Non-abelian minimal closed ideals of transitive Lie algebras /:
The purpose of this book is to provide a self-contained account, accessible to the non-specialist, of algebra necessary for the solution of the integrability problem for transitive pseudogroup structures. Originally published in 1981. The Princeton Legacy Library uses the latest print-on-demand tech...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, N.J. :
Princeton University Press,
©1981.
|
Schriftenreihe: | Mathematical notes (Princeton University Press) ;
25. |
Schlagworte: | |
Online-Zugang: | DE-862 DE-863 |
Zusammenfassung: | The purpose of this book is to provide a self-contained account, accessible to the non-specialist, of algebra necessary for the solution of the integrability problem for transitive pseudogroup structures. Originally published in 1981. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905. |
Beschreibung: | 1 online resource |
Bibliographie: | Includes bibliographical references. |
ISBN: | 9781400853656 1400853656 9781306988988 1306988985 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn885020232 | ||
003 | OCoLC | ||
005 | 20250103110447.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 140801s1981 nju ob 001 0 eng d | ||
040 | |a IDEBK |b eng |e pn |c IDEBK |d N$T |d E7B |d JSTOR |d OCLCF |d OCLCQ |d YDXCP |d DEBSZ |d EBLCP |d OCLCQ |d UIU |d AGLDB |d OCLCQ |d JBG |d IOG |d EZ9 |d STF |d VTS |d OCLCQ |d LVT |d DKC |d OCLCQ |d M8D |d OCLCQ |d AJS |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ |d CLOUD | ||
019 | |a 889247584 |a 950196828 |a 992842581 | ||
020 | |a 9781400853656 |q (electronic bk.) | ||
020 | |a 1400853656 |q (electronic bk.) | ||
020 | |a 9781306988988 |q (electronic bk.) | ||
020 | |a 1306988985 |q (electronic bk.) | ||
020 | |z 0691082510 |q (pbk.) | ||
020 | |z 9780691615622 | ||
035 | |a (OCoLC)885020232 |z (OCoLC)889247584 |z (OCoLC)950196828 |z (OCoLC)992842581 | ||
037 | |a 22573/ctt735w3n |b JSTOR | ||
050 | 4 | |a QA252.3 |b .C67 1981eb | |
072 | 7 | |a MAT |x 002040 |2 bisacsh | |
072 | 7 | |a MAT002050 |2 bisacsh | |
082 | 7 | |a 512/.55 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Conn, Jack F., |d 1952- |1 https://id.oclc.org/worldcat/entity/E39PCjvYRQCMx8kwvK3Ttt6Frq |0 http://id.loc.gov/authorities/names/n79133577 | |
245 | 1 | 0 | |a Non-abelian minimal closed ideals of transitive Lie algebras / |c by Jack F. Conn. |
260 | |a Princeton, N.J. : |b Princeton University Press, |c ©1981. | ||
300 | |a 1 online resource | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Mathematical notes ; |v 25 | |
505 | 0 | |a Preliminaries -- Derivations of transitive and simple Lie algebras -- Simple algebras with parameters -- Closed ideals of transitive Lie algebras -- Minimal closed ideals of complex type. | |
504 | |a Includes bibliographical references. | ||
588 | 0 | |a Print version record. | |
520 | |a The purpose of this book is to provide a self-contained account, accessible to the non-specialist, of algebra necessary for the solution of the integrability problem for transitive pseudogroup structures. Originally published in 1981. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905. | ||
650 | 0 | |a Lie algebras. |0 http://id.loc.gov/authorities/subjects/sh85076782 | |
650 | 0 | |a Ideals (Algebra) |0 http://id.loc.gov/authorities/subjects/sh85064134 | |
650 | 0 | |a Pseudogroups. |0 http://id.loc.gov/authorities/subjects/sh85108272 | |
650 | 6 | |a Algèbres de Lie. | |
650 | 6 | |a Idéaux (Algèbre) | |
650 | 6 | |a Pseudogroupes (Mathématiques) | |
650 | 7 | |a MATHEMATICS |x Algebra |x Intermediate. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Algebra |x Linear. |2 bisacsh | |
650 | 7 | |a Ideals (Algebra) |2 fast | |
650 | 7 | |a Lie algebras |2 fast | |
650 | 7 | |a Pseudogroups |2 fast | |
655 | 0 | |a Electronic books. | |
776 | 0 | 8 | |i Print version: |a Conn, Jack F., 1952- |t Non-abelian minimal closed ideals of transitive Lie algebras. |d Princeton, N.J. : Princeton University Press, ©1981 |z 1306988985 |
830 | 0 | |a Mathematical notes (Princeton University Press) ; |v 25. |0 http://id.loc.gov/authorities/names/n42032553 | |
966 | 4 | 0 | |l DE-862 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=791902 |3 Volltext |
966 | 4 | 0 | |l DE-863 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=791902 |3 Volltext |
938 | |a cloudLibrary |b CLDL |n 9781400853656 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL3030403 | ||
938 | |a ebrary |b EBRY |n ebr10897401 | ||
938 | |a EBSCOhost |b EBSC |n 791902 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis28704553 | ||
938 | |a YBP Library Services |b YANK |n 11996176 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-862 | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn885020232 |
---|---|
_version_ | 1829095004559114240 |
adam_text | |
any_adam_object | |
author | Conn, Jack F., 1952- |
author_GND | http://id.loc.gov/authorities/names/n79133577 |
author_facet | Conn, Jack F., 1952- |
author_role | |
author_sort | Conn, Jack F., 1952- |
author_variant | j f c jf jfc |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA252 |
callnumber-raw | QA252.3 .C67 1981eb |
callnumber-search | QA252.3 .C67 1981eb |
callnumber-sort | QA 3252.3 C67 41981EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Preliminaries -- Derivations of transitive and simple Lie algebras -- Simple algebras with parameters -- Closed ideals of transitive Lie algebras -- Minimal closed ideals of complex type. |
ctrlnum | (OCoLC)885020232 |
dewey-full | 512/.55 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.55 |
dewey-search | 512/.55 |
dewey-sort | 3512 255 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03975cam a2200685 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn885020232</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20250103110447.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">140801s1981 nju ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">IDEBK</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">IDEBK</subfield><subfield code="d">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">JSTOR</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDXCP</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">EBLCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UIU</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">JBG</subfield><subfield code="d">IOG</subfield><subfield code="d">EZ9</subfield><subfield code="d">STF</subfield><subfield code="d">VTS</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LVT</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">CLOUD</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">889247584</subfield><subfield code="a">950196828</subfield><subfield code="a">992842581</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400853656</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1400853656</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781306988988</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1306988985</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0691082510</subfield><subfield code="q">(pbk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780691615622</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)885020232</subfield><subfield code="z">(OCoLC)889247584</subfield><subfield code="z">(OCoLC)950196828</subfield><subfield code="z">(OCoLC)992842581</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">22573/ctt735w3n</subfield><subfield code="b">JSTOR</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA252.3</subfield><subfield code="b">.C67 1981eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">002040</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT002050</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512/.55</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Conn, Jack F.,</subfield><subfield code="d">1952-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjvYRQCMx8kwvK3Ttt6Frq</subfield><subfield code="0">http://id.loc.gov/authorities/names/n79133577</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Non-abelian minimal closed ideals of transitive Lie algebras /</subfield><subfield code="c">by Jack F. Conn.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Princeton, N.J. :</subfield><subfield code="b">Princeton University Press,</subfield><subfield code="c">©1981.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Mathematical notes ;</subfield><subfield code="v">25</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Preliminaries -- Derivations of transitive and simple Lie algebras -- Simple algebras with parameters -- Closed ideals of transitive Lie algebras -- Minimal closed ideals of complex type.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The purpose of this book is to provide a self-contained account, accessible to the non-specialist, of algebra necessary for the solution of the integrability problem for transitive pseudogroup structures. Originally published in 1981. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Lie algebras.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85076782</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Ideals (Algebra)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85064134</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Pseudogroups.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85108272</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Algèbres de Lie.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Idéaux (Algèbre)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Pseudogroupes (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Algebra</subfield><subfield code="x">Intermediate.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Algebra</subfield><subfield code="x">Linear.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ideals (Algebra)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lie algebras</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Pseudogroups</subfield><subfield code="2">fast</subfield></datafield><datafield tag="655" ind1=" " ind2="0"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Conn, Jack F., 1952-</subfield><subfield code="t">Non-abelian minimal closed ideals of transitive Lie algebras.</subfield><subfield code="d">Princeton, N.J. : Princeton University Press, ©1981</subfield><subfield code="z">1306988985</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Mathematical notes (Princeton University Press) ;</subfield><subfield code="v">25.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42032553</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-862</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=791902</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-863</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=791902</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">cloudLibrary</subfield><subfield code="b">CLDL</subfield><subfield code="n">9781400853656</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL3030403</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10897401</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">791902</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis28704553</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">11996176</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-862</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
genre | Electronic books. |
genre_facet | Electronic books. |
id | ZDB-4-EBA-ocn885020232 |
illustrated | Not Illustrated |
indexdate | 2025-04-11T08:42:08Z |
institution | BVB |
isbn | 9781400853656 1400853656 9781306988988 1306988985 |
language | English |
oclc_num | 885020232 |
open_access_boolean | |
owner | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
owner_facet | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
physical | 1 online resource |
psigel | ZDB-4-EBA FWS_PDA_EBA ZDB-4-EBA |
publishDate | 1981 |
publishDateSearch | 1981 |
publishDateSort | 1981 |
publisher | Princeton University Press, |
record_format | marc |
series | Mathematical notes (Princeton University Press) ; |
series2 | Mathematical notes ; |
spelling | Conn, Jack F., 1952- https://id.oclc.org/worldcat/entity/E39PCjvYRQCMx8kwvK3Ttt6Frq http://id.loc.gov/authorities/names/n79133577 Non-abelian minimal closed ideals of transitive Lie algebras / by Jack F. Conn. Princeton, N.J. : Princeton University Press, ©1981. 1 online resource text txt rdacontent computer c rdamedia online resource cr rdacarrier Mathematical notes ; 25 Preliminaries -- Derivations of transitive and simple Lie algebras -- Simple algebras with parameters -- Closed ideals of transitive Lie algebras -- Minimal closed ideals of complex type. Includes bibliographical references. Print version record. The purpose of this book is to provide a self-contained account, accessible to the non-specialist, of algebra necessary for the solution of the integrability problem for transitive pseudogroup structures. Originally published in 1981. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905. Lie algebras. http://id.loc.gov/authorities/subjects/sh85076782 Ideals (Algebra) http://id.loc.gov/authorities/subjects/sh85064134 Pseudogroups. http://id.loc.gov/authorities/subjects/sh85108272 Algèbres de Lie. Idéaux (Algèbre) Pseudogroupes (Mathématiques) MATHEMATICS Algebra Intermediate. bisacsh MATHEMATICS Algebra Linear. bisacsh Ideals (Algebra) fast Lie algebras fast Pseudogroups fast Electronic books. Print version: Conn, Jack F., 1952- Non-abelian minimal closed ideals of transitive Lie algebras. Princeton, N.J. : Princeton University Press, ©1981 1306988985 Mathematical notes (Princeton University Press) ; 25. http://id.loc.gov/authorities/names/n42032553 |
spellingShingle | Conn, Jack F., 1952- Non-abelian minimal closed ideals of transitive Lie algebras / Mathematical notes (Princeton University Press) ; Preliminaries -- Derivations of transitive and simple Lie algebras -- Simple algebras with parameters -- Closed ideals of transitive Lie algebras -- Minimal closed ideals of complex type. Lie algebras. http://id.loc.gov/authorities/subjects/sh85076782 Ideals (Algebra) http://id.loc.gov/authorities/subjects/sh85064134 Pseudogroups. http://id.loc.gov/authorities/subjects/sh85108272 Algèbres de Lie. Idéaux (Algèbre) Pseudogroupes (Mathématiques) MATHEMATICS Algebra Intermediate. bisacsh MATHEMATICS Algebra Linear. bisacsh Ideals (Algebra) fast Lie algebras fast Pseudogroups fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85076782 http://id.loc.gov/authorities/subjects/sh85064134 http://id.loc.gov/authorities/subjects/sh85108272 |
title | Non-abelian minimal closed ideals of transitive Lie algebras / |
title_auth | Non-abelian minimal closed ideals of transitive Lie algebras / |
title_exact_search | Non-abelian minimal closed ideals of transitive Lie algebras / |
title_full | Non-abelian minimal closed ideals of transitive Lie algebras / by Jack F. Conn. |
title_fullStr | Non-abelian minimal closed ideals of transitive Lie algebras / by Jack F. Conn. |
title_full_unstemmed | Non-abelian minimal closed ideals of transitive Lie algebras / by Jack F. Conn. |
title_short | Non-abelian minimal closed ideals of transitive Lie algebras / |
title_sort | non abelian minimal closed ideals of transitive lie algebras |
topic | Lie algebras. http://id.loc.gov/authorities/subjects/sh85076782 Ideals (Algebra) http://id.loc.gov/authorities/subjects/sh85064134 Pseudogroups. http://id.loc.gov/authorities/subjects/sh85108272 Algèbres de Lie. Idéaux (Algèbre) Pseudogroupes (Mathématiques) MATHEMATICS Algebra Intermediate. bisacsh MATHEMATICS Algebra Linear. bisacsh Ideals (Algebra) fast Lie algebras fast Pseudogroups fast |
topic_facet | Lie algebras. Ideals (Algebra) Pseudogroups. Algèbres de Lie. Idéaux (Algèbre) Pseudogroupes (Mathématiques) MATHEMATICS Algebra Intermediate. MATHEMATICS Algebra Linear. Lie algebras Pseudogroups Electronic books. |
work_keys_str_mv | AT connjackf nonabelianminimalclosedidealsoftransitiveliealgebras |