Elements of algebraic coding systems /:
This book serves as an introductory text to algebraic coding theory. The contents are suitable for final year undergraduate and first year graduate courses in electrical and computer engineering, and will give the reader knowledge of coding fundamentals that is essential for a deeper understanding o...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York [New York] (222 East 46th Street, New York, NY 10017) :
Momentum Press,
2014.
|
Schriftenreihe: | Communications and signal processing collection.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This book serves as an introductory text to algebraic coding theory. The contents are suitable for final year undergraduate and first year graduate courses in electrical and computer engineering, and will give the reader knowledge of coding fundamentals that is essential for a deeper understanding of state-of-the-art coding systems. This book will also serve as a quick reference for those who need it for specific applications, like in cryptography and communications. Eleven chapters cover linear error-correcting block codes from elementary principles, going through cyclic codes and then covering some finite field algebra, Goppa codes, algebraic decoding algorithms, and applications in public-key cryptography and secret-key cryptography. At the end of each chapter a section containing problems and solutions is included. Three appendices cover the Gilbert bound and some related derivations, a derivation of the MacWilliams' identities based on the probability of undetected error, and two important tools for algebraic decoding, namely, the finite field Fourier transform and the Euclidean algorithm for polynomials. |
Beschreibung: | Title from PDF title page (viewed on August 1, 2014). |
Beschreibung: | 1 online resource (1 PDF (xi, 188 pages)) |
Bibliographie: | Includes bibliographical references (pages 179-182) and index. Bibliography-About the author-Index. |
ISBN: | 9781606505755 1606505750 1606505742 9781606505748 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn885199308 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m eo d | ||
007 | cr cn||||m|||a | ||
008 | 140804s2014 nyu foab 001 0 eng d | ||
040 | |a NYMPP |b eng |e rda |e pn |c NYMPP |d OCLCO |d N$T |d E7B |d MYG |d OCLCF |d YDXCP |d EBLCP |d IDEBK |d DEBSZ |d CN3GA |d OCLCQ |d NRC |d AGLDB |d OTZ |d OCLCQ |d MERUC |d OCLCQ |d UPM |d VTS |d STF |d LOA |d CUY |d ZCU |d ICG |d K6U |d VT2 |d U3W |d CNCEN |d OCLCQ |d WYU |d G3B |d LVT |d S8J |d S9I |d TKN |d D6H |d DKC |d OCLCQ |d M8D |d UKAHL |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d UEJ |d OCLCQ | ||
019 | |a 884015374 |a 1148135951 | ||
020 | |a 9781606505755 |q (electronic bk.) | ||
020 | |a 1606505750 |q (electronic bk.) | ||
020 | |a 1606505742 |q (Trade Paper) | ||
020 | |a 9781606505748 | ||
020 | |z 9781606505748 |q (print) | ||
024 | 3 | |a 9781606505748 | |
024 | 7 | |a 10.5643/9781606505755 |2 doi | |
035 | |a (OCoLC)885199308 |z (OCoLC)884015374 |z (OCoLC)1148135951 | ||
037 | |b 01463640 | ||
050 | 4 | |a TK5102.92 |b .R634 2014 | |
072 | 7 | |a SCI |x 064000 |2 bisacsh | |
072 | 7 | |a TEC |x 029000 |2 bisacsh | |
082 | 7 | |a 003.54 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Rocha, Valdemar C. da, |d 1947- |e author. |1 https://id.oclc.org/worldcat/entity/E39PCjGtm343PddBYVk4qDTQWP |0 http://id.loc.gov/authorities/names/n2005043111 | |
245 | 1 | 0 | |a Elements of algebraic coding systems / |c Valdemar Cardoso da Rocha, Jr. |
264 | 1 | |a New York [New York] (222 East 46th Street, New York, NY 10017) : |b Momentum Press, |c 2014. | |
300 | |a 1 online resource (1 PDF (xi, 188 pages)) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Communications and signal processing collection | |
500 | |a Title from PDF title page (viewed on August 1, 2014). | ||
504 | |a Includes bibliographical references (pages 179-182) and index. | ||
505 | 0 | |a 1. Basic concepts -- 1.1 Introduction -- 1.2 Types of errors -- 1.3 Channel models -- 1.4 Linear codes and non-linear codes -- 1.5 Block codes and convolutional codes -- 1.6 Problems with solutions. | |
505 | 8 | |a 2. Block codes -- 2.1 Introduction -- 2.2 Matrix representation -- 2.3 Minimum distance -- 2.4 Error syndrome and decoding -- 2.4.1 Maximum likelihood decoding -- 2.4.2 Decoding by systematic search -- 2.4.3 Probabilistic decoding -- 2.5 Simple codes -- 2.5.1 Repetition codes -- 2.5.2 Single parity-check codes -- 2.5.3 Hamming codes -- 2.6 Low-density parity-check codes -- 2.7 Problems with solutions. | |
505 | 8 | |a 3. Cyclic codes -- 3.1 Matrix representation of a cyclic code -- 3.2 Encoder with n -- k shift-register stages -- 3.3 Cyclic Hamming codes -- 3.4 Maximum-length-sequence codes -- 3.5 Bose-Chaudhuri-Hocquenghem codes -- 3.6 Reed-Solomon codes -- 3.7 Golay codes -- 3.7.1 The binary (23, 12, 7) Golay code -- 3.7.2 The ternary (11, 6, 5) Golay code -- 3.8 Reed-Muller codes -- 3.9 Quadratic residue codes -- 3.10 Alternant codes -- 3.11 Problems with solutions. | |
505 | 8 | |a 4. Decoding cyclic codes -- 4.1 Meggitt decoder -- 4.2 Error-trapping decoder -- 4.3 Information set decoding -- 4.4 Threshold decoding -- 4.5 Algebraic decoding -- 4.5.1 Berlekamp-Massey time domain decoding -- 4.5.2 Euclidean frequency domain decoding -- 4.6 Soft-decision decoding -- 4.6.1 Decoding LDPC codes -- 4.7 Problems with solutions. | |
505 | 8 | |a 5. Irreducible polynomials over finite fields -- 5.1 Introduction -- 5.2 Order of a polynomial -- 5.3 Factoring xqn -- x -- 5.4 Counting monic irreducible q-ary polynomials -- 5.5 The Moebius inversion technique -- 5.5.1 The additive Moebius inversion formula -- 5.5.2 The multiplicative Moebius inversion formula -- 5.5.3 The number of irreducible polynomials of degree n over GF(q) -- 5.6 Chapter citations -- 5.7 Problems with solutions. | |
505 | 8 | |a 6. Finite field factorization of polynomials -- 6.1 Introduction -- 6.2 Cyclotomic polynomials -- 6.3 Canonical factorization -- 6.4 Eliminating repeated factors -- 6.5 Irreducibility of ̲[phi]n(x) over GF(q) -- 6.6 Problems with solutions. | |
505 | 8 | |a 7. Constructing f-reducing polynomials -- 7.1 Introduction -- 7.2 Factoring polynomials over large finite fields -- 7.2.1 Resultant -- 7.2.2 Algorithm for factorization based on the resultant -- 7.2.3 The Zassenhaus algorithm -- 7.3 Finding roots of polynomials over finite fields -- 7.3.1 Finding roots when p is large -- 7.3.2 Finding roots when q = pm is large but p is small -- 7.4 Problems with solutions. | |
505 | 8 | |a 8. Linearized polynomials -- 8.1 Introduction -- 8.2 Properties of L(x) -- 8.3 Properties of the roots of L(x) -- 8.4 Finding roots of L(x) -- 8.5 Affine q-polynomials -- 8.6 Problems with solutions. | |
505 | 8 | |a 9. Goppa codes -- 9.1 Introduction -- 9.2 Parity-check equations -- 9.3 Parity-check matrix of Goppa codes -- 9.4 Algebraic decoding of Goppa codes -- 9.4.1 The Patterson algorithm -- 9.4.2 The Blahut algorithm -- 9.5 The asymptotic Gilbert bound -- 9.6 Quadratic equations over GF(2m) -- 9.7 Adding an overall parity-check digit -- 9.8 Affine transformations -- 9.9 Cyclic binary double-error correcting -- 10. Extended Goppa codes -- 9.10 Extending the Patterson algorithm for decoding Goppa codes -- 9.11 Problems with solutions. | |
505 | 8 | |a 10. Coding-based cryptosystems -- 10.1 Introduction -- 10.2 McEliece's public-key cryptosystem -- 10.2.1 Description of the cryptosystem -- 10.2.2 Encryption -- 10.2.3 Decryption -- 10.2.4 Cryptanalysis -- 10.2.5 Trapdoors -- 10.3 Secret-key algebraic coding systems -- 10.3.1 A (possible) known-plaintext attack -- 10.3.2 A chosen-plaintext attack -- 10.3.3 A modified scheme -- 10.4 Problems with solutions. | |
505 | 8 | |a 11. Majority logic decoding -- 11.1 Introduction -- 11.2 One-step majority logic decoding -- 11.3 Multiple-step majority logic decoding I -- 11.4 Multiple-step majority logic decoding II -- 11.5 Reed-Muller codes -- 11.6 Affine permutations and code construction -- 11.7 A class of one-step decodable codes -- 11.8 Generalized Reed-Muller codes -- 11.9 Euclidean geometry codes -- 11.10 Projective geometry codes -- 11.11 Problems with solutions. | |
505 | 8 | |a Appendices -- A. The Gilbert bound -- A.1. Introduction -- A.2. The binary asymptotic Gilbert bound -- A.3. Gilbert bound for linear codes -- B. MacWilliams' identity for linear codes -- B.1. Introduction -- B.2. The binary symmetric channel -- B.3. Binary linear codes and error detection -- B.4. The q-ary symmetric channel -- B.5. Linear codes over GF(q) -- B.6. The binomial expansion -- B.7. Digital transmission using N regenerative repeaters -- C. Frequency domain decoding tools -- C.1. Finite field Fourier transform -- C.2. The Euclidean algorithm. | |
504 | |a Bibliography-About the author-Index. | ||
520 | 3 | |a This book serves as an introductory text to algebraic coding theory. The contents are suitable for final year undergraduate and first year graduate courses in electrical and computer engineering, and will give the reader knowledge of coding fundamentals that is essential for a deeper understanding of state-of-the-art coding systems. This book will also serve as a quick reference for those who need it for specific applications, like in cryptography and communications. Eleven chapters cover linear error-correcting block codes from elementary principles, going through cyclic codes and then covering some finite field algebra, Goppa codes, algebraic decoding algorithms, and applications in public-key cryptography and secret-key cryptography. At the end of each chapter a section containing problems and solutions is included. Three appendices cover the Gilbert bound and some related derivations, a derivation of the MacWilliams' identities based on the probability of undetected error, and two important tools for algebraic decoding, namely, the finite field Fourier transform and the Euclidean algorithm for polynomials. | |
650 | 0 | |a Coding theory. |0 http://id.loc.gov/authorities/subjects/sh85027654 | |
650 | 7 | |a SCIENCE |x System Theory. |2 bisacsh | |
650 | 7 | |a TECHNOLOGY & ENGINEERING |x Operations Research. |2 bisacsh | |
650 | 7 | |a Coding theory |2 fast | |
653 | |a codes | ||
653 | |a BCH codes | ||
653 | |a Goppa codes | ||
653 | |a decoding | ||
653 | |a majority logic decoding | ||
653 | |a time domain decoding | ||
653 | |a frequency domain decoding | ||
653 | |a Finite fields | ||
653 | |a polynomial factorization | ||
653 | |a error-correcting codes | ||
653 | |a algebraic codes | ||
653 | |a cyclic | ||
758 | |i has work: |a Elements of algebraic coding systems (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGYRmVxWxhvQVr8DmJGjFq |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |z 9781606505748 |
830 | 0 | |a Communications and signal processing collection. | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=812965 |3 Volltext |
936 | |a BATCHLOAD | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH34378906 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL1740857 | ||
938 | |a ebrary |b EBRY |n ebr10899238 | ||
938 | |a EBSCOhost |b EBSC |n 812965 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis28707725 | ||
938 | |a Momentum Press |b NYMP |n 9781606505755 | ||
938 | |a YBP Library Services |b YANK |n 11977984 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn885199308 |
---|---|
_version_ | 1816882281161162752 |
adam_text | |
any_adam_object | |
author | Rocha, Valdemar C. da, 1947- |
author_GND | http://id.loc.gov/authorities/names/n2005043111 |
author_facet | Rocha, Valdemar C. da, 1947- |
author_role | aut |
author_sort | Rocha, Valdemar C. da, 1947- |
author_variant | v c d r vcd vcdr |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | T - Technology |
callnumber-label | TK5102 |
callnumber-raw | TK5102.92 .R634 2014 |
callnumber-search | TK5102.92 .R634 2014 |
callnumber-sort | TK 45102.92 R634 42014 |
callnumber-subject | TK - Electrical and Nuclear Engineering |
collection | ZDB-4-EBA |
contents | 1. Basic concepts -- 1.1 Introduction -- 1.2 Types of errors -- 1.3 Channel models -- 1.4 Linear codes and non-linear codes -- 1.5 Block codes and convolutional codes -- 1.6 Problems with solutions. 2. Block codes -- 2.1 Introduction -- 2.2 Matrix representation -- 2.3 Minimum distance -- 2.4 Error syndrome and decoding -- 2.4.1 Maximum likelihood decoding -- 2.4.2 Decoding by systematic search -- 2.4.3 Probabilistic decoding -- 2.5 Simple codes -- 2.5.1 Repetition codes -- 2.5.2 Single parity-check codes -- 2.5.3 Hamming codes -- 2.6 Low-density parity-check codes -- 2.7 Problems with solutions. 3. Cyclic codes -- 3.1 Matrix representation of a cyclic code -- 3.2 Encoder with n -- k shift-register stages -- 3.3 Cyclic Hamming codes -- 3.4 Maximum-length-sequence codes -- 3.5 Bose-Chaudhuri-Hocquenghem codes -- 3.6 Reed-Solomon codes -- 3.7 Golay codes -- 3.7.1 The binary (23, 12, 7) Golay code -- 3.7.2 The ternary (11, 6, 5) Golay code -- 3.8 Reed-Muller codes -- 3.9 Quadratic residue codes -- 3.10 Alternant codes -- 3.11 Problems with solutions. 4. Decoding cyclic codes -- 4.1 Meggitt decoder -- 4.2 Error-trapping decoder -- 4.3 Information set decoding -- 4.4 Threshold decoding -- 4.5 Algebraic decoding -- 4.5.1 Berlekamp-Massey time domain decoding -- 4.5.2 Euclidean frequency domain decoding -- 4.6 Soft-decision decoding -- 4.6.1 Decoding LDPC codes -- 4.7 Problems with solutions. 5. Irreducible polynomials over finite fields -- 5.1 Introduction -- 5.2 Order of a polynomial -- 5.3 Factoring xqn -- x -- 5.4 Counting monic irreducible q-ary polynomials -- 5.5 The Moebius inversion technique -- 5.5.1 The additive Moebius inversion formula -- 5.5.2 The multiplicative Moebius inversion formula -- 5.5.3 The number of irreducible polynomials of degree n over GF(q) -- 5.6 Chapter citations -- 5.7 Problems with solutions. 6. Finite field factorization of polynomials -- 6.1 Introduction -- 6.2 Cyclotomic polynomials -- 6.3 Canonical factorization -- 6.4 Eliminating repeated factors -- 6.5 Irreducibility of ̲[phi]n(x) over GF(q) -- 6.6 Problems with solutions. 7. Constructing f-reducing polynomials -- 7.1 Introduction -- 7.2 Factoring polynomials over large finite fields -- 7.2.1 Resultant -- 7.2.2 Algorithm for factorization based on the resultant -- 7.2.3 The Zassenhaus algorithm -- 7.3 Finding roots of polynomials over finite fields -- 7.3.1 Finding roots when p is large -- 7.3.2 Finding roots when q = pm is large but p is small -- 7.4 Problems with solutions. 8. Linearized polynomials -- 8.1 Introduction -- 8.2 Properties of L(x) -- 8.3 Properties of the roots of L(x) -- 8.4 Finding roots of L(x) -- 8.5 Affine q-polynomials -- 8.6 Problems with solutions. 9. Goppa codes -- 9.1 Introduction -- 9.2 Parity-check equations -- 9.3 Parity-check matrix of Goppa codes -- 9.4 Algebraic decoding of Goppa codes -- 9.4.1 The Patterson algorithm -- 9.4.2 The Blahut algorithm -- 9.5 The asymptotic Gilbert bound -- 9.6 Quadratic equations over GF(2m) -- 9.7 Adding an overall parity-check digit -- 9.8 Affine transformations -- 9.9 Cyclic binary double-error correcting -- 10. Extended Goppa codes -- 9.10 Extending the Patterson algorithm for decoding Goppa codes -- 9.11 Problems with solutions. 10. Coding-based cryptosystems -- 10.1 Introduction -- 10.2 McEliece's public-key cryptosystem -- 10.2.1 Description of the cryptosystem -- 10.2.2 Encryption -- 10.2.3 Decryption -- 10.2.4 Cryptanalysis -- 10.2.5 Trapdoors -- 10.3 Secret-key algebraic coding systems -- 10.3.1 A (possible) known-plaintext attack -- 10.3.2 A chosen-plaintext attack -- 10.3.3 A modified scheme -- 10.4 Problems with solutions. 11. Majority logic decoding -- 11.1 Introduction -- 11.2 One-step majority logic decoding -- 11.3 Multiple-step majority logic decoding I -- 11.4 Multiple-step majority logic decoding II -- 11.5 Reed-Muller codes -- 11.6 Affine permutations and code construction -- 11.7 A class of one-step decodable codes -- 11.8 Generalized Reed-Muller codes -- 11.9 Euclidean geometry codes -- 11.10 Projective geometry codes -- 11.11 Problems with solutions. Appendices -- A. The Gilbert bound -- A.1. Introduction -- A.2. The binary asymptotic Gilbert bound -- A.3. Gilbert bound for linear codes -- B. MacWilliams' identity for linear codes -- B.1. Introduction -- B.2. The binary symmetric channel -- B.3. Binary linear codes and error detection -- B.4. The q-ary symmetric channel -- B.5. Linear codes over GF(q) -- B.6. The binomial expansion -- B.7. Digital transmission using N regenerative repeaters -- C. Frequency domain decoding tools -- C.1. Finite field Fourier transform -- C.2. The Euclidean algorithm. |
ctrlnum | (OCoLC)885199308 |
dewey-full | 003.54 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 003 - Systems |
dewey-raw | 003.54 |
dewey-search | 003.54 |
dewey-sort | 13.54 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>09356cam a2200925 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn885199308</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m eo d </controlfield><controlfield tag="007">cr cn||||m|||a</controlfield><controlfield tag="008">140804s2014 nyu foab 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">NYMPP</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">NYMPP</subfield><subfield code="d">OCLCO</subfield><subfield code="d">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">MYG</subfield><subfield code="d">OCLCF</subfield><subfield code="d">YDXCP</subfield><subfield code="d">EBLCP</subfield><subfield code="d">IDEBK</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">CN3GA</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">NRC</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OTZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UPM</subfield><subfield code="d">VTS</subfield><subfield code="d">STF</subfield><subfield code="d">LOA</subfield><subfield code="d">CUY</subfield><subfield code="d">ZCU</subfield><subfield code="d">ICG</subfield><subfield code="d">K6U</subfield><subfield code="d">VT2</subfield><subfield code="d">U3W</subfield><subfield code="d">CNCEN</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">G3B</subfield><subfield code="d">LVT</subfield><subfield code="d">S8J</subfield><subfield code="d">S9I</subfield><subfield code="d">TKN</subfield><subfield code="d">D6H</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">UEJ</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">884015374</subfield><subfield code="a">1148135951</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781606505755</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1606505750</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1606505742</subfield><subfield code="q">(Trade Paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781606505748</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781606505748</subfield><subfield code="q">(print)</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9781606505748</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.5643/9781606505755</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)885199308</subfield><subfield code="z">(OCoLC)884015374</subfield><subfield code="z">(OCoLC)1148135951</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="b">01463640</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">TK5102.92</subfield><subfield code="b">.R634 2014</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">064000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">TEC</subfield><subfield code="x">029000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">003.54</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rocha, Valdemar C. da,</subfield><subfield code="d">1947-</subfield><subfield code="e">author.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjGtm343PddBYVk4qDTQWP</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2005043111</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Elements of algebraic coding systems /</subfield><subfield code="c">Valdemar Cardoso da Rocha, Jr.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York [New York] (222 East 46th Street, New York, NY 10017) :</subfield><subfield code="b">Momentum Press,</subfield><subfield code="c">2014.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (1 PDF (xi, 188 pages))</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Communications and signal processing collection</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from PDF title page (viewed on August 1, 2014).</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 179-182) and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">1. Basic concepts -- 1.1 Introduction -- 1.2 Types of errors -- 1.3 Channel models -- 1.4 Linear codes and non-linear codes -- 1.5 Block codes and convolutional codes -- 1.6 Problems with solutions.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2. Block codes -- 2.1 Introduction -- 2.2 Matrix representation -- 2.3 Minimum distance -- 2.4 Error syndrome and decoding -- 2.4.1 Maximum likelihood decoding -- 2.4.2 Decoding by systematic search -- 2.4.3 Probabilistic decoding -- 2.5 Simple codes -- 2.5.1 Repetition codes -- 2.5.2 Single parity-check codes -- 2.5.3 Hamming codes -- 2.6 Low-density parity-check codes -- 2.7 Problems with solutions.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3. Cyclic codes -- 3.1 Matrix representation of a cyclic code -- 3.2 Encoder with n -- k shift-register stages -- 3.3 Cyclic Hamming codes -- 3.4 Maximum-length-sequence codes -- 3.5 Bose-Chaudhuri-Hocquenghem codes -- 3.6 Reed-Solomon codes -- 3.7 Golay codes -- 3.7.1 The binary (23, 12, 7) Golay code -- 3.7.2 The ternary (11, 6, 5) Golay code -- 3.8 Reed-Muller codes -- 3.9 Quadratic residue codes -- 3.10 Alternant codes -- 3.11 Problems with solutions.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4. Decoding cyclic codes -- 4.1 Meggitt decoder -- 4.2 Error-trapping decoder -- 4.3 Information set decoding -- 4.4 Threshold decoding -- 4.5 Algebraic decoding -- 4.5.1 Berlekamp-Massey time domain decoding -- 4.5.2 Euclidean frequency domain decoding -- 4.6 Soft-decision decoding -- 4.6.1 Decoding LDPC codes -- 4.7 Problems with solutions.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5. Irreducible polynomials over finite fields -- 5.1 Introduction -- 5.2 Order of a polynomial -- 5.3 Factoring xqn -- x -- 5.4 Counting monic irreducible q-ary polynomials -- 5.5 The Moebius inversion technique -- 5.5.1 The additive Moebius inversion formula -- 5.5.2 The multiplicative Moebius inversion formula -- 5.5.3 The number of irreducible polynomials of degree n over GF(q) -- 5.6 Chapter citations -- 5.7 Problems with solutions.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6. Finite field factorization of polynomials -- 6.1 Introduction -- 6.2 Cyclotomic polynomials -- 6.3 Canonical factorization -- 6.4 Eliminating repeated factors -- 6.5 Irreducibility of ̲[phi]n(x) over GF(q) -- 6.6 Problems with solutions.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">7. Constructing f-reducing polynomials -- 7.1 Introduction -- 7.2 Factoring polynomials over large finite fields -- 7.2.1 Resultant -- 7.2.2 Algorithm for factorization based on the resultant -- 7.2.3 The Zassenhaus algorithm -- 7.3 Finding roots of polynomials over finite fields -- 7.3.1 Finding roots when p is large -- 7.3.2 Finding roots when q = pm is large but p is small -- 7.4 Problems with solutions.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">8. Linearized polynomials -- 8.1 Introduction -- 8.2 Properties of L(x) -- 8.3 Properties of the roots of L(x) -- 8.4 Finding roots of L(x) -- 8.5 Affine q-polynomials -- 8.6 Problems with solutions.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">9. Goppa codes -- 9.1 Introduction -- 9.2 Parity-check equations -- 9.3 Parity-check matrix of Goppa codes -- 9.4 Algebraic decoding of Goppa codes -- 9.4.1 The Patterson algorithm -- 9.4.2 The Blahut algorithm -- 9.5 The asymptotic Gilbert bound -- 9.6 Quadratic equations over GF(2m) -- 9.7 Adding an overall parity-check digit -- 9.8 Affine transformations -- 9.9 Cyclic binary double-error correcting -- 10. Extended Goppa codes -- 9.10 Extending the Patterson algorithm for decoding Goppa codes -- 9.11 Problems with solutions.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">10. Coding-based cryptosystems -- 10.1 Introduction -- 10.2 McEliece's public-key cryptosystem -- 10.2.1 Description of the cryptosystem -- 10.2.2 Encryption -- 10.2.3 Decryption -- 10.2.4 Cryptanalysis -- 10.2.5 Trapdoors -- 10.3 Secret-key algebraic coding systems -- 10.3.1 A (possible) known-plaintext attack -- 10.3.2 A chosen-plaintext attack -- 10.3.3 A modified scheme -- 10.4 Problems with solutions.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">11. Majority logic decoding -- 11.1 Introduction -- 11.2 One-step majority logic decoding -- 11.3 Multiple-step majority logic decoding I -- 11.4 Multiple-step majority logic decoding II -- 11.5 Reed-Muller codes -- 11.6 Affine permutations and code construction -- 11.7 A class of one-step decodable codes -- 11.8 Generalized Reed-Muller codes -- 11.9 Euclidean geometry codes -- 11.10 Projective geometry codes -- 11.11 Problems with solutions.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Appendices -- A. The Gilbert bound -- A.1. Introduction -- A.2. The binary asymptotic Gilbert bound -- A.3. Gilbert bound for linear codes -- B. MacWilliams' identity for linear codes -- B.1. Introduction -- B.2. The binary symmetric channel -- B.3. Binary linear codes and error detection -- B.4. The q-ary symmetric channel -- B.5. Linear codes over GF(q) -- B.6. The binomial expansion -- B.7. Digital transmission using N regenerative repeaters -- C. Frequency domain decoding tools -- C.1. Finite field Fourier transform -- C.2. The Euclidean algorithm.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Bibliography-About the author-Index.</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">This book serves as an introductory text to algebraic coding theory. The contents are suitable for final year undergraduate and first year graduate courses in electrical and computer engineering, and will give the reader knowledge of coding fundamentals that is essential for a deeper understanding of state-of-the-art coding systems. This book will also serve as a quick reference for those who need it for specific applications, like in cryptography and communications. Eleven chapters cover linear error-correcting block codes from elementary principles, going through cyclic codes and then covering some finite field algebra, Goppa codes, algebraic decoding algorithms, and applications in public-key cryptography and secret-key cryptography. At the end of each chapter a section containing problems and solutions is included. Three appendices cover the Gilbert bound and some related derivations, a derivation of the MacWilliams' identities based on the probability of undetected error, and two important tools for algebraic decoding, namely, the finite field Fourier transform and the Euclidean algorithm for polynomials.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Coding theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85027654</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">System Theory.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING</subfield><subfield code="x">Operations Research.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Coding theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">codes</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">BCH codes</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Goppa codes</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">decoding</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">majority logic decoding</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">time domain decoding</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">frequency domain decoding</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Finite fields</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">polynomial factorization</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">error-correcting codes</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">algebraic codes</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">cyclic</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Elements of algebraic coding systems (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGYRmVxWxhvQVr8DmJGjFq</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="z">9781606505748</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Communications and signal processing collection.</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=812965</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="936" ind1=" " ind2=" "><subfield code="a">BATCHLOAD</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH34378906</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL1740857</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10899238</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">812965</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis28707725</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Momentum Press</subfield><subfield code="b">NYMP</subfield><subfield code="n">9781606505755</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">11977984</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn885199308 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:26:07Z |
institution | BVB |
isbn | 9781606505755 1606505750 1606505742 9781606505748 |
language | English |
oclc_num | 885199308 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (1 PDF (xi, 188 pages)) |
psigel | ZDB-4-EBA |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | Momentum Press, |
record_format | marc |
series | Communications and signal processing collection. |
series2 | Communications and signal processing collection |
spelling | Rocha, Valdemar C. da, 1947- author. https://id.oclc.org/worldcat/entity/E39PCjGtm343PddBYVk4qDTQWP http://id.loc.gov/authorities/names/n2005043111 Elements of algebraic coding systems / Valdemar Cardoso da Rocha, Jr. New York [New York] (222 East 46th Street, New York, NY 10017) : Momentum Press, 2014. 1 online resource (1 PDF (xi, 188 pages)) text txt rdacontent computer c rdamedia online resource cr rdacarrier Communications and signal processing collection Title from PDF title page (viewed on August 1, 2014). Includes bibliographical references (pages 179-182) and index. 1. Basic concepts -- 1.1 Introduction -- 1.2 Types of errors -- 1.3 Channel models -- 1.4 Linear codes and non-linear codes -- 1.5 Block codes and convolutional codes -- 1.6 Problems with solutions. 2. Block codes -- 2.1 Introduction -- 2.2 Matrix representation -- 2.3 Minimum distance -- 2.4 Error syndrome and decoding -- 2.4.1 Maximum likelihood decoding -- 2.4.2 Decoding by systematic search -- 2.4.3 Probabilistic decoding -- 2.5 Simple codes -- 2.5.1 Repetition codes -- 2.5.2 Single parity-check codes -- 2.5.3 Hamming codes -- 2.6 Low-density parity-check codes -- 2.7 Problems with solutions. 3. Cyclic codes -- 3.1 Matrix representation of a cyclic code -- 3.2 Encoder with n -- k shift-register stages -- 3.3 Cyclic Hamming codes -- 3.4 Maximum-length-sequence codes -- 3.5 Bose-Chaudhuri-Hocquenghem codes -- 3.6 Reed-Solomon codes -- 3.7 Golay codes -- 3.7.1 The binary (23, 12, 7) Golay code -- 3.7.2 The ternary (11, 6, 5) Golay code -- 3.8 Reed-Muller codes -- 3.9 Quadratic residue codes -- 3.10 Alternant codes -- 3.11 Problems with solutions. 4. Decoding cyclic codes -- 4.1 Meggitt decoder -- 4.2 Error-trapping decoder -- 4.3 Information set decoding -- 4.4 Threshold decoding -- 4.5 Algebraic decoding -- 4.5.1 Berlekamp-Massey time domain decoding -- 4.5.2 Euclidean frequency domain decoding -- 4.6 Soft-decision decoding -- 4.6.1 Decoding LDPC codes -- 4.7 Problems with solutions. 5. Irreducible polynomials over finite fields -- 5.1 Introduction -- 5.2 Order of a polynomial -- 5.3 Factoring xqn -- x -- 5.4 Counting monic irreducible q-ary polynomials -- 5.5 The Moebius inversion technique -- 5.5.1 The additive Moebius inversion formula -- 5.5.2 The multiplicative Moebius inversion formula -- 5.5.3 The number of irreducible polynomials of degree n over GF(q) -- 5.6 Chapter citations -- 5.7 Problems with solutions. 6. Finite field factorization of polynomials -- 6.1 Introduction -- 6.2 Cyclotomic polynomials -- 6.3 Canonical factorization -- 6.4 Eliminating repeated factors -- 6.5 Irreducibility of ̲[phi]n(x) over GF(q) -- 6.6 Problems with solutions. 7. Constructing f-reducing polynomials -- 7.1 Introduction -- 7.2 Factoring polynomials over large finite fields -- 7.2.1 Resultant -- 7.2.2 Algorithm for factorization based on the resultant -- 7.2.3 The Zassenhaus algorithm -- 7.3 Finding roots of polynomials over finite fields -- 7.3.1 Finding roots when p is large -- 7.3.2 Finding roots when q = pm is large but p is small -- 7.4 Problems with solutions. 8. Linearized polynomials -- 8.1 Introduction -- 8.2 Properties of L(x) -- 8.3 Properties of the roots of L(x) -- 8.4 Finding roots of L(x) -- 8.5 Affine q-polynomials -- 8.6 Problems with solutions. 9. Goppa codes -- 9.1 Introduction -- 9.2 Parity-check equations -- 9.3 Parity-check matrix of Goppa codes -- 9.4 Algebraic decoding of Goppa codes -- 9.4.1 The Patterson algorithm -- 9.4.2 The Blahut algorithm -- 9.5 The asymptotic Gilbert bound -- 9.6 Quadratic equations over GF(2m) -- 9.7 Adding an overall parity-check digit -- 9.8 Affine transformations -- 9.9 Cyclic binary double-error correcting -- 10. Extended Goppa codes -- 9.10 Extending the Patterson algorithm for decoding Goppa codes -- 9.11 Problems with solutions. 10. Coding-based cryptosystems -- 10.1 Introduction -- 10.2 McEliece's public-key cryptosystem -- 10.2.1 Description of the cryptosystem -- 10.2.2 Encryption -- 10.2.3 Decryption -- 10.2.4 Cryptanalysis -- 10.2.5 Trapdoors -- 10.3 Secret-key algebraic coding systems -- 10.3.1 A (possible) known-plaintext attack -- 10.3.2 A chosen-plaintext attack -- 10.3.3 A modified scheme -- 10.4 Problems with solutions. 11. Majority logic decoding -- 11.1 Introduction -- 11.2 One-step majority logic decoding -- 11.3 Multiple-step majority logic decoding I -- 11.4 Multiple-step majority logic decoding II -- 11.5 Reed-Muller codes -- 11.6 Affine permutations and code construction -- 11.7 A class of one-step decodable codes -- 11.8 Generalized Reed-Muller codes -- 11.9 Euclidean geometry codes -- 11.10 Projective geometry codes -- 11.11 Problems with solutions. Appendices -- A. The Gilbert bound -- A.1. Introduction -- A.2. The binary asymptotic Gilbert bound -- A.3. Gilbert bound for linear codes -- B. MacWilliams' identity for linear codes -- B.1. Introduction -- B.2. The binary symmetric channel -- B.3. Binary linear codes and error detection -- B.4. The q-ary symmetric channel -- B.5. Linear codes over GF(q) -- B.6. The binomial expansion -- B.7. Digital transmission using N regenerative repeaters -- C. Frequency domain decoding tools -- C.1. Finite field Fourier transform -- C.2. The Euclidean algorithm. Bibliography-About the author-Index. This book serves as an introductory text to algebraic coding theory. The contents are suitable for final year undergraduate and first year graduate courses in electrical and computer engineering, and will give the reader knowledge of coding fundamentals that is essential for a deeper understanding of state-of-the-art coding systems. This book will also serve as a quick reference for those who need it for specific applications, like in cryptography and communications. Eleven chapters cover linear error-correcting block codes from elementary principles, going through cyclic codes and then covering some finite field algebra, Goppa codes, algebraic decoding algorithms, and applications in public-key cryptography and secret-key cryptography. At the end of each chapter a section containing problems and solutions is included. Three appendices cover the Gilbert bound and some related derivations, a derivation of the MacWilliams' identities based on the probability of undetected error, and two important tools for algebraic decoding, namely, the finite field Fourier transform and the Euclidean algorithm for polynomials. Coding theory. http://id.loc.gov/authorities/subjects/sh85027654 SCIENCE System Theory. bisacsh TECHNOLOGY & ENGINEERING Operations Research. bisacsh Coding theory fast codes BCH codes Goppa codes decoding majority logic decoding time domain decoding frequency domain decoding Finite fields polynomial factorization error-correcting codes algebraic codes cyclic has work: Elements of algebraic coding systems (Text) https://id.oclc.org/worldcat/entity/E39PCGYRmVxWxhvQVr8DmJGjFq https://id.oclc.org/worldcat/ontology/hasWork Print version: 9781606505748 Communications and signal processing collection. FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=812965 Volltext |
spellingShingle | Rocha, Valdemar C. da, 1947- Elements of algebraic coding systems / Communications and signal processing collection. 1. Basic concepts -- 1.1 Introduction -- 1.2 Types of errors -- 1.3 Channel models -- 1.4 Linear codes and non-linear codes -- 1.5 Block codes and convolutional codes -- 1.6 Problems with solutions. 2. Block codes -- 2.1 Introduction -- 2.2 Matrix representation -- 2.3 Minimum distance -- 2.4 Error syndrome and decoding -- 2.4.1 Maximum likelihood decoding -- 2.4.2 Decoding by systematic search -- 2.4.3 Probabilistic decoding -- 2.5 Simple codes -- 2.5.1 Repetition codes -- 2.5.2 Single parity-check codes -- 2.5.3 Hamming codes -- 2.6 Low-density parity-check codes -- 2.7 Problems with solutions. 3. Cyclic codes -- 3.1 Matrix representation of a cyclic code -- 3.2 Encoder with n -- k shift-register stages -- 3.3 Cyclic Hamming codes -- 3.4 Maximum-length-sequence codes -- 3.5 Bose-Chaudhuri-Hocquenghem codes -- 3.6 Reed-Solomon codes -- 3.7 Golay codes -- 3.7.1 The binary (23, 12, 7) Golay code -- 3.7.2 The ternary (11, 6, 5) Golay code -- 3.8 Reed-Muller codes -- 3.9 Quadratic residue codes -- 3.10 Alternant codes -- 3.11 Problems with solutions. 4. Decoding cyclic codes -- 4.1 Meggitt decoder -- 4.2 Error-trapping decoder -- 4.3 Information set decoding -- 4.4 Threshold decoding -- 4.5 Algebraic decoding -- 4.5.1 Berlekamp-Massey time domain decoding -- 4.5.2 Euclidean frequency domain decoding -- 4.6 Soft-decision decoding -- 4.6.1 Decoding LDPC codes -- 4.7 Problems with solutions. 5. Irreducible polynomials over finite fields -- 5.1 Introduction -- 5.2 Order of a polynomial -- 5.3 Factoring xqn -- x -- 5.4 Counting monic irreducible q-ary polynomials -- 5.5 The Moebius inversion technique -- 5.5.1 The additive Moebius inversion formula -- 5.5.2 The multiplicative Moebius inversion formula -- 5.5.3 The number of irreducible polynomials of degree n over GF(q) -- 5.6 Chapter citations -- 5.7 Problems with solutions. 6. Finite field factorization of polynomials -- 6.1 Introduction -- 6.2 Cyclotomic polynomials -- 6.3 Canonical factorization -- 6.4 Eliminating repeated factors -- 6.5 Irreducibility of ̲[phi]n(x) over GF(q) -- 6.6 Problems with solutions. 7. Constructing f-reducing polynomials -- 7.1 Introduction -- 7.2 Factoring polynomials over large finite fields -- 7.2.1 Resultant -- 7.2.2 Algorithm for factorization based on the resultant -- 7.2.3 The Zassenhaus algorithm -- 7.3 Finding roots of polynomials over finite fields -- 7.3.1 Finding roots when p is large -- 7.3.2 Finding roots when q = pm is large but p is small -- 7.4 Problems with solutions. 8. Linearized polynomials -- 8.1 Introduction -- 8.2 Properties of L(x) -- 8.3 Properties of the roots of L(x) -- 8.4 Finding roots of L(x) -- 8.5 Affine q-polynomials -- 8.6 Problems with solutions. 9. Goppa codes -- 9.1 Introduction -- 9.2 Parity-check equations -- 9.3 Parity-check matrix of Goppa codes -- 9.4 Algebraic decoding of Goppa codes -- 9.4.1 The Patterson algorithm -- 9.4.2 The Blahut algorithm -- 9.5 The asymptotic Gilbert bound -- 9.6 Quadratic equations over GF(2m) -- 9.7 Adding an overall parity-check digit -- 9.8 Affine transformations -- 9.9 Cyclic binary double-error correcting -- 10. Extended Goppa codes -- 9.10 Extending the Patterson algorithm for decoding Goppa codes -- 9.11 Problems with solutions. 10. Coding-based cryptosystems -- 10.1 Introduction -- 10.2 McEliece's public-key cryptosystem -- 10.2.1 Description of the cryptosystem -- 10.2.2 Encryption -- 10.2.3 Decryption -- 10.2.4 Cryptanalysis -- 10.2.5 Trapdoors -- 10.3 Secret-key algebraic coding systems -- 10.3.1 A (possible) known-plaintext attack -- 10.3.2 A chosen-plaintext attack -- 10.3.3 A modified scheme -- 10.4 Problems with solutions. 11. Majority logic decoding -- 11.1 Introduction -- 11.2 One-step majority logic decoding -- 11.3 Multiple-step majority logic decoding I -- 11.4 Multiple-step majority logic decoding II -- 11.5 Reed-Muller codes -- 11.6 Affine permutations and code construction -- 11.7 A class of one-step decodable codes -- 11.8 Generalized Reed-Muller codes -- 11.9 Euclidean geometry codes -- 11.10 Projective geometry codes -- 11.11 Problems with solutions. Appendices -- A. The Gilbert bound -- A.1. Introduction -- A.2. The binary asymptotic Gilbert bound -- A.3. Gilbert bound for linear codes -- B. MacWilliams' identity for linear codes -- B.1. Introduction -- B.2. The binary symmetric channel -- B.3. Binary linear codes and error detection -- B.4. The q-ary symmetric channel -- B.5. Linear codes over GF(q) -- B.6. The binomial expansion -- B.7. Digital transmission using N regenerative repeaters -- C. Frequency domain decoding tools -- C.1. Finite field Fourier transform -- C.2. The Euclidean algorithm. Coding theory. http://id.loc.gov/authorities/subjects/sh85027654 SCIENCE System Theory. bisacsh TECHNOLOGY & ENGINEERING Operations Research. bisacsh Coding theory fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85027654 |
title | Elements of algebraic coding systems / |
title_auth | Elements of algebraic coding systems / |
title_exact_search | Elements of algebraic coding systems / |
title_full | Elements of algebraic coding systems / Valdemar Cardoso da Rocha, Jr. |
title_fullStr | Elements of algebraic coding systems / Valdemar Cardoso da Rocha, Jr. |
title_full_unstemmed | Elements of algebraic coding systems / Valdemar Cardoso da Rocha, Jr. |
title_short | Elements of algebraic coding systems / |
title_sort | elements of algebraic coding systems |
topic | Coding theory. http://id.loc.gov/authorities/subjects/sh85027654 SCIENCE System Theory. bisacsh TECHNOLOGY & ENGINEERING Operations Research. bisacsh Coding theory fast |
topic_facet | Coding theory. SCIENCE System Theory. TECHNOLOGY & ENGINEERING Operations Research. Coding theory |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=812965 |
work_keys_str_mv | AT rochavaldemarcda elementsofalgebraiccodingsystems |