IPython Interactive Computing and Visualization Cookbook.:
With its widely acclaimed web-based notebook, IPython is an ideal gateway to data analysis and numerical computing in Python. This book contains many ready-to-use focused recipes for high-performance scientific computing and data analysis. You will learn how to: code better by writing high-quality,...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Packt Publishing,
2014.
|
Schlagworte: | |
Online-Zugang: | DE-862 DE-863 |
Zusammenfassung: | With its widely acclaimed web-based notebook, IPython is an ideal gateway to data analysis and numerical computing in Python. This book contains many ready-to-use focused recipes for high-performance scientific computing and data analysis. You will learn how to: code better by writing high-quality, readable, and well-tested programs; profiling and optimizing your code, and conducting reproducible interactive computing experiments; master all of the new features of the IPython notebook, including the interactive HTML/JavaScript widgets; analyze data with Bayesian and frequentist statistics (Pandas, PyMC, and R), and learn from data with machine learning (scikit-learn); gain insight into signals, images, and sounds with SciPy, scikit-image, and OpenCV; write blazingly fast Python programs with NumPy, PyTables, ctypes, Numba, Cython, OpenMP, GPU programming (CUDA and OpenCL), parallel IPython, MPI, and many more. -- |
Beschreibung: | 1 online resource |
ISBN: | 9781783284825 178328482X 1322166226 9781322166223 |
Internformat
MARC
LEADER | 00000cam a22000007a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn892044237 | ||
003 | OCoLC | ||
005 | 20250103110447.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 141003s2014 xx o 000 0 eng d | ||
040 | |a IDEBK |b eng |e pn |c IDEBK |d EBLCP |d OCLCQ |d N$T |d E7B |d YDXCP |d OCLCQ |d COO |d OCLCF |d OCLCQ |d STF |d B24X7 |d TEFOD |d OCLCQ |d FEM |d AGLDB |d OCLCQ |d ICA |d K6U |d OCLCQ |d CCO |d LIP |d PIFAG |d FVL |d ZCU |d XFH |d MERUC |d OCLCQ |d U3W |d REB |d D6H |d OCLCQ |d VTS |d ICG |d INT |d VT2 |d AU@ |d OCLCQ |d WYU |d G3B |d TKN |d OCLCQ |d DKC |d OCLCQ |d OCLCO |d INARC |d OCLCQ |d OCLCO |d OCLCL |d SXB |d OCLCQ |d OCLCO |d OCLCQ |d UKKRT | ||
019 | |a 962007839 |a 968009749 |a 969009113 |a 994402861 |a 1259269434 | ||
020 | |a 9781783284825 |q (electronic bk.) | ||
020 | |a 178328482X |q (electronic bk.) | ||
020 | |a 1322166226 |q (electronic bk.) | ||
020 | |a 9781322166223 |q (electronic bk.) | ||
020 | |z 9781783284818 | ||
020 | |z 1783284811 | ||
035 | |a (OCoLC)892044237 |z (OCoLC)962007839 |z (OCoLC)968009749 |z (OCoLC)969009113 |z (OCoLC)994402861 |z (OCoLC)1259269434 | ||
037 | |a BEFEA1C1-B37C-4F89-846E-84DA822027CD |b OverDrive, Inc. |n http://www.overdrive.com | ||
050 | 4 | |a QA76.73.P98 |b R6773 2013eb | |
072 | 7 | |a COM |x 000000 |2 bisacsh | |
082 | 7 | |a 006.78 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Rossant, Cyrille. |1 https://id.oclc.org/worldcat/entity/E39PCjr73h4dpJrWbQk6PvFhBK |0 http://id.loc.gov/authorities/names/no2013136929 | |
245 | 1 | 0 | |a IPython Interactive Computing and Visualization Cookbook. |
260 | |b Packt Publishing, |c 2014. | ||
300 | |a 1 online resource | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a text file | ||
588 | 0 | |a Print version record. | |
520 | |a With its widely acclaimed web-based notebook, IPython is an ideal gateway to data analysis and numerical computing in Python. This book contains many ready-to-use focused recipes for high-performance scientific computing and data analysis. You will learn how to: code better by writing high-quality, readable, and well-tested programs; profiling and optimizing your code, and conducting reproducible interactive computing experiments; master all of the new features of the IPython notebook, including the interactive HTML/JavaScript widgets; analyze data with Bayesian and frequentist statistics (Pandas, PyMC, and R), and learn from data with machine learning (scikit-learn); gain insight into signals, images, and sounds with SciPy, scikit-image, and OpenCV; write blazingly fast Python programs with NumPy, PyTables, ctypes, Numba, Cython, OpenMP, GPU programming (CUDA and OpenCL), parallel IPython, MPI, and many more. -- |c Edited summary from book. | ||
505 | 0 | |a Cover; Copyright; Credits; About the Author; About the Reviewers; www.PacktPub.com; Table of Contents; Preface; Chapter 1: A Tour of Interactive Computing with IPython; Introduction; Introducing the IPython notebook; Getting started with exploratory data analysis in IPython; Introducing the multidimensional array in NumPy for fast array computations; Creating an IPython extension with custom magic commands; Mastering IPython''s configuration system; Creating a simple kernel for IPython; Chapter 2: Best Practices in Interactive Computing; Introduction. | |
505 | 8 | |a Choosing (or not) between Python 2 and Python 3Efficient interactive computing workflows with IPython; Learning the basics of the distributed version control system Git; A typical workflow with Git branching; Ten tips for conducting reproducible interactive computing experiments; Writing high-quality Python code; Writing unit tests with nose; Debugging your code with IPython; Chapter 3: Mastering the Notebook; Introduction; Teaching programming in the notebook with IPython blocks; Converting an IPython notebook to other formats with nbconvert; Adding custom controls in the notebook toolbar. | |
505 | 8 | |a Customizing the CSS style in the notebookUsing interactive widgets -- a piano in the notebook; Creating a custom JavaScript widget in the notebook -- a spreadsheet editor for pandas; Processing webcam images in real time from the notebook; Chapter 4: Profiling and Optimization; Introduction; Evaluating the time taken by a statement in IPython; Profiling your code easily with cProfile and IPython; Profiling your code line-by-line with line_profiler; Profiling the memory usage of your code with memory_profiler; Understanding the internals of NumPy to avoid unnecessary array copying. | |
505 | 8 | |a Using stride tricks with NumPyImplementing an efficient rolling average algorithm with stride tricks; Making efficient array selections in NumPy; Processing huge NumPy arrays with memory mapping; Manipulating large arrays with HDF5 and PyTables; Manipulating large heterogeneous tables with HDF5 and PyTables; Chapter 5: High-performance Computing; Introduction; Accelerating pure Python code with Numba and Just-In-Time compilation; Accelerating array computations with Numexpr; Wrapping a C library in Python with ctypes; Accelerating Python code with Cython. | |
505 | 8 | |a Optimizing Cython code by writing less Python and more CReleasing the GIL to take advantage of ; multi-core processors with Cython and OpenMP; Writing massively parallel code for NVIDIA graphics cards (GPUs) with CUDA; Writing massively parallel code for heterogeneous platforms with OpenCL; Distributing Python code across multiple cores with IPython; Interacting with asynchronous parallel tasks in IPython; Parallelizing code with MPI in IPython; Trying the Julia language in the notebook; Chapter 6: Advanced Visualization; Introduction; Making nicer matplotlib figures with prettyplotlib. | |
546 | |a English. | ||
650 | 0 | |a Python (Computer program language) |0 http://id.loc.gov/authorities/subjects/sh96008834 | |
650 | 6 | |a Python (Langage de programmation) | |
650 | 7 | |a COMPUTERS |x General. |2 bisacsh | |
650 | 7 | |a Python (Computer program language) |2 fast | |
776 | 0 | 8 | |i Print version: |a Rossant, Cyrillel. |t IPython interactive computing and visualization cookbook. |d Birmingham, [England] : Packt Publishing, ©2014 |h 494 pages |z 9781783284818 |
966 | 4 | 0 | |l DE-862 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=855905 |3 Volltext |
966 | 4 | 0 | |l DE-863 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=855905 |3 Volltext |
938 | |a Kortext |b KTXT |n 119041 | ||
938 | |a Books 24x7 |b B247 |n bks00093174 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL1644014 | ||
938 | |a ebrary |b EBRY |n ebr10944918 | ||
938 | |a EBSCOhost |b EBSC |n 855905 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis29855676 | ||
938 | |a Internet Archive |b INAR |n ipythoninteracti0000ross | ||
938 | |a YBP Library Services |b YANK |n 12093931 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-862 | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn892044237 |
---|---|
_version_ | 1829095012397219840 |
adam_text | |
any_adam_object | |
author | Rossant, Cyrille |
author_GND | http://id.loc.gov/authorities/names/no2013136929 |
author_facet | Rossant, Cyrille |
author_role | |
author_sort | Rossant, Cyrille |
author_variant | c r cr |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA76 |
callnumber-raw | QA76.73.P98 R6773 2013eb |
callnumber-search | QA76.73.P98 R6773 2013eb |
callnumber-sort | QA 276.73 P98 R6773 42013EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Cover; Copyright; Credits; About the Author; About the Reviewers; www.PacktPub.com; Table of Contents; Preface; Chapter 1: A Tour of Interactive Computing with IPython; Introduction; Introducing the IPython notebook; Getting started with exploratory data analysis in IPython; Introducing the multidimensional array in NumPy for fast array computations; Creating an IPython extension with custom magic commands; Mastering IPython''s configuration system; Creating a simple kernel for IPython; Chapter 2: Best Practices in Interactive Computing; Introduction. Choosing (or not) between Python 2 and Python 3Efficient interactive computing workflows with IPython; Learning the basics of the distributed version control system Git; A typical workflow with Git branching; Ten tips for conducting reproducible interactive computing experiments; Writing high-quality Python code; Writing unit tests with nose; Debugging your code with IPython; Chapter 3: Mastering the Notebook; Introduction; Teaching programming in the notebook with IPython blocks; Converting an IPython notebook to other formats with nbconvert; Adding custom controls in the notebook toolbar. Customizing the CSS style in the notebookUsing interactive widgets -- a piano in the notebook; Creating a custom JavaScript widget in the notebook -- a spreadsheet editor for pandas; Processing webcam images in real time from the notebook; Chapter 4: Profiling and Optimization; Introduction; Evaluating the time taken by a statement in IPython; Profiling your code easily with cProfile and IPython; Profiling your code line-by-line with line_profiler; Profiling the memory usage of your code with memory_profiler; Understanding the internals of NumPy to avoid unnecessary array copying. Using stride tricks with NumPyImplementing an efficient rolling average algorithm with stride tricks; Making efficient array selections in NumPy; Processing huge NumPy arrays with memory mapping; Manipulating large arrays with HDF5 and PyTables; Manipulating large heterogeneous tables with HDF5 and PyTables; Chapter 5: High-performance Computing; Introduction; Accelerating pure Python code with Numba and Just-In-Time compilation; Accelerating array computations with Numexpr; Wrapping a C library in Python with ctypes; Accelerating Python code with Cython. Optimizing Cython code by writing less Python and more CReleasing the GIL to take advantage of ; multi-core processors with Cython and OpenMP; Writing massively parallel code for NVIDIA graphics cards (GPUs) with CUDA; Writing massively parallel code for heterogeneous platforms with OpenCL; Distributing Python code across multiple cores with IPython; Interacting with asynchronous parallel tasks in IPython; Parallelizing code with MPI in IPython; Trying the Julia language in the notebook; Chapter 6: Advanced Visualization; Introduction; Making nicer matplotlib figures with prettyplotlib. |
ctrlnum | (OCoLC)892044237 |
dewey-full | 006.78 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.78 |
dewey-search | 006.78 |
dewey-sort | 16.78 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06671cam a22006377a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn892044237</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20250103110447.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">141003s2014 xx o 000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">IDEBK</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">IDEBK</subfield><subfield code="d">EBLCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COO</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">STF</subfield><subfield code="d">B24X7</subfield><subfield code="d">TEFOD</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">FEM</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">ICA</subfield><subfield code="d">K6U</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">CCO</subfield><subfield code="d">LIP</subfield><subfield code="d">PIFAG</subfield><subfield code="d">FVL</subfield><subfield code="d">ZCU</subfield><subfield code="d">XFH</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">REB</subfield><subfield code="d">D6H</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">ICG</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">G3B</subfield><subfield code="d">TKN</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">INARC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SXB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKKRT</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">962007839</subfield><subfield code="a">968009749</subfield><subfield code="a">969009113</subfield><subfield code="a">994402861</subfield><subfield code="a">1259269434</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781783284825</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">178328482X</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1322166226</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781322166223</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781783284818</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1783284811</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)892044237</subfield><subfield code="z">(OCoLC)962007839</subfield><subfield code="z">(OCoLC)968009749</subfield><subfield code="z">(OCoLC)969009113</subfield><subfield code="z">(OCoLC)994402861</subfield><subfield code="z">(OCoLC)1259269434</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">BEFEA1C1-B37C-4F89-846E-84DA822027CD</subfield><subfield code="b">OverDrive, Inc.</subfield><subfield code="n">http://www.overdrive.com</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA76.73.P98</subfield><subfield code="b">R6773 2013eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">000000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">006.78</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rossant, Cyrille.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjr73h4dpJrWbQk6PvFhBK</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2013136929</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">IPython Interactive Computing and Visualization Cookbook.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="b">Packt Publishing,</subfield><subfield code="c">2014.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">text file</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">With its widely acclaimed web-based notebook, IPython is an ideal gateway to data analysis and numerical computing in Python. This book contains many ready-to-use focused recipes for high-performance scientific computing and data analysis. You will learn how to: code better by writing high-quality, readable, and well-tested programs; profiling and optimizing your code, and conducting reproducible interactive computing experiments; master all of the new features of the IPython notebook, including the interactive HTML/JavaScript widgets; analyze data with Bayesian and frequentist statistics (Pandas, PyMC, and R), and learn from data with machine learning (scikit-learn); gain insight into signals, images, and sounds with SciPy, scikit-image, and OpenCV; write blazingly fast Python programs with NumPy, PyTables, ctypes, Numba, Cython, OpenMP, GPU programming (CUDA and OpenCL), parallel IPython, MPI, and many more. --</subfield><subfield code="c">Edited summary from book.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Copyright; Credits; About the Author; About the Reviewers; www.PacktPub.com; Table of Contents; Preface; Chapter 1: A Tour of Interactive Computing with IPython; Introduction; Introducing the IPython notebook; Getting started with exploratory data analysis in IPython; Introducing the multidimensional array in NumPy for fast array computations; Creating an IPython extension with custom magic commands; Mastering IPython''s configuration system; Creating a simple kernel for IPython; Chapter 2: Best Practices in Interactive Computing; Introduction.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Choosing (or not) between Python 2 and Python 3Efficient interactive computing workflows with IPython; Learning the basics of the distributed version control system Git; A typical workflow with Git branching; Ten tips for conducting reproducible interactive computing experiments; Writing high-quality Python code; Writing unit tests with nose; Debugging your code with IPython; Chapter 3: Mastering the Notebook; Introduction; Teaching programming in the notebook with IPython blocks; Converting an IPython notebook to other formats with nbconvert; Adding custom controls in the notebook toolbar.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Customizing the CSS style in the notebookUsing interactive widgets -- a piano in the notebook; Creating a custom JavaScript widget in the notebook -- a spreadsheet editor for pandas; Processing webcam images in real time from the notebook; Chapter 4: Profiling and Optimization; Introduction; Evaluating the time taken by a statement in IPython; Profiling your code easily with cProfile and IPython; Profiling your code line-by-line with line_profiler; Profiling the memory usage of your code with memory_profiler; Understanding the internals of NumPy to avoid unnecessary array copying.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Using stride tricks with NumPyImplementing an efficient rolling average algorithm with stride tricks; Making efficient array selections in NumPy; Processing huge NumPy arrays with memory mapping; Manipulating large arrays with HDF5 and PyTables; Manipulating large heterogeneous tables with HDF5 and PyTables; Chapter 5: High-performance Computing; Introduction; Accelerating pure Python code with Numba and Just-In-Time compilation; Accelerating array computations with Numexpr; Wrapping a C library in Python with ctypes; Accelerating Python code with Cython.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Optimizing Cython code by writing less Python and more CReleasing the GIL to take advantage of ; multi-core processors with Cython and OpenMP; Writing massively parallel code for NVIDIA graphics cards (GPUs) with CUDA; Writing massively parallel code for heterogeneous platforms with OpenCL; Distributing Python code across multiple cores with IPython; Interacting with asynchronous parallel tasks in IPython; Parallelizing code with MPI in IPython; Trying the Julia language in the notebook; Chapter 6: Advanced Visualization; Introduction; Making nicer matplotlib figures with prettyplotlib.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Python (Computer program language)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh96008834</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Python (Langage de programmation)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Python (Computer program language)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Rossant, Cyrillel.</subfield><subfield code="t">IPython interactive computing and visualization cookbook.</subfield><subfield code="d">Birmingham, [England] : Packt Publishing, ©2014</subfield><subfield code="h">494 pages</subfield><subfield code="z">9781783284818</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-862</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=855905</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-863</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=855905</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Kortext</subfield><subfield code="b">KTXT</subfield><subfield code="n">119041</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Books 24x7</subfield><subfield code="b">B247</subfield><subfield code="n">bks00093174</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL1644014</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10944918</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">855905</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis29855676</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Internet Archive</subfield><subfield code="b">INAR</subfield><subfield code="n">ipythoninteracti0000ross</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">12093931</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-862</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn892044237 |
illustrated | Not Illustrated |
indexdate | 2025-04-11T08:42:15Z |
institution | BVB |
isbn | 9781783284825 178328482X 1322166226 9781322166223 |
language | English |
oclc_num | 892044237 |
open_access_boolean | |
owner | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
owner_facet | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
physical | 1 online resource |
psigel | ZDB-4-EBA FWS_PDA_EBA ZDB-4-EBA |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | Packt Publishing, |
record_format | marc |
spelling | Rossant, Cyrille. https://id.oclc.org/worldcat/entity/E39PCjr73h4dpJrWbQk6PvFhBK http://id.loc.gov/authorities/names/no2013136929 IPython Interactive Computing and Visualization Cookbook. Packt Publishing, 2014. 1 online resource text txt rdacontent computer c rdamedia online resource cr rdacarrier text file Print version record. With its widely acclaimed web-based notebook, IPython is an ideal gateway to data analysis and numerical computing in Python. This book contains many ready-to-use focused recipes for high-performance scientific computing and data analysis. You will learn how to: code better by writing high-quality, readable, and well-tested programs; profiling and optimizing your code, and conducting reproducible interactive computing experiments; master all of the new features of the IPython notebook, including the interactive HTML/JavaScript widgets; analyze data with Bayesian and frequentist statistics (Pandas, PyMC, and R), and learn from data with machine learning (scikit-learn); gain insight into signals, images, and sounds with SciPy, scikit-image, and OpenCV; write blazingly fast Python programs with NumPy, PyTables, ctypes, Numba, Cython, OpenMP, GPU programming (CUDA and OpenCL), parallel IPython, MPI, and many more. -- Edited summary from book. Cover; Copyright; Credits; About the Author; About the Reviewers; www.PacktPub.com; Table of Contents; Preface; Chapter 1: A Tour of Interactive Computing with IPython; Introduction; Introducing the IPython notebook; Getting started with exploratory data analysis in IPython; Introducing the multidimensional array in NumPy for fast array computations; Creating an IPython extension with custom magic commands; Mastering IPython''s configuration system; Creating a simple kernel for IPython; Chapter 2: Best Practices in Interactive Computing; Introduction. Choosing (or not) between Python 2 and Python 3Efficient interactive computing workflows with IPython; Learning the basics of the distributed version control system Git; A typical workflow with Git branching; Ten tips for conducting reproducible interactive computing experiments; Writing high-quality Python code; Writing unit tests with nose; Debugging your code with IPython; Chapter 3: Mastering the Notebook; Introduction; Teaching programming in the notebook with IPython blocks; Converting an IPython notebook to other formats with nbconvert; Adding custom controls in the notebook toolbar. Customizing the CSS style in the notebookUsing interactive widgets -- a piano in the notebook; Creating a custom JavaScript widget in the notebook -- a spreadsheet editor for pandas; Processing webcam images in real time from the notebook; Chapter 4: Profiling and Optimization; Introduction; Evaluating the time taken by a statement in IPython; Profiling your code easily with cProfile and IPython; Profiling your code line-by-line with line_profiler; Profiling the memory usage of your code with memory_profiler; Understanding the internals of NumPy to avoid unnecessary array copying. Using stride tricks with NumPyImplementing an efficient rolling average algorithm with stride tricks; Making efficient array selections in NumPy; Processing huge NumPy arrays with memory mapping; Manipulating large arrays with HDF5 and PyTables; Manipulating large heterogeneous tables with HDF5 and PyTables; Chapter 5: High-performance Computing; Introduction; Accelerating pure Python code with Numba and Just-In-Time compilation; Accelerating array computations with Numexpr; Wrapping a C library in Python with ctypes; Accelerating Python code with Cython. Optimizing Cython code by writing less Python and more CReleasing the GIL to take advantage of ; multi-core processors with Cython and OpenMP; Writing massively parallel code for NVIDIA graphics cards (GPUs) with CUDA; Writing massively parallel code for heterogeneous platforms with OpenCL; Distributing Python code across multiple cores with IPython; Interacting with asynchronous parallel tasks in IPython; Parallelizing code with MPI in IPython; Trying the Julia language in the notebook; Chapter 6: Advanced Visualization; Introduction; Making nicer matplotlib figures with prettyplotlib. English. Python (Computer program language) http://id.loc.gov/authorities/subjects/sh96008834 Python (Langage de programmation) COMPUTERS General. bisacsh Python (Computer program language) fast Print version: Rossant, Cyrillel. IPython interactive computing and visualization cookbook. Birmingham, [England] : Packt Publishing, ©2014 494 pages 9781783284818 |
spellingShingle | Rossant, Cyrille IPython Interactive Computing and Visualization Cookbook. Cover; Copyright; Credits; About the Author; About the Reviewers; www.PacktPub.com; Table of Contents; Preface; Chapter 1: A Tour of Interactive Computing with IPython; Introduction; Introducing the IPython notebook; Getting started with exploratory data analysis in IPython; Introducing the multidimensional array in NumPy for fast array computations; Creating an IPython extension with custom magic commands; Mastering IPython''s configuration system; Creating a simple kernel for IPython; Chapter 2: Best Practices in Interactive Computing; Introduction. Choosing (or not) between Python 2 and Python 3Efficient interactive computing workflows with IPython; Learning the basics of the distributed version control system Git; A typical workflow with Git branching; Ten tips for conducting reproducible interactive computing experiments; Writing high-quality Python code; Writing unit tests with nose; Debugging your code with IPython; Chapter 3: Mastering the Notebook; Introduction; Teaching programming in the notebook with IPython blocks; Converting an IPython notebook to other formats with nbconvert; Adding custom controls in the notebook toolbar. Customizing the CSS style in the notebookUsing interactive widgets -- a piano in the notebook; Creating a custom JavaScript widget in the notebook -- a spreadsheet editor for pandas; Processing webcam images in real time from the notebook; Chapter 4: Profiling and Optimization; Introduction; Evaluating the time taken by a statement in IPython; Profiling your code easily with cProfile and IPython; Profiling your code line-by-line with line_profiler; Profiling the memory usage of your code with memory_profiler; Understanding the internals of NumPy to avoid unnecessary array copying. Using stride tricks with NumPyImplementing an efficient rolling average algorithm with stride tricks; Making efficient array selections in NumPy; Processing huge NumPy arrays with memory mapping; Manipulating large arrays with HDF5 and PyTables; Manipulating large heterogeneous tables with HDF5 and PyTables; Chapter 5: High-performance Computing; Introduction; Accelerating pure Python code with Numba and Just-In-Time compilation; Accelerating array computations with Numexpr; Wrapping a C library in Python with ctypes; Accelerating Python code with Cython. Optimizing Cython code by writing less Python and more CReleasing the GIL to take advantage of ; multi-core processors with Cython and OpenMP; Writing massively parallel code for NVIDIA graphics cards (GPUs) with CUDA; Writing massively parallel code for heterogeneous platforms with OpenCL; Distributing Python code across multiple cores with IPython; Interacting with asynchronous parallel tasks in IPython; Parallelizing code with MPI in IPython; Trying the Julia language in the notebook; Chapter 6: Advanced Visualization; Introduction; Making nicer matplotlib figures with prettyplotlib. Python (Computer program language) http://id.loc.gov/authorities/subjects/sh96008834 Python (Langage de programmation) COMPUTERS General. bisacsh Python (Computer program language) fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh96008834 |
title | IPython Interactive Computing and Visualization Cookbook. |
title_auth | IPython Interactive Computing and Visualization Cookbook. |
title_exact_search | IPython Interactive Computing and Visualization Cookbook. |
title_full | IPython Interactive Computing and Visualization Cookbook. |
title_fullStr | IPython Interactive Computing and Visualization Cookbook. |
title_full_unstemmed | IPython Interactive Computing and Visualization Cookbook. |
title_short | IPython Interactive Computing and Visualization Cookbook. |
title_sort | ipython interactive computing and visualization cookbook |
topic | Python (Computer program language) http://id.loc.gov/authorities/subjects/sh96008834 Python (Langage de programmation) COMPUTERS General. bisacsh Python (Computer program language) fast |
topic_facet | Python (Computer program language) Python (Langage de programmation) COMPUTERS General. |
work_keys_str_mv | AT rossantcyrille ipythoninteractivecomputingandvisualizationcookbook |