Reality mining :: using big data to engineer a better world /
In this book, the authors explore the positive potential of big data, showing the ways in which the analysis of big data ("reality mining") can be used to improve human systems as varied as political polling and disease tracking, while considering user privacy. They describe reality mining...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge, Massachusetts :
The MIT Press,
[2014]
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | In this book, the authors explore the positive potential of big data, showing the ways in which the analysis of big data ("reality mining") can be used to improve human systems as varied as political polling and disease tracking, while considering user privacy. They describe reality mining at five different levels: the individual, the neighborhood and organization, the city, the nation, and the world. For each level, they offer a nontechnical explanation of data collection methods and describe applications and systems that have been or could be built. These include a mobile app that helps smokers quit smoking; a workplace "knowledge system"; the use of GPS, Wi-Fi, and mobile phone data to manage and predict traffic flows; and the analysis of social media to track the spread of disease. The authors argue that big data, used respectfully and responsibly, can help people live better, healthier, and happier lives. -- |
Beschreibung: | 1 online resource (vi, 199 pages) |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9780262324564 0262324563 9780262324571 0262324571 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn886539978 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr mn||||||||| | ||
008 | 140812t20142014mau ob 001 0 eng d | ||
040 | |a N$T |b eng |e rda |e pn |c N$T |d YDXCP |d IDEBK |d E7B |d OSU |d OCLCO |d QGK |d CDX |d COO |d IEEEE |d B24X7 |d OTZ |d JSTOR |d OCLCQ |d ITS |d TEFOD |d OSU |d OCLCO |d TEFOD |d OCLCQ |d OCLCO |d OCLCF |d OCLCO |d EBLCP |d HRM |d COCUF |d CNNOR |d MOR |d Z5A |d PIFAG |d ZCU |d LIV |d MERUC |d OCLCQ |d IOG |d U3W |d EZ9 |d UUM |d STF |d OCLCQ |d VTS |d CEF |d MUO |d MERER |d OCLCQ |d ICG |d CUY |d JBG |d OCLCQ |d INT |d VT2 |d OCLCQ |d WYU |d G3B |d YOU |d TKN |d REC |d DKC |d OCLCQ |d M8D |d SFB |d UKAHL |d OCLCQ |d MM9 |d RECBK |d OCLCO |d OCLCQ |d INARC |d OCLCO |d OCLCL |d UEJ |d OCLCO |d OCLCQ | ||
019 | |a 900790231 |a 961486611 |a 1112403981 |a 1112898452 |a 1170025727 |a 1170518235 |a 1196166027 | ||
020 | |a 9780262324564 |q (electronic bk.) | ||
020 | |a 0262324563 |q (electronic bk.) | ||
020 | |a 9780262324571 | ||
020 | |a 0262324571 | ||
020 | |z 9780262027687 |q (hardcover ; |q alk. paper) | ||
020 | |z 0262027682 |q (hardcover ; |q alk. paper) | ||
020 | |z 9781322045115 | ||
020 | |z 1322045119 | ||
035 | |a (OCoLC)886539978 |z (OCoLC)900790231 |z (OCoLC)961486611 |z (OCoLC)1112403981 |z (OCoLC)1112898452 |z (OCoLC)1170025727 |z (OCoLC)1170518235 |z (OCoLC)1196166027 | ||
037 | |a 22573/ctt88qxm6 |b JSTOR | ||
037 | |a AE529C29-B440-41F4-83DD-39F215EB4FF3 |b OverDrive, Inc. |n http://www.overdrive.com | ||
050 | 4 | |a QA76.9.D343 |b E24 2014eb | |
072 | 7 | |a COM |x 000000 |2 bisacsh | |
072 | 7 | |a COM021030 |2 bisacsh | |
072 | 7 | |a COM079010 |2 bisacsh | |
082 | 7 | |a 006.3/12 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Eagle, Nathan, |e author. |1 https://id.oclc.org/worldcat/entity/E39PBJqk3FfWBKgR6ywGkjrTHC |0 http://id.loc.gov/authorities/names/no2010154518 | |
245 | 1 | 0 | |a Reality mining : |b using big data to engineer a better world / |c by Nathan Eagle and Kate Greene. |
264 | 1 | |a Cambridge, Massachusetts : |b The MIT Press, |c [2014] | |
264 | 4 | |c ©2014 | |
300 | |a 1 online resource (vi, 199 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references and index. | ||
588 | 0 | |a Print version record. | |
520 | |a In this book, the authors explore the positive potential of big data, showing the ways in which the analysis of big data ("reality mining") can be used to improve human systems as varied as political polling and disease tracking, while considering user privacy. They describe reality mining at five different levels: the individual, the neighborhood and organization, the city, the nation, and the world. For each level, they offer a nontechnical explanation of data collection methods and describe applications and systems that have been or could be built. These include a mobile app that helps smokers quit smoking; a workplace "knowledge system"; the use of GPS, Wi-Fi, and mobile phone data to manage and predict traffic flows; and the analysis of social media to track the spread of disease. The authors argue that big data, used respectfully and responsibly, can help people live better, healthier, and happier lives. -- |c Edited summary from book | ||
505 | 0 | |a Introduction -- Part 1: Individual (One Person): -- Mobile phones, sensors, and lifelogging: collecting data from individuals while considering privacy -- Using personal data in a privacy-sensitive way to make a person's life easier and healthier -- Part 2: Neighborhood And The Organization (10 to 1,000 People): -- Gathering data from small heterogeneous groups -- Engineering and policy: building more efficient businesses, enabling hyperlocal politics, life queries, and opportunity searches -- Part 3: City (1,000 to 1,000,000 people): -- Traffic data, crime stats, and closed-circuit cameras: accumulating urban analytics -- Engineering and policy: optimizing resource allocation -- Part 4: Nation (1 Million to 100 Million People) -- Taking the pulse of a nation: census, mobile phones, and internet giants -- Engineering and policy: addressing national sentiment, economic deficits, and disasters -- Part 5: Reality Mining The World's Data (100 Million to 7 Billion People): -- Gathering the world's data: global census, international travel and commerce, and planetary-scale communication: -- Engineering a safer and healthier world -- Conclusion -- Notes -- Index. | |
650 | 0 | |a Data mining. |0 http://id.loc.gov/authorities/subjects/sh97002073 | |
650 | 0 | |a Big data. |0 http://id.loc.gov/authorities/subjects/sh2012003227 | |
650 | 0 | |a Computer networks |x Social aspects. | |
650 | 0 | |a Information science |x Social aspects. | |
650 | 0 | |a Information science |x Statistical methods. |0 http://id.loc.gov/authorities/subjects/sh2007006260 | |
650 | 2 | |a Data Mining |0 https://id.nlm.nih.gov/mesh/D057225 | |
650 | 6 | |a Exploration de données (Informatique) | |
650 | 6 | |a Données volumineuses. | |
650 | 6 | |a Réseaux d'ordinateurs |x Aspect social. | |
650 | 6 | |a Sciences de l'information |x Aspect social. | |
650 | 7 | |a COMPUTERS |x General. |2 bisacsh | |
650 | 7 | |a COMPUTERS |x Database Management |x Data Mining. |2 bisacsh | |
650 | 7 | |a Big data |2 fast | |
650 | 7 | |a Computer networks |x Social aspects |2 fast | |
650 | 7 | |a Data mining |2 fast | |
650 | 7 | |a Information science |x Social aspects |2 fast | |
650 | 7 | |a Information science |x Statistical methods |2 fast | |
700 | 1 | |a Greene, Kate, |d 1979- |e author. |1 https://id.oclc.org/worldcat/entity/E39PCjwGf3VWkQWfYp8Wc6Q4Rq |0 http://id.loc.gov/authorities/names/n2014006398 | |
776 | 0 | 8 | |i Print version: |a Eagle, Nathan. |t Reality mining |z 9780262027687 |w (DLC) 2013047165 |w (OCoLC)869880206 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=826635 |3 Volltext |
938 | |a Internet Archive |b INAR |n realityminingusi0000eagl | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH37531329 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH33866828 | ||
938 | |a Books 24x7 |b B247 |n bks00073654 | ||
938 | |a Coutts Information Services |b COUT |n 28795682 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL3339840 | ||
938 | |a ebrary |b EBRY |n ebr10904661 | ||
938 | |a EBSCOhost |b EBSC |n 826635 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis28837525 | ||
938 | |a Recorded Books, LLC |b RECE |n rbeEB00827804 | ||
938 | |a YBP Library Services |b YANK |n 11933292 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn886539978 |
---|---|
_version_ | 1816882281774579713 |
adam_text | |
any_adam_object | |
author | Eagle, Nathan Greene, Kate, 1979- |
author_GND | http://id.loc.gov/authorities/names/no2010154518 http://id.loc.gov/authorities/names/n2014006398 |
author_facet | Eagle, Nathan Greene, Kate, 1979- |
author_role | aut aut |
author_sort | Eagle, Nathan |
author_variant | n e ne k g kg |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA76 |
callnumber-raw | QA76.9.D343 E24 2014eb |
callnumber-search | QA76.9.D343 E24 2014eb |
callnumber-sort | QA 276.9 D343 E24 42014EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Introduction -- Part 1: Individual (One Person): -- Mobile phones, sensors, and lifelogging: collecting data from individuals while considering privacy -- Using personal data in a privacy-sensitive way to make a person's life easier and healthier -- Part 2: Neighborhood And The Organization (10 to 1,000 People): -- Gathering data from small heterogeneous groups -- Engineering and policy: building more efficient businesses, enabling hyperlocal politics, life queries, and opportunity searches -- Part 3: City (1,000 to 1,000,000 people): -- Traffic data, crime stats, and closed-circuit cameras: accumulating urban analytics -- Engineering and policy: optimizing resource allocation -- Part 4: Nation (1 Million to 100 Million People) -- Taking the pulse of a nation: census, mobile phones, and internet giants -- Engineering and policy: addressing national sentiment, economic deficits, and disasters -- Part 5: Reality Mining The World's Data (100 Million to 7 Billion People): -- Gathering the world's data: global census, international travel and commerce, and planetary-scale communication: -- Engineering a safer and healthier world -- Conclusion -- Notes -- Index. |
ctrlnum | (OCoLC)886539978 |
dewey-full | 006.3/12 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/12 |
dewey-search | 006.3/12 |
dewey-sort | 16.3 212 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06419cam a2200853 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn886539978</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr mn|||||||||</controlfield><controlfield tag="008">140812t20142014mau ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">IDEBK</subfield><subfield code="d">E7B</subfield><subfield code="d">OSU</subfield><subfield code="d">OCLCO</subfield><subfield code="d">QGK</subfield><subfield code="d">CDX</subfield><subfield code="d">COO</subfield><subfield code="d">IEEEE</subfield><subfield code="d">B24X7</subfield><subfield code="d">OTZ</subfield><subfield code="d">JSTOR</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">ITS</subfield><subfield code="d">TEFOD</subfield><subfield code="d">OSU</subfield><subfield code="d">OCLCO</subfield><subfield code="d">TEFOD</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCO</subfield><subfield code="d">EBLCP</subfield><subfield code="d">HRM</subfield><subfield code="d">COCUF</subfield><subfield code="d">CNNOR</subfield><subfield code="d">MOR</subfield><subfield code="d">Z5A</subfield><subfield code="d">PIFAG</subfield><subfield code="d">ZCU</subfield><subfield code="d">LIV</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">IOG</subfield><subfield code="d">U3W</subfield><subfield code="d">EZ9</subfield><subfield code="d">UUM</subfield><subfield code="d">STF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">CEF</subfield><subfield code="d">MUO</subfield><subfield code="d">MERER</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">ICG</subfield><subfield code="d">CUY</subfield><subfield code="d">JBG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">G3B</subfield><subfield code="d">YOU</subfield><subfield code="d">TKN</subfield><subfield code="d">REC</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">SFB</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MM9</subfield><subfield code="d">RECBK</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">INARC</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">UEJ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">900790231</subfield><subfield code="a">961486611</subfield><subfield code="a">1112403981</subfield><subfield code="a">1112898452</subfield><subfield code="a">1170025727</subfield><subfield code="a">1170518235</subfield><subfield code="a">1196166027</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780262324564</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0262324563</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780262324571</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0262324571</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780262027687</subfield><subfield code="q">(hardcover ;</subfield><subfield code="q">alk. paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0262027682</subfield><subfield code="q">(hardcover ;</subfield><subfield code="q">alk. paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781322045115</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1322045119</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)886539978</subfield><subfield code="z">(OCoLC)900790231</subfield><subfield code="z">(OCoLC)961486611</subfield><subfield code="z">(OCoLC)1112403981</subfield><subfield code="z">(OCoLC)1112898452</subfield><subfield code="z">(OCoLC)1170025727</subfield><subfield code="z">(OCoLC)1170518235</subfield><subfield code="z">(OCoLC)1196166027</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">22573/ctt88qxm6</subfield><subfield code="b">JSTOR</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">AE529C29-B440-41F4-83DD-39F215EB4FF3</subfield><subfield code="b">OverDrive, Inc.</subfield><subfield code="n">http://www.overdrive.com</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA76.9.D343</subfield><subfield code="b">E24 2014eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">000000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM021030</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM079010</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">006.3/12</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Eagle, Nathan,</subfield><subfield code="e">author.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJqk3FfWBKgR6ywGkjrTHC</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2010154518</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Reality mining :</subfield><subfield code="b">using big data to engineer a better world /</subfield><subfield code="c">by Nathan Eagle and Kate Greene.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, Massachusetts :</subfield><subfield code="b">The MIT Press,</subfield><subfield code="c">[2014]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (vi, 199 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this book, the authors explore the positive potential of big data, showing the ways in which the analysis of big data ("reality mining") can be used to improve human systems as varied as political polling and disease tracking, while considering user privacy. They describe reality mining at five different levels: the individual, the neighborhood and organization, the city, the nation, and the world. For each level, they offer a nontechnical explanation of data collection methods and describe applications and systems that have been or could be built. These include a mobile app that helps smokers quit smoking; a workplace "knowledge system"; the use of GPS, Wi-Fi, and mobile phone data to manage and predict traffic flows; and the analysis of social media to track the spread of disease. The authors argue that big data, used respectfully and responsibly, can help people live better, healthier, and happier lives. --</subfield><subfield code="c">Edited summary from book</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Introduction -- Part 1: Individual (One Person): -- Mobile phones, sensors, and lifelogging: collecting data from individuals while considering privacy -- Using personal data in a privacy-sensitive way to make a person's life easier and healthier -- Part 2: Neighborhood And The Organization (10 to 1,000 People): -- Gathering data from small heterogeneous groups -- Engineering and policy: building more efficient businesses, enabling hyperlocal politics, life queries, and opportunity searches -- Part 3: City (1,000 to 1,000,000 people): -- Traffic data, crime stats, and closed-circuit cameras: accumulating urban analytics -- Engineering and policy: optimizing resource allocation -- Part 4: Nation (1 Million to 100 Million People) -- Taking the pulse of a nation: census, mobile phones, and internet giants -- Engineering and policy: addressing national sentiment, economic deficits, and disasters -- Part 5: Reality Mining The World's Data (100 Million to 7 Billion People): -- Gathering the world's data: global census, international travel and commerce, and planetary-scale communication: -- Engineering a safer and healthier world -- Conclusion -- Notes -- Index.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Data mining.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh97002073</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Big data.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh2012003227</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Computer networks</subfield><subfield code="x">Social aspects.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Information science</subfield><subfield code="x">Social aspects.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Information science</subfield><subfield code="x">Statistical methods.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh2007006260</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Data Mining</subfield><subfield code="0">https://id.nlm.nih.gov/mesh/D057225</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Exploration de données (Informatique)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Données volumineuses.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Réseaux d'ordinateurs</subfield><subfield code="x">Aspect social.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Sciences de l'information</subfield><subfield code="x">Aspect social.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">Database Management</subfield><subfield code="x">Data Mining.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Big data</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computer networks</subfield><subfield code="x">Social aspects</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Data mining</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Information science</subfield><subfield code="x">Social aspects</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Information science</subfield><subfield code="x">Statistical methods</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Greene, Kate,</subfield><subfield code="d">1979-</subfield><subfield code="e">author.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjwGf3VWkQWfYp8Wc6Q4Rq</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2014006398</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Eagle, Nathan.</subfield><subfield code="t">Reality mining</subfield><subfield code="z">9780262027687</subfield><subfield code="w">(DLC) 2013047165</subfield><subfield code="w">(OCoLC)869880206</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=826635</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Internet Archive</subfield><subfield code="b">INAR</subfield><subfield code="n">realityminingusi0000eagl</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH37531329</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH33866828</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Books 24x7</subfield><subfield code="b">B247</subfield><subfield code="n">bks00073654</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">28795682</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL3339840</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10904661</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">826635</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis28837525</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Recorded Books, LLC</subfield><subfield code="b">RECE</subfield><subfield code="n">rbeEB00827804</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">11933292</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn886539978 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:26:07Z |
institution | BVB |
isbn | 9780262324564 0262324563 9780262324571 0262324571 |
language | English |
oclc_num | 886539978 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (vi, 199 pages) |
psigel | ZDB-4-EBA |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | The MIT Press, |
record_format | marc |
spelling | Eagle, Nathan, author. https://id.oclc.org/worldcat/entity/E39PBJqk3FfWBKgR6ywGkjrTHC http://id.loc.gov/authorities/names/no2010154518 Reality mining : using big data to engineer a better world / by Nathan Eagle and Kate Greene. Cambridge, Massachusetts : The MIT Press, [2014] ©2014 1 online resource (vi, 199 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references and index. Print version record. In this book, the authors explore the positive potential of big data, showing the ways in which the analysis of big data ("reality mining") can be used to improve human systems as varied as political polling and disease tracking, while considering user privacy. They describe reality mining at five different levels: the individual, the neighborhood and organization, the city, the nation, and the world. For each level, they offer a nontechnical explanation of data collection methods and describe applications and systems that have been or could be built. These include a mobile app that helps smokers quit smoking; a workplace "knowledge system"; the use of GPS, Wi-Fi, and mobile phone data to manage and predict traffic flows; and the analysis of social media to track the spread of disease. The authors argue that big data, used respectfully and responsibly, can help people live better, healthier, and happier lives. -- Edited summary from book Introduction -- Part 1: Individual (One Person): -- Mobile phones, sensors, and lifelogging: collecting data from individuals while considering privacy -- Using personal data in a privacy-sensitive way to make a person's life easier and healthier -- Part 2: Neighborhood And The Organization (10 to 1,000 People): -- Gathering data from small heterogeneous groups -- Engineering and policy: building more efficient businesses, enabling hyperlocal politics, life queries, and opportunity searches -- Part 3: City (1,000 to 1,000,000 people): -- Traffic data, crime stats, and closed-circuit cameras: accumulating urban analytics -- Engineering and policy: optimizing resource allocation -- Part 4: Nation (1 Million to 100 Million People) -- Taking the pulse of a nation: census, mobile phones, and internet giants -- Engineering and policy: addressing national sentiment, economic deficits, and disasters -- Part 5: Reality Mining The World's Data (100 Million to 7 Billion People): -- Gathering the world's data: global census, international travel and commerce, and planetary-scale communication: -- Engineering a safer and healthier world -- Conclusion -- Notes -- Index. Data mining. http://id.loc.gov/authorities/subjects/sh97002073 Big data. http://id.loc.gov/authorities/subjects/sh2012003227 Computer networks Social aspects. Information science Social aspects. Information science Statistical methods. http://id.loc.gov/authorities/subjects/sh2007006260 Data Mining https://id.nlm.nih.gov/mesh/D057225 Exploration de données (Informatique) Données volumineuses. Réseaux d'ordinateurs Aspect social. Sciences de l'information Aspect social. COMPUTERS General. bisacsh COMPUTERS Database Management Data Mining. bisacsh Big data fast Computer networks Social aspects fast Data mining fast Information science Social aspects fast Information science Statistical methods fast Greene, Kate, 1979- author. https://id.oclc.org/worldcat/entity/E39PCjwGf3VWkQWfYp8Wc6Q4Rq http://id.loc.gov/authorities/names/n2014006398 Print version: Eagle, Nathan. Reality mining 9780262027687 (DLC) 2013047165 (OCoLC)869880206 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=826635 Volltext |
spellingShingle | Eagle, Nathan Greene, Kate, 1979- Reality mining : using big data to engineer a better world / Introduction -- Part 1: Individual (One Person): -- Mobile phones, sensors, and lifelogging: collecting data from individuals while considering privacy -- Using personal data in a privacy-sensitive way to make a person's life easier and healthier -- Part 2: Neighborhood And The Organization (10 to 1,000 People): -- Gathering data from small heterogeneous groups -- Engineering and policy: building more efficient businesses, enabling hyperlocal politics, life queries, and opportunity searches -- Part 3: City (1,000 to 1,000,000 people): -- Traffic data, crime stats, and closed-circuit cameras: accumulating urban analytics -- Engineering and policy: optimizing resource allocation -- Part 4: Nation (1 Million to 100 Million People) -- Taking the pulse of a nation: census, mobile phones, and internet giants -- Engineering and policy: addressing national sentiment, economic deficits, and disasters -- Part 5: Reality Mining The World's Data (100 Million to 7 Billion People): -- Gathering the world's data: global census, international travel and commerce, and planetary-scale communication: -- Engineering a safer and healthier world -- Conclusion -- Notes -- Index. Data mining. http://id.loc.gov/authorities/subjects/sh97002073 Big data. http://id.loc.gov/authorities/subjects/sh2012003227 Computer networks Social aspects. Information science Social aspects. Information science Statistical methods. http://id.loc.gov/authorities/subjects/sh2007006260 Data Mining https://id.nlm.nih.gov/mesh/D057225 Exploration de données (Informatique) Données volumineuses. Réseaux d'ordinateurs Aspect social. Sciences de l'information Aspect social. COMPUTERS General. bisacsh COMPUTERS Database Management Data Mining. bisacsh Big data fast Computer networks Social aspects fast Data mining fast Information science Social aspects fast Information science Statistical methods fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh97002073 http://id.loc.gov/authorities/subjects/sh2012003227 http://id.loc.gov/authorities/subjects/sh2007006260 https://id.nlm.nih.gov/mesh/D057225 |
title | Reality mining : using big data to engineer a better world / |
title_auth | Reality mining : using big data to engineer a better world / |
title_exact_search | Reality mining : using big data to engineer a better world / |
title_full | Reality mining : using big data to engineer a better world / by Nathan Eagle and Kate Greene. |
title_fullStr | Reality mining : using big data to engineer a better world / by Nathan Eagle and Kate Greene. |
title_full_unstemmed | Reality mining : using big data to engineer a better world / by Nathan Eagle and Kate Greene. |
title_short | Reality mining : |
title_sort | reality mining using big data to engineer a better world |
title_sub | using big data to engineer a better world / |
topic | Data mining. http://id.loc.gov/authorities/subjects/sh97002073 Big data. http://id.loc.gov/authorities/subjects/sh2012003227 Computer networks Social aspects. Information science Social aspects. Information science Statistical methods. http://id.loc.gov/authorities/subjects/sh2007006260 Data Mining https://id.nlm.nih.gov/mesh/D057225 Exploration de données (Informatique) Données volumineuses. Réseaux d'ordinateurs Aspect social. Sciences de l'information Aspect social. COMPUTERS General. bisacsh COMPUTERS Database Management Data Mining. bisacsh Big data fast Computer networks Social aspects fast Data mining fast Information science Social aspects fast Information science Statistical methods fast |
topic_facet | Data mining. Big data. Computer networks Social aspects. Information science Social aspects. Information science Statistical methods. Data Mining Exploration de données (Informatique) Données volumineuses. Réseaux d'ordinateurs Aspect social. Sciences de l'information Aspect social. COMPUTERS General. COMPUTERS Database Management Data Mining. Big data Computer networks Social aspects Data mining Information science Social aspects Information science Statistical methods |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=826635 |
work_keys_str_mv | AT eaglenathan realityminingusingbigdatatoengineerabetterworld AT greenekate realityminingusingbigdatatoengineerabetterworld |