. Options (Finances) Modèles mathématiques. BUSINESS & ECONOMICS Finance. bisacsh Options (Finance) fast Options (Finance) Mathematical models fast United States fast https://id.oclc.org/worldcat/entity/E39PBJtxgQXMWqmjMjjwXRHgrq Kang, Boda. Meyer, Gunter H. has work: The numerical solution of the American option pricing problem (Text) https://id.oclc.org/worldcat/entity/E39PCG43RkqGFDV7vqW89DpCKm https://id.oclc.org/worldcat/ontology/hasWork Print version: Chiarella, Carl. Numerical solution of the American option pricing problem 9789814452618 (DLC) 2014021380 (OCoLC)881591759 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=862306 Volltext |
spellingShingle | Chiarella, Carl The numerical solution of the American option pricing problem : finite difference and transform approaches / Introduction -- The Merton and Heston model for a call -- American call options under jump-diffusion processes -- American option prices under stochastic volatility and jump-diffusion dynamics-the transform approach -- Representation and numerical approximation of American option prices under Heston Fourier Cosine expansion approach -- A numerical approach to pricing American call options under SVJD -- Conclusions -- Bibliography -- Index. Options (Finance) United States. Options (Finance) Mathematical models. Options (Finances) États-Unis. Options (Finances) Modèles mathématiques. BUSINESS & ECONOMICS Finance. bisacsh Options (Finance) fast Options (Finance) Mathematical models fast |
title | The numerical solution of the American option pricing problem : finite difference and transform approaches / |
title_auth | The numerical solution of the American option pricing problem : finite difference and transform approaches / |
title_exact_search | The numerical solution of the American option pricing problem : finite difference and transform approaches / |
title_full | The numerical solution of the American option pricing problem : finite difference and transform approaches / Carl Chiarella (University of Technology, Sydney, Australia), Boda Kang (University of York, UK), Gunter H Meyer (Georgia Institute of Technology, USA). |
title_fullStr | The numerical solution of the American option pricing problem : finite difference and transform approaches / Carl Chiarella (University of Technology, Sydney, Australia), Boda Kang (University of York, UK), Gunter H Meyer (Georgia Institute of Technology, USA). |
title_full_unstemmed | The numerical solution of the American option pricing problem : finite difference and transform approaches / Carl Chiarella (University of Technology, Sydney, Australia), Boda Kang (University of York, UK), Gunter H Meyer (Georgia Institute of Technology, USA). |
title_short | The numerical solution of the American option pricing problem : |
title_sort | numerical solution of the american option pricing problem finite difference and transform approaches |
title_sub | finite difference and transform approaches / |
topic | Options (Finance) United States. Options (Finance) Mathematical models. Options (Finances) États-Unis. Options (Finances) Modèles mathématiques. BUSINESS & ECONOMICS Finance. bisacsh Options (Finance) fast Options (Finance) Mathematical models fast |
topic_facet | Options (Finance) United States. Options (Finance) Mathematical models. Options (Finances) États-Unis. Options (Finances) Modèles mathématiques. BUSINESS & ECONOMICS Finance. Options (Finance) Options (Finance) Mathematical models United States |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=862306 |
work_keys_str_mv | AT chiarellacarl thenumericalsolutionoftheamericanoptionpricingproblemfinitedifferenceandtransformapproaches AT kangboda thenumericalsolutionoftheamericanoptionpricingproblemfinitedifferenceandtransformapproaches AT meyergunterh thenumericalsolutionoftheamericanoptionpricingproblemfinitedifferenceandtransformapproaches AT chiarellacarl numericalsolutionoftheamericanoptionpricingproblemfinitedifferenceandtransformapproaches AT kangboda numericalsolutionoftheamericanoptionpricingproblemfinitedifferenceandtransformapproaches AT meyergunterh numericalsolutionoftheamericanoptionpricingproblemfinitedifferenceandtransformapproaches |