Differential operators on spaces of variable integrability /:
The theory of Lebesgue and Sobolev spaces with variable integrability is experiencing a steady expansion, and is the subject of much vigorous research by functional analysts, function-space analysts and specialists in nonlinear analysis. These spaces have attracted attention not only because of thei...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New Jersey :
World Scientific,
[2014]
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | The theory of Lebesgue and Sobolev spaces with variable integrability is experiencing a steady expansion, and is the subject of much vigorous research by functional analysts, function-space analysts and specialists in nonlinear analysis. These spaces have attracted attention not only because of their intrinsic mathematical importance as natural, interesting examples of non-rearrangement-invariant function spaces but also in view of their applications, which include the mathematical modeling of electrorheological fluids and image restoration. The main focus of this book is to provide a solid functional-analytic background for the study of differential operators on spaces with variable integrability. It includes some novel stability phenomena which the authors have recently discovered. At the present time, this is the only book which focuses systematically on differential operators on spaces with variable integrability. The authors present a concise, natural introduction to the basic material and steadily move toward differential operators on these spaces, leading the reader quickly to current research topics. |
Beschreibung: | 1 online resource (xiv, 208 pages) |
Bibliographie: | Includes bibliographical references (pages 197-201) and indexes. |
ISBN: | 9789814596329 9814596329 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn885907632 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr mn||||||||| | ||
008 | 140808t20142014nju ob 001 0 eng d | ||
040 | |a YDXCP |b eng |e rda |e pn |c YDXCP |d OCLCO |d N$T |d OSU |d OCLCQ |d OCLCF |d AGLDB |d OCLCQ |d VTS |d OTZ |d STF |d LEAUB |d UKAHL |d OCLCO |d OCLCQ |d OCLCO |d OCLCL | ||
020 | |a 9789814596329 |q (electronic bk.) | ||
020 | |a 9814596329 |q (electronic bk.) | ||
020 | |z 9789814596312 |q (hardcover ; |q alk. paper) | ||
020 | |z 9814596310 |q (hardcover ; |q alk. paper) | ||
035 | |a (OCoLC)885907632 | ||
050 | 4 | |a QA323 |b .E25 2014 | |
072 | 7 | |a MAT |x 005000 |2 bisacsh | |
072 | 7 | |a MAT |x 034000 |2 bisacsh | |
082 | 7 | |a 515/.73 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Edmunds, D. E. |q (David Eric), |e author. |0 http://id.loc.gov/authorities/names/n78010216 | |
245 | 1 | 0 | |a Differential operators on spaces of variable integrability / |c David E. Edmunds, University of Sussex, UK, Jan Lang, the Ohio State University, USA, Osvaldo Mendez, the University of Texas at El Paso, USA. |
264 | 1 | |a New Jersey : |b World Scientific, |c [2014] | |
264 | 4 | |c ©2014 | |
300 | |a 1 online resource (xiv, 208 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references (pages 197-201) and indexes. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a 1. Preliminaries. 1.1. The geometry of Banach spaces. 1.2. Spaces with variable exponent -- 2. Sobolev spaces with variable exponent. 2.1. Definition and functional-analytic properties. 2.2. Sobolev embeddings. 2.3. Compact embeddings. 2.4. Riesz potentials. 2.5. Poincare-type inequalities. 2.6. Embeddings. 2.7. Holder spaces with variable exponents. 2.8. Compact embeddings revisited -- 3. The p[symbol]-Laplacian. 3.1. Preliminaries. 3.2. The p[symbol]-Laplacian. 3.3. Stability with respect to integrability -- 4. Eigenvalues. 4.1. The derivative of the modular. 4.2. Compactness and Eigenvalues. 4.3. Modular Eigenvalues. 4.4. Stability with respect to the exponent. 4.5. Convergence properties of the Eigenfunctions -- 5. Approximation on Lp spaces. 5.1. s-numbers and n-widths. 5.2. A Sobolev embedding. 5.3. Integral operators. | |
520 | |a The theory of Lebesgue and Sobolev spaces with variable integrability is experiencing a steady expansion, and is the subject of much vigorous research by functional analysts, function-space analysts and specialists in nonlinear analysis. These spaces have attracted attention not only because of their intrinsic mathematical importance as natural, interesting examples of non-rearrangement-invariant function spaces but also in view of their applications, which include the mathematical modeling of electrorheological fluids and image restoration. The main focus of this book is to provide a solid functional-analytic background for the study of differential operators on spaces with variable integrability. It includes some novel stability phenomena which the authors have recently discovered. At the present time, this is the only book which focuses systematically on differential operators on spaces with variable integrability. The authors present a concise, natural introduction to the basic material and steadily move toward differential operators on these spaces, leading the reader quickly to current research topics. | ||
650 | 0 | |a Function spaces. |0 http://id.loc.gov/authorities/subjects/sh85052310 | |
650 | 0 | |a Sobolev spaces. |0 http://id.loc.gov/authorities/subjects/sh85123836 | |
650 | 0 | |a Differential operators. |0 http://id.loc.gov/authorities/subjects/sh85037921 | |
650 | 6 | |a Espaces fonctionnels. | |
650 | 6 | |a Espaces de Sobolev. | |
650 | 6 | |a Opérateurs différentiels. | |
650 | 7 | |a MATHEMATICS |x Calculus. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Mathematical Analysis. |2 bisacsh | |
650 | 7 | |a Differential operators |2 fast | |
650 | 7 | |a Function spaces |2 fast | |
650 | 7 | |a Sobolev spaces |2 fast | |
700 | 1 | |a Lang, Jan, |e author. | |
700 | 1 | |a Mendez, Osvaldo |q (Osvaldo David), |e author. |0 http://id.loc.gov/authorities/names/n2014022080 | |
758 | |i has work: |a Differential operators on spaces of variable integrability (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGJBhC9VbgrqT3tM8rFqHy |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Edmunds, D.E. (David Eric). |t Differential operators on spaces of variable integrability. |d New Jersey : World Scientific, 2014 |z 9789814596312 |w (DLC) 2014015285 |w (OCoLC)871789716 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=824747 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH26954554 | ||
938 | |a EBSCOhost |b EBSC |n 824747 | ||
938 | |a YBP Library Services |b YANK |n 12012453 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn885907632 |
---|---|
_version_ | 1816882281587933186 |
adam_text | |
any_adam_object | |
author | Edmunds, D. E. (David Eric) Lang, Jan Mendez, Osvaldo (Osvaldo David) |
author_GND | http://id.loc.gov/authorities/names/n78010216 http://id.loc.gov/authorities/names/n2014022080 |
author_facet | Edmunds, D. E. (David Eric) Lang, Jan Mendez, Osvaldo (Osvaldo David) |
author_role | aut aut aut |
author_sort | Edmunds, D. E. |
author_variant | d e e de dee j l jl o m om |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA323 |
callnumber-raw | QA323 .E25 2014 |
callnumber-search | QA323 .E25 2014 |
callnumber-sort | QA 3323 E25 42014 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | 1. Preliminaries. 1.1. The geometry of Banach spaces. 1.2. Spaces with variable exponent -- 2. Sobolev spaces with variable exponent. 2.1. Definition and functional-analytic properties. 2.2. Sobolev embeddings. 2.3. Compact embeddings. 2.4. Riesz potentials. 2.5. Poincare-type inequalities. 2.6. Embeddings. 2.7. Holder spaces with variable exponents. 2.8. Compact embeddings revisited -- 3. The p[symbol]-Laplacian. 3.1. Preliminaries. 3.2. The p[symbol]-Laplacian. 3.3. Stability with respect to integrability -- 4. Eigenvalues. 4.1. The derivative of the modular. 4.2. Compactness and Eigenvalues. 4.3. Modular Eigenvalues. 4.4. Stability with respect to the exponent. 4.5. Convergence properties of the Eigenfunctions -- 5. Approximation on Lp spaces. 5.1. s-numbers and n-widths. 5.2. A Sobolev embedding. 5.3. Integral operators. |
ctrlnum | (OCoLC)885907632 |
dewey-full | 515/.73 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.73 |
dewey-search | 515/.73 |
dewey-sort | 3515 273 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04888cam a2200613 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn885907632</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr mn|||||||||</controlfield><controlfield tag="008">140808t20142014nju ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">YDXCP</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">YDXCP</subfield><subfield code="d">OCLCO</subfield><subfield code="d">N$T</subfield><subfield code="d">OSU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">OTZ</subfield><subfield code="d">STF</subfield><subfield code="d">LEAUB</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814596329</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814596329</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789814596312</subfield><subfield code="q">(hardcover ;</subfield><subfield code="q">alk. paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9814596310</subfield><subfield code="q">(hardcover ;</subfield><subfield code="q">alk. paper)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)885907632</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA323</subfield><subfield code="b">.E25 2014</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">005000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">034000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515/.73</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Edmunds, D. E.</subfield><subfield code="q">(David Eric),</subfield><subfield code="e">author.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n78010216</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Differential operators on spaces of variable integrability /</subfield><subfield code="c">David E. Edmunds, University of Sussex, UK, Jan Lang, the Ohio State University, USA, Osvaldo Mendez, the University of Texas at El Paso, USA.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New Jersey :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">[2014]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiv, 208 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 197-201) and indexes.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">1. Preliminaries. 1.1. The geometry of Banach spaces. 1.2. Spaces with variable exponent -- 2. Sobolev spaces with variable exponent. 2.1. Definition and functional-analytic properties. 2.2. Sobolev embeddings. 2.3. Compact embeddings. 2.4. Riesz potentials. 2.5. Poincare-type inequalities. 2.6. Embeddings. 2.7. Holder spaces with variable exponents. 2.8. Compact embeddings revisited -- 3. The p[symbol]-Laplacian. 3.1. Preliminaries. 3.2. The p[symbol]-Laplacian. 3.3. Stability with respect to integrability -- 4. Eigenvalues. 4.1. The derivative of the modular. 4.2. Compactness and Eigenvalues. 4.3. Modular Eigenvalues. 4.4. Stability with respect to the exponent. 4.5. Convergence properties of the Eigenfunctions -- 5. Approximation on Lp spaces. 5.1. s-numbers and n-widths. 5.2. A Sobolev embedding. 5.3. Integral operators.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The theory of Lebesgue and Sobolev spaces with variable integrability is experiencing a steady expansion, and is the subject of much vigorous research by functional analysts, function-space analysts and specialists in nonlinear analysis. These spaces have attracted attention not only because of their intrinsic mathematical importance as natural, interesting examples of non-rearrangement-invariant function spaces but also in view of their applications, which include the mathematical modeling of electrorheological fluids and image restoration. The main focus of this book is to provide a solid functional-analytic background for the study of differential operators on spaces with variable integrability. It includes some novel stability phenomena which the authors have recently discovered. At the present time, this is the only book which focuses systematically on differential operators on spaces with variable integrability. The authors present a concise, natural introduction to the basic material and steadily move toward differential operators on these spaces, leading the reader quickly to current research topics.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Function spaces.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85052310</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Sobolev spaces.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85123836</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Differential operators.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85037921</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Espaces fonctionnels.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Espaces de Sobolev.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Opérateurs différentiels.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Calculus.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Mathematical Analysis.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differential operators</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Function spaces</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Sobolev spaces</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lang, Jan,</subfield><subfield code="e">author.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mendez, Osvaldo</subfield><subfield code="q">(Osvaldo David),</subfield><subfield code="e">author.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2014022080</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Differential operators on spaces of variable integrability (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGJBhC9VbgrqT3tM8rFqHy</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Edmunds, D.E. (David Eric).</subfield><subfield code="t">Differential operators on spaces of variable integrability.</subfield><subfield code="d">New Jersey : World Scientific, 2014</subfield><subfield code="z">9789814596312</subfield><subfield code="w">(DLC) 2014015285</subfield><subfield code="w">(OCoLC)871789716</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=824747</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH26954554</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">824747</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">12012453</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn885907632 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:26:07Z |
institution | BVB |
isbn | 9789814596329 9814596329 |
language | English |
oclc_num | 885907632 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xiv, 208 pages) |
psigel | ZDB-4-EBA |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | World Scientific, |
record_format | marc |
spelling | Edmunds, D. E. (David Eric), author. http://id.loc.gov/authorities/names/n78010216 Differential operators on spaces of variable integrability / David E. Edmunds, University of Sussex, UK, Jan Lang, the Ohio State University, USA, Osvaldo Mendez, the University of Texas at El Paso, USA. New Jersey : World Scientific, [2014] ©2014 1 online resource (xiv, 208 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references (pages 197-201) and indexes. Print version record. 1. Preliminaries. 1.1. The geometry of Banach spaces. 1.2. Spaces with variable exponent -- 2. Sobolev spaces with variable exponent. 2.1. Definition and functional-analytic properties. 2.2. Sobolev embeddings. 2.3. Compact embeddings. 2.4. Riesz potentials. 2.5. Poincare-type inequalities. 2.6. Embeddings. 2.7. Holder spaces with variable exponents. 2.8. Compact embeddings revisited -- 3. The p[symbol]-Laplacian. 3.1. Preliminaries. 3.2. The p[symbol]-Laplacian. 3.3. Stability with respect to integrability -- 4. Eigenvalues. 4.1. The derivative of the modular. 4.2. Compactness and Eigenvalues. 4.3. Modular Eigenvalues. 4.4. Stability with respect to the exponent. 4.5. Convergence properties of the Eigenfunctions -- 5. Approximation on Lp spaces. 5.1. s-numbers and n-widths. 5.2. A Sobolev embedding. 5.3. Integral operators. The theory of Lebesgue and Sobolev spaces with variable integrability is experiencing a steady expansion, and is the subject of much vigorous research by functional analysts, function-space analysts and specialists in nonlinear analysis. These spaces have attracted attention not only because of their intrinsic mathematical importance as natural, interesting examples of non-rearrangement-invariant function spaces but also in view of their applications, which include the mathematical modeling of electrorheological fluids and image restoration. The main focus of this book is to provide a solid functional-analytic background for the study of differential operators on spaces with variable integrability. It includes some novel stability phenomena which the authors have recently discovered. At the present time, this is the only book which focuses systematically on differential operators on spaces with variable integrability. The authors present a concise, natural introduction to the basic material and steadily move toward differential operators on these spaces, leading the reader quickly to current research topics. Function spaces. http://id.loc.gov/authorities/subjects/sh85052310 Sobolev spaces. http://id.loc.gov/authorities/subjects/sh85123836 Differential operators. http://id.loc.gov/authorities/subjects/sh85037921 Espaces fonctionnels. Espaces de Sobolev. Opérateurs différentiels. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Differential operators fast Function spaces fast Sobolev spaces fast Lang, Jan, author. Mendez, Osvaldo (Osvaldo David), author. http://id.loc.gov/authorities/names/n2014022080 has work: Differential operators on spaces of variable integrability (Text) https://id.oclc.org/worldcat/entity/E39PCGJBhC9VbgrqT3tM8rFqHy https://id.oclc.org/worldcat/ontology/hasWork Print version: Edmunds, D.E. (David Eric). Differential operators on spaces of variable integrability. New Jersey : World Scientific, 2014 9789814596312 (DLC) 2014015285 (OCoLC)871789716 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=824747 Volltext |
spellingShingle | Edmunds, D. E. (David Eric) Lang, Jan Mendez, Osvaldo (Osvaldo David) Differential operators on spaces of variable integrability / 1. Preliminaries. 1.1. The geometry of Banach spaces. 1.2. Spaces with variable exponent -- 2. Sobolev spaces with variable exponent. 2.1. Definition and functional-analytic properties. 2.2. Sobolev embeddings. 2.3. Compact embeddings. 2.4. Riesz potentials. 2.5. Poincare-type inequalities. 2.6. Embeddings. 2.7. Holder spaces with variable exponents. 2.8. Compact embeddings revisited -- 3. The p[symbol]-Laplacian. 3.1. Preliminaries. 3.2. The p[symbol]-Laplacian. 3.3. Stability with respect to integrability -- 4. Eigenvalues. 4.1. The derivative of the modular. 4.2. Compactness and Eigenvalues. 4.3. Modular Eigenvalues. 4.4. Stability with respect to the exponent. 4.5. Convergence properties of the Eigenfunctions -- 5. Approximation on Lp spaces. 5.1. s-numbers and n-widths. 5.2. A Sobolev embedding. 5.3. Integral operators. Function spaces. http://id.loc.gov/authorities/subjects/sh85052310 Sobolev spaces. http://id.loc.gov/authorities/subjects/sh85123836 Differential operators. http://id.loc.gov/authorities/subjects/sh85037921 Espaces fonctionnels. Espaces de Sobolev. Opérateurs différentiels. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Differential operators fast Function spaces fast Sobolev spaces fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85052310 http://id.loc.gov/authorities/subjects/sh85123836 http://id.loc.gov/authorities/subjects/sh85037921 |
title | Differential operators on spaces of variable integrability / |
title_auth | Differential operators on spaces of variable integrability / |
title_exact_search | Differential operators on spaces of variable integrability / |
title_full | Differential operators on spaces of variable integrability / David E. Edmunds, University of Sussex, UK, Jan Lang, the Ohio State University, USA, Osvaldo Mendez, the University of Texas at El Paso, USA. |
title_fullStr | Differential operators on spaces of variable integrability / David E. Edmunds, University of Sussex, UK, Jan Lang, the Ohio State University, USA, Osvaldo Mendez, the University of Texas at El Paso, USA. |
title_full_unstemmed | Differential operators on spaces of variable integrability / David E. Edmunds, University of Sussex, UK, Jan Lang, the Ohio State University, USA, Osvaldo Mendez, the University of Texas at El Paso, USA. |
title_short | Differential operators on spaces of variable integrability / |
title_sort | differential operators on spaces of variable integrability |
topic | Function spaces. http://id.loc.gov/authorities/subjects/sh85052310 Sobolev spaces. http://id.loc.gov/authorities/subjects/sh85123836 Differential operators. http://id.loc.gov/authorities/subjects/sh85037921 Espaces fonctionnels. Espaces de Sobolev. Opérateurs différentiels. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Differential operators fast Function spaces fast Sobolev spaces fast |
topic_facet | Function spaces. Sobolev spaces. Differential operators. Espaces fonctionnels. Espaces de Sobolev. Opérateurs différentiels. MATHEMATICS Calculus. MATHEMATICS Mathematical Analysis. Differential operators Function spaces Sobolev spaces |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=824747 |
work_keys_str_mv | AT edmundsde differentialoperatorsonspacesofvariableintegrability AT langjan differentialoperatorsonspacesofvariableintegrability AT mendezosvaldo differentialoperatorsonspacesofvariableintegrability |