Weak convergence and its applications /:
Weak convergence of stochastic processes is one of most important theories in probability theory. Not only probability experts but also more and more statisticians are interested in it. In the study of statistics and econometrics, some problems cannot be solved by the classical method. In this book,...
Gespeichert in:
1. Verfasser: | |
---|---|
Körperschaft: | |
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore ; Hackensack, N.J. :
World Scientific Pub. Co.,
©2014.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Weak convergence of stochastic processes is one of most important theories in probability theory. Not only probability experts but also more and more statisticians are interested in it. In the study of statistics and econometrics, some problems cannot be solved by the classical method. In this book, we will introduce some recent development of modern weak convergence theory to overcome defects of classical theory. |
Beschreibung: | 1 online resource (viii, 176 pages) |
Bibliographie: | Includes bibliographical references (pages 171-174) and index. |
ISBN: | 9789814447706 9814447706 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn890604051 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr buu|||uu||| | ||
008 | 091123s2014 si ob 001 0 eng d | ||
040 | |a OTZ |b eng |e pn |c OTZ |d OCLCO |d N$T |d CDX |d OCLCF |d YDXCP |d OCLCQ |d EBLCP |d DEBSZ |d OCLCQ |d AGLDB |d OCLCQ |d VTS |d OTZ |d STF |d LEAUB |d AU@ |d M8D |d UKAHL |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d SXB |d OCLCQ | ||
020 | |a 9789814447706 |q (electronic bk.) | ||
020 | |a 9814447706 |q (electronic bk.) | ||
020 | |z 9789814447690 | ||
035 | |a (OCoLC)890604051 | ||
050 | 4 | |a QA274 | |
072 | 7 | |a MAT |x 003000 |2 bisacsh | |
072 | 7 | |a MAT |x 029000 |2 bisacsh | |
082 | 7 | |a 519.2 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Lin, Zhengyan. | |
245 | 1 | 0 | |a Weak convergence and its applications / |c Zhengyan Lin, Hanchao Wang. |
260 | |a Singapore ; |a Hackensack, N.J. : |b World Scientific Pub. Co., |c ©2014. | ||
300 | |a 1 online resource (viii, 176 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references (pages 171-174) and index. | ||
505 | 0 | |a 1. The definition and basic properties of weak convergence. 1.1. Metric space. 1.2. The definition of weak convergence of stochastic processes and portmanteau theorem. 1.3. How to verify the weak convergence? 1.4. Two examples of applications of weak convergence -- 2. Convergence to the independent increment processes. 2.1. The basic conditions of convergence to the Gaussian independent increment processes. 2.2. Donsker invariance principle. 2.3. Convergence of Poisson point processes. 2.4. Two examples of applications of point process method -- 3. Convergence to semimartingales. 3.1. The conditions of tightness for semimartingale sequence. 3.2. Weak convergence to semimartingale. 3.3. Weak convergence to stochastic integral I: the martingale convergence approach. 3.4. Weak convergence to stochastic integral II: Kurtz and Protter's approach. 3.5. Stable central limit theorem for semimartingales. 3.6. An application to stochastic differential equations -- 4. Convergence of empirical processes. 4.1. Classical weak convergence of empirical processes. 4.2. Weak convergence of marked empirical processes. 4.3. Weak convergence of function index empirical processes. 4.4. Weak convergence of empirical processes involving time-dependent data. 4.5. Two examples of applications in statistics. | |
520 | |a Weak convergence of stochastic processes is one of most important theories in probability theory. Not only probability experts but also more and more statisticians are interested in it. In the study of statistics and econometrics, some problems cannot be solved by the classical method. In this book, we will introduce some recent development of modern weak convergence theory to overcome defects of classical theory. | ||
650 | 0 | |a Convergence. |0 http://id.loc.gov/authorities/subjects/sh85031692 | |
650 | 0 | |a Distribution (Probability theory) |0 http://id.loc.gov/authorities/subjects/sh85038545 | |
650 | 6 | |a Convergence (Mathématiques) | |
650 | 6 | |a Distribution (Théorie des probabilités) | |
650 | 7 | |a distribution (statistics-related concept) |2 aat | |
650 | 7 | |a MATHEMATICS |x Applied. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Probability & Statistics |x General. |2 bisacsh | |
650 | 7 | |a Convergence |2 fast | |
650 | 7 | |a Distribution (Probability theory) |2 fast | |
700 | 1 | |a Wang, Hanchao. | |
710 | 2 | |a World Scientific (Firm) |0 http://id.loc.gov/authorities/names/no2001005546 | |
776 | 0 | 8 | |i Print version: |z 9789814447690 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=942142 |3 Volltext |
936 | |a BATCHLOAD | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH28179850 | ||
938 | |a Coutts Information Services |b COUT |n 30550896 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL3051458 | ||
938 | |a EBSCOhost |b EBSC |n 942142 | ||
938 | |a YBP Library Services |b YANK |n 12254065 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn890604051 |
---|---|
_version_ | 1816882286615855104 |
adam_text | |
any_adam_object | |
author | Lin, Zhengyan |
author2 | Wang, Hanchao |
author2_role | |
author2_variant | h w hw |
author_corporate | World Scientific (Firm) |
author_corporate_role | |
author_facet | Lin, Zhengyan Wang, Hanchao World Scientific (Firm) |
author_role | |
author_sort | Lin, Zhengyan |
author_variant | z l zl |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA274 |
callnumber-raw | QA274 |
callnumber-search | QA274 |
callnumber-sort | QA 3274 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | 1. The definition and basic properties of weak convergence. 1.1. Metric space. 1.2. The definition of weak convergence of stochastic processes and portmanteau theorem. 1.3. How to verify the weak convergence? 1.4. Two examples of applications of weak convergence -- 2. Convergence to the independent increment processes. 2.1. The basic conditions of convergence to the Gaussian independent increment processes. 2.2. Donsker invariance principle. 2.3. Convergence of Poisson point processes. 2.4. Two examples of applications of point process method -- 3. Convergence to semimartingales. 3.1. The conditions of tightness for semimartingale sequence. 3.2. Weak convergence to semimartingale. 3.3. Weak convergence to stochastic integral I: the martingale convergence approach. 3.4. Weak convergence to stochastic integral II: Kurtz and Protter's approach. 3.5. Stable central limit theorem for semimartingales. 3.6. An application to stochastic differential equations -- 4. Convergence of empirical processes. 4.1. Classical weak convergence of empirical processes. 4.2. Weak convergence of marked empirical processes. 4.3. Weak convergence of function index empirical processes. 4.4. Weak convergence of empirical processes involving time-dependent data. 4.5. Two examples of applications in statistics. |
ctrlnum | (OCoLC)890604051 |
dewey-full | 519.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2 |
dewey-search | 519.2 |
dewey-sort | 3519.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04065cam a2200577 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn890604051</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr buu|||uu|||</controlfield><controlfield tag="008">091123s2014 si ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">OTZ</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">OTZ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">N$T</subfield><subfield code="d">CDX</subfield><subfield code="d">OCLCF</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">EBLCP</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">OTZ</subfield><subfield code="d">STF</subfield><subfield code="d">LEAUB</subfield><subfield code="d">AU@</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SXB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814447706</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814447706</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789814447690</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)890604051</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA274</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">003000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">029000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lin, Zhengyan.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Weak convergence and its applications /</subfield><subfield code="c">Zhengyan Lin, Hanchao Wang.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Singapore ;</subfield><subfield code="a">Hackensack, N.J. :</subfield><subfield code="b">World Scientific Pub. Co.,</subfield><subfield code="c">©2014.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (viii, 176 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 171-174) and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">1. The definition and basic properties of weak convergence. 1.1. Metric space. 1.2. The definition of weak convergence of stochastic processes and portmanteau theorem. 1.3. How to verify the weak convergence? 1.4. Two examples of applications of weak convergence -- 2. Convergence to the independent increment processes. 2.1. The basic conditions of convergence to the Gaussian independent increment processes. 2.2. Donsker invariance principle. 2.3. Convergence of Poisson point processes. 2.4. Two examples of applications of point process method -- 3. Convergence to semimartingales. 3.1. The conditions of tightness for semimartingale sequence. 3.2. Weak convergence to semimartingale. 3.3. Weak convergence to stochastic integral I: the martingale convergence approach. 3.4. Weak convergence to stochastic integral II: Kurtz and Protter's approach. 3.5. Stable central limit theorem for semimartingales. 3.6. An application to stochastic differential equations -- 4. Convergence of empirical processes. 4.1. Classical weak convergence of empirical processes. 4.2. Weak convergence of marked empirical processes. 4.3. Weak convergence of function index empirical processes. 4.4. Weak convergence of empirical processes involving time-dependent data. 4.5. Two examples of applications in statistics.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Weak convergence of stochastic processes is one of most important theories in probability theory. Not only probability experts but also more and more statisticians are interested in it. In the study of statistics and econometrics, some problems cannot be solved by the classical method. In this book, we will introduce some recent development of modern weak convergence theory to overcome defects of classical theory.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Convergence.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85031692</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Distribution (Probability theory)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85038545</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Convergence (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Distribution (Théorie des probabilités)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">distribution (statistics-related concept)</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Applied.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Probability & Statistics</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Convergence</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Distribution (Probability theory)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Hanchao.</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">World Scientific (Firm)</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2001005546</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="z">9789814447690</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=942142</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="936" ind1=" " ind2=" "><subfield code="a">BATCHLOAD</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH28179850</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">30550896</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL3051458</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">942142</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">12254065</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn890604051 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:26:12Z |
institution | BVB |
institution_GND | http://id.loc.gov/authorities/names/no2001005546 |
isbn | 9789814447706 9814447706 |
language | English |
oclc_num | 890604051 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (viii, 176 pages) |
psigel | ZDB-4-EBA |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | World Scientific Pub. Co., |
record_format | marc |
spelling | Lin, Zhengyan. Weak convergence and its applications / Zhengyan Lin, Hanchao Wang. Singapore ; Hackensack, N.J. : World Scientific Pub. Co., ©2014. 1 online resource (viii, 176 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references (pages 171-174) and index. 1. The definition and basic properties of weak convergence. 1.1. Metric space. 1.2. The definition of weak convergence of stochastic processes and portmanteau theorem. 1.3. How to verify the weak convergence? 1.4. Two examples of applications of weak convergence -- 2. Convergence to the independent increment processes. 2.1. The basic conditions of convergence to the Gaussian independent increment processes. 2.2. Donsker invariance principle. 2.3. Convergence of Poisson point processes. 2.4. Two examples of applications of point process method -- 3. Convergence to semimartingales. 3.1. The conditions of tightness for semimartingale sequence. 3.2. Weak convergence to semimartingale. 3.3. Weak convergence to stochastic integral I: the martingale convergence approach. 3.4. Weak convergence to stochastic integral II: Kurtz and Protter's approach. 3.5. Stable central limit theorem for semimartingales. 3.6. An application to stochastic differential equations -- 4. Convergence of empirical processes. 4.1. Classical weak convergence of empirical processes. 4.2. Weak convergence of marked empirical processes. 4.3. Weak convergence of function index empirical processes. 4.4. Weak convergence of empirical processes involving time-dependent data. 4.5. Two examples of applications in statistics. Weak convergence of stochastic processes is one of most important theories in probability theory. Not only probability experts but also more and more statisticians are interested in it. In the study of statistics and econometrics, some problems cannot be solved by the classical method. In this book, we will introduce some recent development of modern weak convergence theory to overcome defects of classical theory. Convergence. http://id.loc.gov/authorities/subjects/sh85031692 Distribution (Probability theory) http://id.loc.gov/authorities/subjects/sh85038545 Convergence (Mathématiques) Distribution (Théorie des probabilités) distribution (statistics-related concept) aat MATHEMATICS Applied. bisacsh MATHEMATICS Probability & Statistics General. bisacsh Convergence fast Distribution (Probability theory) fast Wang, Hanchao. World Scientific (Firm) http://id.loc.gov/authorities/names/no2001005546 Print version: 9789814447690 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=942142 Volltext |
spellingShingle | Lin, Zhengyan Weak convergence and its applications / 1. The definition and basic properties of weak convergence. 1.1. Metric space. 1.2. The definition of weak convergence of stochastic processes and portmanteau theorem. 1.3. How to verify the weak convergence? 1.4. Two examples of applications of weak convergence -- 2. Convergence to the independent increment processes. 2.1. The basic conditions of convergence to the Gaussian independent increment processes. 2.2. Donsker invariance principle. 2.3. Convergence of Poisson point processes. 2.4. Two examples of applications of point process method -- 3. Convergence to semimartingales. 3.1. The conditions of tightness for semimartingale sequence. 3.2. Weak convergence to semimartingale. 3.3. Weak convergence to stochastic integral I: the martingale convergence approach. 3.4. Weak convergence to stochastic integral II: Kurtz and Protter's approach. 3.5. Stable central limit theorem for semimartingales. 3.6. An application to stochastic differential equations -- 4. Convergence of empirical processes. 4.1. Classical weak convergence of empirical processes. 4.2. Weak convergence of marked empirical processes. 4.3. Weak convergence of function index empirical processes. 4.4. Weak convergence of empirical processes involving time-dependent data. 4.5. Two examples of applications in statistics. Convergence. http://id.loc.gov/authorities/subjects/sh85031692 Distribution (Probability theory) http://id.loc.gov/authorities/subjects/sh85038545 Convergence (Mathématiques) Distribution (Théorie des probabilités) distribution (statistics-related concept) aat MATHEMATICS Applied. bisacsh MATHEMATICS Probability & Statistics General. bisacsh Convergence fast Distribution (Probability theory) fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85031692 http://id.loc.gov/authorities/subjects/sh85038545 |
title | Weak convergence and its applications / |
title_auth | Weak convergence and its applications / |
title_exact_search | Weak convergence and its applications / |
title_full | Weak convergence and its applications / Zhengyan Lin, Hanchao Wang. |
title_fullStr | Weak convergence and its applications / Zhengyan Lin, Hanchao Wang. |
title_full_unstemmed | Weak convergence and its applications / Zhengyan Lin, Hanchao Wang. |
title_short | Weak convergence and its applications / |
title_sort | weak convergence and its applications |
topic | Convergence. http://id.loc.gov/authorities/subjects/sh85031692 Distribution (Probability theory) http://id.loc.gov/authorities/subjects/sh85038545 Convergence (Mathématiques) Distribution (Théorie des probabilités) distribution (statistics-related concept) aat MATHEMATICS Applied. bisacsh MATHEMATICS Probability & Statistics General. bisacsh Convergence fast Distribution (Probability theory) fast |
topic_facet | Convergence. Distribution (Probability theory) Convergence (Mathématiques) Distribution (Théorie des probabilités) distribution (statistics-related concept) MATHEMATICS Applied. MATHEMATICS Probability & Statistics General. Convergence |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=942142 |
work_keys_str_mv | AT linzhengyan weakconvergenceanditsapplications AT wanghanchao weakconvergenceanditsapplications AT worldscientificfirm weakconvergenceanditsapplications |