Non-abelian minimal closed ideals of transitive Lie algebras /:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, N.J. :
Princeton University Press,
©1981.
|
Schriftenreihe: | Mathematical notes (Princeton University Press) ;
25. |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | 1 online resource |
Bibliographie: | Includes bibliographical references. |
ISBN: | 9781400853656 1400853656 9781306988988 1306988985 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn885020232 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 140801s1981 nju ob 001 0 eng d | ||
040 | |a IDEBK |b eng |e pn |c IDEBK |d N$T |d E7B |d JSTOR |d OCLCF |d OCLCQ |d YDXCP |d DEBSZ |d EBLCP |d OCLCQ |d UIU |d AGLDB |d OCLCQ |d JBG |d IOG |d EZ9 |d STF |d VTS |d OCLCQ |d LVT |d DKC |d OCLCQ |d M8D |d OCLCQ |d AJS |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ | ||
019 | |a 889247584 |a 950196828 |a 992842581 | ||
020 | |a 9781400853656 |q (electronic bk.) | ||
020 | |a 1400853656 |q (electronic bk.) | ||
020 | |a 9781306988988 |q (electronic bk.) | ||
020 | |a 1306988985 |q (electronic bk.) | ||
020 | |z 0691082510 |q (pbk.) | ||
020 | |z 9780691615622 | ||
035 | |a (OCoLC)885020232 |z (OCoLC)889247584 |z (OCoLC)950196828 |z (OCoLC)992842581 | ||
037 | |a 22573/ctt735w3n |b JSTOR | ||
050 | 4 | |a QA252.3 |b .C67 1981eb | |
072 | 7 | |a MAT |x 002040 |2 bisacsh | |
072 | 7 | |a MAT002050 |2 bisacsh | |
082 | 7 | |a 512/.55 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Conn, Jack F., |d 1952- |1 https://id.oclc.org/worldcat/entity/E39PCjvYRQCMx8kwvK3Ttt6Frq |0 http://id.loc.gov/authorities/names/n79133577 | |
245 | 1 | 0 | |a Non-abelian minimal closed ideals of transitive Lie algebras / |c by Jack F. Conn. |
260 | |a Princeton, N.J. : |b Princeton University Press, |c ©1981. | ||
300 | |a 1 online resource | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Mathematical notes ; |v 25 | |
505 | 0 | |a Preliminaries -- Derivations of transitive and simple Lie algebras -- Simple algebras with parameters -- Closed ideals of transitive Lie algebras -- Minimal closed ideals of complex type. | |
504 | |a Includes bibliographical references. | ||
588 | 0 | |a Print version record. | |
650 | 0 | |a Lie algebras. |0 http://id.loc.gov/authorities/subjects/sh85076782 | |
650 | 0 | |a Ideals (Algebra) |0 http://id.loc.gov/authorities/subjects/sh85064134 | |
650 | 0 | |a Pseudogroups. |0 http://id.loc.gov/authorities/subjects/sh85108272 | |
650 | 6 | |a Algèbres de Lie. | |
650 | 6 | |a Idéaux (Algèbre) | |
650 | 6 | |a Pseudogroupes (Mathématiques) | |
650 | 7 | |a MATHEMATICS |x Algebra |x Intermediate. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Algebra |x Linear. |2 bisacsh | |
650 | 7 | |a Ideals (Algebra) |2 fast | |
650 | 7 | |a Lie algebras |2 fast | |
650 | 7 | |a Pseudogroups |2 fast | |
776 | 0 | 8 | |i Print version: |a Conn, Jack F., 1952- |t Non-abelian minimal closed ideals of transitive Lie algebras. |d Princeton, N.J. : Princeton University Press, ©1981 |z 1306988985 |
830 | 0 | |a Mathematical notes (Princeton University Press) ; |v 25. |0 http://id.loc.gov/authorities/names/n42032553 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=791902 |3 Volltext |
938 | |a ProQuest Ebook Central |b EBLB |n EBL3030403 | ||
938 | |a ebrary |b EBRY |n ebr10897401 | ||
938 | |a EBSCOhost |b EBSC |n 791902 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis28704553 | ||
938 | |a YBP Library Services |b YANK |n 11996176 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn885020232 |
---|---|
_version_ | 1816882280919990272 |
adam_text | |
any_adam_object | |
author | Conn, Jack F., 1952- |
author_GND | http://id.loc.gov/authorities/names/n79133577 |
author_facet | Conn, Jack F., 1952- |
author_role | |
author_sort | Conn, Jack F., 1952- |
author_variant | j f c jf jfc |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA252 |
callnumber-raw | QA252.3 .C67 1981eb |
callnumber-search | QA252.3 .C67 1981eb |
callnumber-sort | QA 3252.3 C67 41981EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Preliminaries -- Derivations of transitive and simple Lie algebras -- Simple algebras with parameters -- Closed ideals of transitive Lie algebras -- Minimal closed ideals of complex type. |
ctrlnum | (OCoLC)885020232 |
dewey-full | 512/.55 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.55 |
dewey-search | 512/.55 |
dewey-sort | 3512 255 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03108cam a2200649 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn885020232</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">140801s1981 nju ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">IDEBK</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">IDEBK</subfield><subfield code="d">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">JSTOR</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDXCP</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">EBLCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UIU</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">JBG</subfield><subfield code="d">IOG</subfield><subfield code="d">EZ9</subfield><subfield code="d">STF</subfield><subfield code="d">VTS</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LVT</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">889247584</subfield><subfield code="a">950196828</subfield><subfield code="a">992842581</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400853656</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1400853656</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781306988988</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1306988985</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0691082510</subfield><subfield code="q">(pbk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780691615622</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)885020232</subfield><subfield code="z">(OCoLC)889247584</subfield><subfield code="z">(OCoLC)950196828</subfield><subfield code="z">(OCoLC)992842581</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">22573/ctt735w3n</subfield><subfield code="b">JSTOR</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA252.3</subfield><subfield code="b">.C67 1981eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">002040</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT002050</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512/.55</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Conn, Jack F.,</subfield><subfield code="d">1952-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjvYRQCMx8kwvK3Ttt6Frq</subfield><subfield code="0">http://id.loc.gov/authorities/names/n79133577</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Non-abelian minimal closed ideals of transitive Lie algebras /</subfield><subfield code="c">by Jack F. Conn.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Princeton, N.J. :</subfield><subfield code="b">Princeton University Press,</subfield><subfield code="c">©1981.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Mathematical notes ;</subfield><subfield code="v">25</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Preliminaries -- Derivations of transitive and simple Lie algebras -- Simple algebras with parameters -- Closed ideals of transitive Lie algebras -- Minimal closed ideals of complex type.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Lie algebras.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85076782</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Ideals (Algebra)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85064134</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Pseudogroups.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85108272</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Algèbres de Lie.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Idéaux (Algèbre)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Pseudogroupes (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Algebra</subfield><subfield code="x">Intermediate.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Algebra</subfield><subfield code="x">Linear.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ideals (Algebra)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lie algebras</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Pseudogroups</subfield><subfield code="2">fast</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Conn, Jack F., 1952-</subfield><subfield code="t">Non-abelian minimal closed ideals of transitive Lie algebras.</subfield><subfield code="d">Princeton, N.J. : Princeton University Press, ©1981</subfield><subfield code="z">1306988985</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Mathematical notes (Princeton University Press) ;</subfield><subfield code="v">25.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42032553</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=791902</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL3030403</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10897401</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">791902</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis28704553</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">11996176</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn885020232 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:26:07Z |
institution | BVB |
isbn | 9781400853656 1400853656 9781306988988 1306988985 |
language | English |
oclc_num | 885020232 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource |
psigel | ZDB-4-EBA |
publishDate | 1981 |
publishDateSearch | 1981 |
publishDateSort | 1981 |
publisher | Princeton University Press, |
record_format | marc |
series | Mathematical notes (Princeton University Press) ; |
series2 | Mathematical notes ; |
spelling | Conn, Jack F., 1952- https://id.oclc.org/worldcat/entity/E39PCjvYRQCMx8kwvK3Ttt6Frq http://id.loc.gov/authorities/names/n79133577 Non-abelian minimal closed ideals of transitive Lie algebras / by Jack F. Conn. Princeton, N.J. : Princeton University Press, ©1981. 1 online resource text txt rdacontent computer c rdamedia online resource cr rdacarrier Mathematical notes ; 25 Preliminaries -- Derivations of transitive and simple Lie algebras -- Simple algebras with parameters -- Closed ideals of transitive Lie algebras -- Minimal closed ideals of complex type. Includes bibliographical references. Print version record. Lie algebras. http://id.loc.gov/authorities/subjects/sh85076782 Ideals (Algebra) http://id.loc.gov/authorities/subjects/sh85064134 Pseudogroups. http://id.loc.gov/authorities/subjects/sh85108272 Algèbres de Lie. Idéaux (Algèbre) Pseudogroupes (Mathématiques) MATHEMATICS Algebra Intermediate. bisacsh MATHEMATICS Algebra Linear. bisacsh Ideals (Algebra) fast Lie algebras fast Pseudogroups fast Print version: Conn, Jack F., 1952- Non-abelian minimal closed ideals of transitive Lie algebras. Princeton, N.J. : Princeton University Press, ©1981 1306988985 Mathematical notes (Princeton University Press) ; 25. http://id.loc.gov/authorities/names/n42032553 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=791902 Volltext |
spellingShingle | Conn, Jack F., 1952- Non-abelian minimal closed ideals of transitive Lie algebras / Mathematical notes (Princeton University Press) ; Preliminaries -- Derivations of transitive and simple Lie algebras -- Simple algebras with parameters -- Closed ideals of transitive Lie algebras -- Minimal closed ideals of complex type. Lie algebras. http://id.loc.gov/authorities/subjects/sh85076782 Ideals (Algebra) http://id.loc.gov/authorities/subjects/sh85064134 Pseudogroups. http://id.loc.gov/authorities/subjects/sh85108272 Algèbres de Lie. Idéaux (Algèbre) Pseudogroupes (Mathématiques) MATHEMATICS Algebra Intermediate. bisacsh MATHEMATICS Algebra Linear. bisacsh Ideals (Algebra) fast Lie algebras fast Pseudogroups fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85076782 http://id.loc.gov/authorities/subjects/sh85064134 http://id.loc.gov/authorities/subjects/sh85108272 |
title | Non-abelian minimal closed ideals of transitive Lie algebras / |
title_auth | Non-abelian minimal closed ideals of transitive Lie algebras / |
title_exact_search | Non-abelian minimal closed ideals of transitive Lie algebras / |
title_full | Non-abelian minimal closed ideals of transitive Lie algebras / by Jack F. Conn. |
title_fullStr | Non-abelian minimal closed ideals of transitive Lie algebras / by Jack F. Conn. |
title_full_unstemmed | Non-abelian minimal closed ideals of transitive Lie algebras / by Jack F. Conn. |
title_short | Non-abelian minimal closed ideals of transitive Lie algebras / |
title_sort | non abelian minimal closed ideals of transitive lie algebras |
topic | Lie algebras. http://id.loc.gov/authorities/subjects/sh85076782 Ideals (Algebra) http://id.loc.gov/authorities/subjects/sh85064134 Pseudogroups. http://id.loc.gov/authorities/subjects/sh85108272 Algèbres de Lie. Idéaux (Algèbre) Pseudogroupes (Mathématiques) MATHEMATICS Algebra Intermediate. bisacsh MATHEMATICS Algebra Linear. bisacsh Ideals (Algebra) fast Lie algebras fast Pseudogroups fast |
topic_facet | Lie algebras. Ideals (Algebra) Pseudogroups. Algèbres de Lie. Idéaux (Algèbre) Pseudogroupes (Mathématiques) MATHEMATICS Algebra Intermediate. MATHEMATICS Algebra Linear. Lie algebras Pseudogroups |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=791902 |
work_keys_str_mv | AT connjackf nonabelianminimalclosedidealsoftransitiveliealgebras |