Krichever-Novikov Type Algebras :: Theory and Applications.
Krichever and Novikov introduced certain classes of infinite dimensionalLie algebrasto extend the Virasoro algebra and its related algebras to Riemann surfaces of higher genus. The author of this book generalized and extended them toa more general setting needed by the applications. Examples of appl...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin :
De Gruyter,
2014.
|
Schriftenreihe: | De Gruyter studies in mathematics.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Krichever and Novikov introduced certain classes of infinite dimensionalLie algebrasto extend the Virasoro algebra and its related algebras to Riemann surfaces of higher genus. The author of this book generalized and extended them toa more general setting needed by the applications. Examples of applications are Conformal Field Theory, Wess-Zumino-Novikov-Witten models, moduli space problems, integrable systems, Lax operator algebras, and deformation theory of Lie algebra. Furthermore they constitute an important class of infinite dimensional Lie algebras which due to their geometric origin are. |
Beschreibung: | 1 online resource (378 pages) |
Bibliographie: | Includes bibliographical references (pages 345-356). |
ISBN: | 9783110279641 3110279649 3110381478 9783110381474 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn890070954 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr |n|---||||| | ||
008 | 140904s2014 gw ob 000 0 eng d | ||
040 | |a MHW |b eng |e pn |c MHW |d EBLCP |d OCLCO |d DEBBG |d E7B |d CN3GA |d OCLCO |d YDXCP |d N$T |d IDEBK |d COO |d DEBSZ |d OCLCQ |d UIU |d AGLDB |d PIFBY |d VGM |d ZCU |d MERUC |d CUY |d OCLCQ |d DEGRU |d U3W |d STF |d OCLCQ |d VTS |d ICG |d INT |d VT2 |d OCLCQ |d WYU |d TKN |d OCLCQ |d LEAUB |d DKC |d OCLCO |d OCLCQ |d M8D |d OCLCQ |d UKAHL |d OCLCQ |d AJS |d QGK |d OCLCO |d OCLCQ |d SFB |d OCLCO |d UEJ |d OCLCQ | ||
019 | |a 901990738 |a 961531636 |a 962608197 |a 1259181970 |a 1264737407 |a 1297197817 |a 1297622097 | ||
020 | |a 9783110279641 | ||
020 | |a 3110279649 | ||
020 | |a 3110381478 | ||
020 | |a 9783110381474 | ||
020 | |z 9783110265170 | ||
020 | |z 3110265176 | ||
020 | |z 9783110280258 | ||
020 | |z 3110280256 | ||
024 | 7 | |a 10.1515/9783110279641 |2 doi | |
035 | |a (OCoLC)890070954 |z (OCoLC)901990738 |z (OCoLC)961531636 |z (OCoLC)962608197 |z (OCoLC)1259181970 |z (OCoLC)1264737407 |z (OCoLC)1297197817 |z (OCoLC)1297622097 | ||
050 | 4 | |a QA252.3 |b .S35 2014 | |
072 | 7 | |a QA |2 lcco | |
072 | 7 | |a MAT |x 002040 |2 bisacsh | |
082 | 7 | |a 510 | |
084 | |a SK 340 |q SEPA |2 rvk |0 (DE-625)rvk/143232: | ||
049 | |a MAIN | ||
100 | 1 | |a Schlichenmaier, Martin. | |
245 | 1 | 0 | |a Krichever-Novikov Type Algebras : |b Theory and Applications. |
260 | |a Berlin : |b De Gruyter, |c 2014. | ||
300 | |a 1 online resource (378 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a De Gruyter Studies in Mathematics ; |v v. 53 | |
588 | 0 | |a Print version record. | |
520 | |a Krichever and Novikov introduced certain classes of infinite dimensionalLie algebrasto extend the Virasoro algebra and its related algebras to Riemann surfaces of higher genus. The author of this book generalized and extended them toa more general setting needed by the applications. Examples of applications are Conformal Field Theory, Wess-Zumino-Novikov-Witten models, moduli space problems, integrable systems, Lax operator algebras, and deformation theory of Lie algebra. Furthermore they constitute an important class of infinite dimensional Lie algebras which due to their geometric origin are. | ||
504 | |a Includes bibliographical references (pages 345-356). | ||
505 | 0 | 0 | |t Frontmatter -- |t Preface -- |t Contents -- |t 1. Some background on Lie algebras -- |t 2. The higher genus algebras -- |t 3. The almost-grading -- |t 4. Fixing the basis elements -- |t 5. Explicit expressions for a system of generators -- |t 6. Central extensions of Krichever-Novikov type algebras -- |t 7. Semi-infinite wedge forms and fermionic Fock space representations -- |t 8. b -- c systems -- |t 9. Affine algebras -- |t 10. The Sugawara construction -- |t 11. Wess-Zumino-Novikov-Witten models and Knizhnik-Zamolodchikov connection -- |t 12. Degenerations and deformations -- |t 13. Lax operator algebras -- |t 14. Some related developments -- |t Bibliography -- |t Index. |
546 | |a English. | ||
650 | 0 | |a Infinite dimensional Lie algebras. |0 http://id.loc.gov/authorities/subjects/sh91003307 | |
650 | 6 | |a Algèbres de Lie de dimension infinie. | |
650 | 7 | |a MATHEMATICS |x Algebra |x Intermediate. |2 bisacsh | |
650 | 7 | |a Infinite dimensional Lie algebras |2 fast | |
650 | 7 | |a Krichever-Novikov-Algebra |2 gnd |0 http://d-nb.info/gnd/4272706-6 | |
650 | 7 | |a Unendlichdimensionale Lie-Algebra |2 gnd |0 http://d-nb.info/gnd/4434344-9 | |
653 | |a Conformal field theory. | ||
653 | |a Lie algebras. | ||
653 | |a Mathematical physics. | ||
653 | |a Moduli spaces. | ||
653 | |a Riemann surfaces. | ||
776 | 0 | 8 | |i Print version: |z 9783110265170 |
830 | 0 | |a De Gruyter studies in mathematics. |0 http://id.loc.gov/authorities/names/n83742913 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=840482 |3 Volltext |
936 | |a BATCHLOAD | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH26830471 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH25312540 | ||
938 | |a De Gruyter |b DEGR |n 9783110279641 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL1130346 | ||
938 | |a ebrary |b EBRY |n ebr11006658 | ||
938 | |a EBSCOhost |b EBSC |n 840482 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis24871541 | ||
938 | |a YBP Library Services |b YANK |n 10817643 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn890070954 |
---|---|
_version_ | 1816882285779091456 |
adam_text | |
any_adam_object | |
author | Schlichenmaier, Martin |
author_facet | Schlichenmaier, Martin |
author_role | |
author_sort | Schlichenmaier, Martin |
author_variant | m s ms |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA252 |
callnumber-raw | QA252.3 .S35 2014 |
callnumber-search | QA252.3 .S35 2014 |
callnumber-sort | QA 3252.3 S35 42014 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 340 |
collection | ZDB-4-EBA |
contents | Frontmatter -- Preface -- Contents -- 1. Some background on Lie algebras -- 2. The higher genus algebras -- 3. The almost-grading -- 4. Fixing the basis elements -- 5. Explicit expressions for a system of generators -- 6. Central extensions of Krichever-Novikov type algebras -- 7. Semi-infinite wedge forms and fermionic Fock space representations -- 8. b -- c systems -- 9. Affine algebras -- 10. The Sugawara construction -- 11. Wess-Zumino-Novikov-Witten models and Knizhnik-Zamolodchikov connection -- 12. Degenerations and deformations -- 13. Lax operator algebras -- 14. Some related developments -- Bibliography -- Index. |
ctrlnum | (OCoLC)890070954 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04425cam a2200757 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn890070954</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |n|---|||||</controlfield><controlfield tag="008">140904s2014 gw ob 000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">MHW</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">MHW</subfield><subfield code="d">EBLCP</subfield><subfield code="d">OCLCO</subfield><subfield code="d">DEBBG</subfield><subfield code="d">E7B</subfield><subfield code="d">CN3GA</subfield><subfield code="d">OCLCO</subfield><subfield code="d">YDXCP</subfield><subfield code="d">N$T</subfield><subfield code="d">IDEBK</subfield><subfield code="d">COO</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UIU</subfield><subfield code="d">AGLDB</subfield><subfield code="d">PIFBY</subfield><subfield code="d">VGM</subfield><subfield code="d">ZCU</subfield><subfield code="d">MERUC</subfield><subfield code="d">CUY</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEGRU</subfield><subfield code="d">U3W</subfield><subfield code="d">STF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">ICG</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">TKN</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LEAUB</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AJS</subfield><subfield code="d">QGK</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCO</subfield><subfield code="d">UEJ</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">901990738</subfield><subfield code="a">961531636</subfield><subfield code="a">962608197</subfield><subfield code="a">1259181970</subfield><subfield code="a">1264737407</subfield><subfield code="a">1297197817</subfield><subfield code="a">1297622097</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110279641</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110279649</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110381478</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110381474</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783110265170</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">3110265176</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783110280258</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">3110280256</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110279641</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)890070954</subfield><subfield code="z">(OCoLC)901990738</subfield><subfield code="z">(OCoLC)961531636</subfield><subfield code="z">(OCoLC)962608197</subfield><subfield code="z">(OCoLC)1259181970</subfield><subfield code="z">(OCoLC)1264737407</subfield><subfield code="z">(OCoLC)1297197817</subfield><subfield code="z">(OCoLC)1297622097</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA252.3</subfield><subfield code="b">.S35 2014</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">QA</subfield><subfield code="2">lcco</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">002040</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">510</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="q">SEPA</subfield><subfield code="2">rvk</subfield><subfield code="0">(DE-625)rvk/143232:</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Schlichenmaier, Martin.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Krichever-Novikov Type Algebras :</subfield><subfield code="b">Theory and Applications.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Berlin :</subfield><subfield code="b">De Gruyter,</subfield><subfield code="c">2014.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (378 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">De Gruyter Studies in Mathematics ;</subfield><subfield code="v">v. 53</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Krichever and Novikov introduced certain classes of infinite dimensionalLie algebrasto extend the Virasoro algebra and its related algebras to Riemann surfaces of higher genus. The author of this book generalized and extended them toa more general setting needed by the applications. Examples of applications are Conformal Field Theory, Wess-Zumino-Novikov-Witten models, moduli space problems, integrable systems, Lax operator algebras, and deformation theory of Lie algebra. Furthermore they constitute an important class of infinite dimensional Lie algebras which due to their geometric origin are.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 345-356).</subfield></datafield><datafield tag="505" ind1="0" ind2="0"><subfield code="t">Frontmatter --</subfield><subfield code="t">Preface --</subfield><subfield code="t">Contents --</subfield><subfield code="t">1. Some background on Lie algebras --</subfield><subfield code="t">2. The higher genus algebras --</subfield><subfield code="t">3. The almost-grading --</subfield><subfield code="t">4. Fixing the basis elements --</subfield><subfield code="t">5. Explicit expressions for a system of generators --</subfield><subfield code="t">6. Central extensions of Krichever-Novikov type algebras --</subfield><subfield code="t">7. Semi-infinite wedge forms and fermionic Fock space representations --</subfield><subfield code="t">8. b -- c systems --</subfield><subfield code="t">9. Affine algebras --</subfield><subfield code="t">10. The Sugawara construction --</subfield><subfield code="t">11. Wess-Zumino-Novikov-Witten models and Knizhnik-Zamolodchikov connection --</subfield><subfield code="t">12. Degenerations and deformations --</subfield><subfield code="t">13. Lax operator algebras --</subfield><subfield code="t">14. Some related developments --</subfield><subfield code="t">Bibliography --</subfield><subfield code="t">Index.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Infinite dimensional Lie algebras.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh91003307</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Algèbres de Lie de dimension infinie.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Algebra</subfield><subfield code="x">Intermediate.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Infinite dimensional Lie algebras</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Krichever-Novikov-Algebra</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4272706-6</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Unendlichdimensionale Lie-Algebra</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4434344-9</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Conformal field theory.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Lie algebras.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Mathematical physics.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Moduli spaces.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Riemann surfaces.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="z">9783110265170</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">De Gruyter studies in mathematics.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n83742913</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=840482</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="936" ind1=" " ind2=" "><subfield code="a">BATCHLOAD</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH26830471</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH25312540</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">De Gruyter</subfield><subfield code="b">DEGR</subfield><subfield code="n">9783110279641</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL1130346</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr11006658</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">840482</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis24871541</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10817643</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn890070954 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:26:11Z |
institution | BVB |
isbn | 9783110279641 3110279649 3110381478 9783110381474 |
language | English |
oclc_num | 890070954 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (378 pages) |
psigel | ZDB-4-EBA |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | De Gruyter, |
record_format | marc |
series | De Gruyter studies in mathematics. |
series2 | De Gruyter Studies in Mathematics ; |
spelling | Schlichenmaier, Martin. Krichever-Novikov Type Algebras : Theory and Applications. Berlin : De Gruyter, 2014. 1 online resource (378 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier De Gruyter Studies in Mathematics ; v. 53 Print version record. Krichever and Novikov introduced certain classes of infinite dimensionalLie algebrasto extend the Virasoro algebra and its related algebras to Riemann surfaces of higher genus. The author of this book generalized and extended them toa more general setting needed by the applications. Examples of applications are Conformal Field Theory, Wess-Zumino-Novikov-Witten models, moduli space problems, integrable systems, Lax operator algebras, and deformation theory of Lie algebra. Furthermore they constitute an important class of infinite dimensional Lie algebras which due to their geometric origin are. Includes bibliographical references (pages 345-356). Frontmatter -- Preface -- Contents -- 1. Some background on Lie algebras -- 2. The higher genus algebras -- 3. The almost-grading -- 4. Fixing the basis elements -- 5. Explicit expressions for a system of generators -- 6. Central extensions of Krichever-Novikov type algebras -- 7. Semi-infinite wedge forms and fermionic Fock space representations -- 8. b -- c systems -- 9. Affine algebras -- 10. The Sugawara construction -- 11. Wess-Zumino-Novikov-Witten models and Knizhnik-Zamolodchikov connection -- 12. Degenerations and deformations -- 13. Lax operator algebras -- 14. Some related developments -- Bibliography -- Index. English. Infinite dimensional Lie algebras. http://id.loc.gov/authorities/subjects/sh91003307 Algèbres de Lie de dimension infinie. MATHEMATICS Algebra Intermediate. bisacsh Infinite dimensional Lie algebras fast Krichever-Novikov-Algebra gnd http://d-nb.info/gnd/4272706-6 Unendlichdimensionale Lie-Algebra gnd http://d-nb.info/gnd/4434344-9 Conformal field theory. Lie algebras. Mathematical physics. Moduli spaces. Riemann surfaces. Print version: 9783110265170 De Gruyter studies in mathematics. http://id.loc.gov/authorities/names/n83742913 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=840482 Volltext |
spellingShingle | Schlichenmaier, Martin Krichever-Novikov Type Algebras : Theory and Applications. De Gruyter studies in mathematics. Frontmatter -- Preface -- Contents -- 1. Some background on Lie algebras -- 2. The higher genus algebras -- 3. The almost-grading -- 4. Fixing the basis elements -- 5. Explicit expressions for a system of generators -- 6. Central extensions of Krichever-Novikov type algebras -- 7. Semi-infinite wedge forms and fermionic Fock space representations -- 8. b -- c systems -- 9. Affine algebras -- 10. The Sugawara construction -- 11. Wess-Zumino-Novikov-Witten models and Knizhnik-Zamolodchikov connection -- 12. Degenerations and deformations -- 13. Lax operator algebras -- 14. Some related developments -- Bibliography -- Index. Infinite dimensional Lie algebras. http://id.loc.gov/authorities/subjects/sh91003307 Algèbres de Lie de dimension infinie. MATHEMATICS Algebra Intermediate. bisacsh Infinite dimensional Lie algebras fast Krichever-Novikov-Algebra gnd http://d-nb.info/gnd/4272706-6 Unendlichdimensionale Lie-Algebra gnd http://d-nb.info/gnd/4434344-9 |
subject_GND | http://id.loc.gov/authorities/subjects/sh91003307 http://d-nb.info/gnd/4272706-6 http://d-nb.info/gnd/4434344-9 |
title | Krichever-Novikov Type Algebras : Theory and Applications. |
title_alt | Frontmatter -- Preface -- Contents -- 1. Some background on Lie algebras -- 2. The higher genus algebras -- 3. The almost-grading -- 4. Fixing the basis elements -- 5. Explicit expressions for a system of generators -- 6. Central extensions of Krichever-Novikov type algebras -- 7. Semi-infinite wedge forms and fermionic Fock space representations -- 8. b -- c systems -- 9. Affine algebras -- 10. The Sugawara construction -- 11. Wess-Zumino-Novikov-Witten models and Knizhnik-Zamolodchikov connection -- 12. Degenerations and deformations -- 13. Lax operator algebras -- 14. Some related developments -- Bibliography -- Index. |
title_auth | Krichever-Novikov Type Algebras : Theory and Applications. |
title_exact_search | Krichever-Novikov Type Algebras : Theory and Applications. |
title_full | Krichever-Novikov Type Algebras : Theory and Applications. |
title_fullStr | Krichever-Novikov Type Algebras : Theory and Applications. |
title_full_unstemmed | Krichever-Novikov Type Algebras : Theory and Applications. |
title_short | Krichever-Novikov Type Algebras : |
title_sort | krichever novikov type algebras theory and applications |
title_sub | Theory and Applications. |
topic | Infinite dimensional Lie algebras. http://id.loc.gov/authorities/subjects/sh91003307 Algèbres de Lie de dimension infinie. MATHEMATICS Algebra Intermediate. bisacsh Infinite dimensional Lie algebras fast Krichever-Novikov-Algebra gnd http://d-nb.info/gnd/4272706-6 Unendlichdimensionale Lie-Algebra gnd http://d-nb.info/gnd/4434344-9 |
topic_facet | Infinite dimensional Lie algebras. Algèbres de Lie de dimension infinie. MATHEMATICS Algebra Intermediate. Infinite dimensional Lie algebras Krichever-Novikov-Algebra Unendlichdimensionale Lie-Algebra |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=840482 |
work_keys_str_mv | AT schlichenmaiermartin krichevernovikovtypealgebrastheoryandapplications |