The Geometry and Cohomology of Some Simple Shimura Varieties. (AM-151).:
This book aims first to prove the local Langlands conjecture for GLn over a p-adic field and, second, to identify the action of the decomposition group at a prime of bad reduction on the l-adic cohomology of the ""simple"" Shimura varieties. These two problems go hand in hand. Th...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton :
Princeton University Press,
2001.
|
Schriftenreihe: | Annals of mathematics studies.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This book aims first to prove the local Langlands conjecture for GLn over a p-adic field and, second, to identify the action of the decomposition group at a prime of bad reduction on the l-adic cohomology of the ""simple"" Shimura varieties. These two problems go hand in hand. The results represent a major advance in algebraic number theory, finally proving the conjecture first proposed in Langlands's 1969 Washington lecture as a non-abelian generalization of local class field theory. The local Langlands conjecture for GLn(K), where K is a p-adic field, asserts. |
Beschreibung: | 1 online resource (288 pages) |
ISBN: | 9781400837205 1400837200 0691090920 9780691090924 |
Internformat
MARC
LEADER | 00000cam a2200000Mu 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn884646577 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 140726s2001 nju o 000 0 eng d | ||
040 | |a EBLCP |b eng |e pn |c EBLCP |d OCLCO |d N$T |d OCLCQ |d DEBSZ |d OCLCF |d JSTOR |d YDXCP |d RBN |d OCLCQ |d MOZ |d COO |d DEBBG |d OCLCQ |d UIU |d JBG |d ZCU |d XFH |d MERUC |d OCLCQ |d IOG |d DEGRU |d HEBIS |d EZ9 |d OCLCQ |d VTS |d ICG |d OCLCQ |d LVT |d STF |d DKC |d OCLCQ |d M8D |d OCLCQ |d HS0 |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d NUI |d UEJ |d OCLCO |d OCLCQ | ||
019 | |a 939503961 |a 979954342 |a 990596752 |a 992927300 |a 994397714 |a 1162428572 | ||
020 | |a 9781400837205 |q (electronic bk.) | ||
020 | |a 1400837200 |q (electronic bk.) | ||
020 | |a 0691090920 | ||
020 | |a 9780691090924 | ||
024 | 7 | |a 10.1515/9781400837205 |2 doi | |
035 | |a (OCoLC)884646577 |z (OCoLC)939503961 |z (OCoLC)979954342 |z (OCoLC)990596752 |z (OCoLC)992927300 |z (OCoLC)994397714 |z (OCoLC)1162428572 | ||
037 | |a 22573/ctt9v6sg2 |b JSTOR | ||
050 | 4 | |a QA242.5 | |
072 | 7 | |a MAT |x 012000 |2 bisacsh | |
072 | 7 | |a MAT022000 |2 bisacsh | |
082 | 7 | |a 516.3/5 |2 21 | |
049 | |a MAIN | ||
100 | 1 | |a Harris, Michael, |d 1954- |1 https://id.oclc.org/worldcat/entity/E39PBJxMpdBjtM3pgFtdK3q84q |0 http://id.loc.gov/authorities/names/no2001098112 | |
245 | 1 | 4 | |a The Geometry and Cohomology of Some Simple Shimura Varieties. (AM-151). |
260 | |a Princeton : |b Princeton University Press, |c 2001. | ||
300 | |a 1 online resource (288 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a text file |b PDF |2 rda | ||
490 | 1 | |a Annals of Mathematics Studies ; |v v. 151 | |
588 | 0 | |a Print version record. | |
505 | 0 | |a Cover; Title; Copyright; Dedication; Contents; Introduction; Acknowledgements; I Preliminaries; I.1 General notation; I.2 Generalities on representations; I.3 Admissible representations of GLg; I.4 Base change; I.5 Vanishing cycles and formal schemes; I.6 Involutions and unitary groups; I.7 Notation and running assumptions; II Barsotti-Tate groups; II. 1 Barsotti-Tate groups; II. 2 Drinfeld level structures; III Some simple Shimura varieties; III. 1 Characteristic zero theory; III. 2 Cohomology; III. 3 The trace formula; III. 4 Integral models; IV Igusa varieties. | |
505 | 8 | |a IV. 1 Igusa varieties of the first kindIV. 2 Igusa varieties of the second kind; V Counting Points; V.1 An application of Fujiwara's trace formula; V.2 Honda-Tate theory; V.3 Polarisations I; V.4 Polarisations II; V.5 Some local harmonic analysis; V.6 The main theorem; VI Automorphic forms; VI. 1 The Jacquet-Langlands correspondence; VI. 2 Clozel's base change; VII Applications; VII. 1 Galois representations; VII. 2 The local Langlands conjecture; Appendix. A result on vanishing cycles; Bibliography; Index. | |
520 | |a This book aims first to prove the local Langlands conjecture for GLn over a p-adic field and, second, to identify the action of the decomposition group at a prime of bad reduction on the l-adic cohomology of the ""simple"" Shimura varieties. These two problems go hand in hand. The results represent a major advance in algebraic number theory, finally proving the conjecture first proposed in Langlands's 1969 Washington lecture as a non-abelian generalization of local class field theory. The local Langlands conjecture for GLn(K), where K is a p-adic field, asserts. | ||
546 | |a In English. | ||
650 | 0 | |a Shimura varieties. |0 http://id.loc.gov/authorities/subjects/sh93007485 | |
650 | 6 | |a Variétés de Shimura. | |
650 | 7 | |a MATHEMATICS |x Geometry |x General. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Number Theory. |2 bisacsh | |
650 | 7 | |a Shimura varieties |2 fast | |
653 | |a Abelian variety. | ||
653 | |a Absolute value. | ||
653 | |a Algebraic group. | ||
653 | |a Algebraically closed field. | ||
653 | |a Artinian. | ||
653 | |a Automorphic form. | ||
653 | |a Base change. | ||
653 | |a Bijection. | ||
653 | |a Canonical map. | ||
653 | |a Codimension. | ||
653 | |a Coefficient. | ||
653 | |a Cohomology. | ||
653 | |a Compactification (mathematics). | ||
653 | |a Conjecture. | ||
653 | |a Corollary. | ||
653 | |a Dimension (vector space). | ||
653 | |a Dimension. | ||
653 | |a Direct limit. | ||
653 | |a Division algebra. | ||
653 | |a Eigenvalues and eigenvectors. | ||
653 | |a Elliptic curve. | ||
653 | |a Embedding. | ||
653 | |a Equivalence class. | ||
653 | |a Equivalence of categories. | ||
653 | |a Existence theorem. | ||
653 | |a Field of fractions. | ||
653 | |a Finite field. | ||
653 | |a Function field. | ||
653 | |a Functor. | ||
653 | |a Galois cohomology. | ||
653 | |a Galois group. | ||
653 | |a Generic point. | ||
653 | |a Geometry. | ||
653 | |a Hasse invariant. | ||
653 | |a Infinitesimal character. | ||
653 | |a Integer. | ||
653 | |a Inverse system. | ||
653 | |a Isomorphism class. | ||
653 | |a Lie algebra. | ||
653 | |a Local class field theory. | ||
653 | |a Maximal torus. | ||
653 | |a Modular curve. | ||
653 | |a Moduli space. | ||
653 | |a Monic polynomial. | ||
653 | |a P-adic number. | ||
653 | |a Prime number. | ||
653 | |a Profinite group. | ||
653 | |a Residue field. | ||
653 | |a Ring of integers. | ||
653 | |a Separable extension. | ||
653 | |a Sheaf (mathematics). | ||
653 | |a Shimura variety. | ||
653 | |a Simple group. | ||
653 | |a Special case. | ||
653 | |a Spectral sequence. | ||
653 | |a Square root. | ||
653 | |a Subset. | ||
653 | |a Tate module. | ||
653 | |a Theorem. | ||
653 | |a Transcendence degree. | ||
653 | |a Unitary group. | ||
653 | |a Valuative criterion. | ||
653 | |a Variable (mathematics). | ||
653 | |a Vector space. | ||
653 | |a Weil group. | ||
653 | |a Weil pairing. | ||
653 | |a Zariski topology. | ||
700 | 1 | |a Taylor, R. L. |q (Richard Lawrence), |d 1962- |1 https://id.oclc.org/worldcat/entity/E39PCjGHJT8qWbbGjtbDqPmfdP |0 http://id.loc.gov/authorities/names/nb2012018027 | |
776 | 0 | 8 | |i Print version: |a Harris, Michael. |t Geometry and Cohomology of Some Simple Shimura Varieties. (AM-151). |d Princeton : Princeton University Press, ©2001 |z 9780691090924 |
830 | 0 | |a Annals of mathematics studies. |0 http://id.loc.gov/authorities/names/n42002129 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=816474 |3 Volltext |
938 | |a De Gruyter |b DEGR |n 9781400837205 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL1744818 | ||
938 | |a EBSCOhost |b EBSC |n 816474 | ||
938 | |a YBP Library Services |b YANK |n 11999710 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn884646577 |
---|---|
_version_ | 1816882280451276801 |
adam_text | |
any_adam_object | |
author | Harris, Michael, 1954- |
author2 | Taylor, R. L. (Richard Lawrence), 1962- |
author2_role | |
author2_variant | r l t rl rlt |
author_GND | http://id.loc.gov/authorities/names/no2001098112 http://id.loc.gov/authorities/names/nb2012018027 |
author_facet | Harris, Michael, 1954- Taylor, R. L. (Richard Lawrence), 1962- |
author_role | |
author_sort | Harris, Michael, 1954- |
author_variant | m h mh |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA242 |
callnumber-raw | QA242.5 |
callnumber-search | QA242.5 |
callnumber-sort | QA 3242.5 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Cover; Title; Copyright; Dedication; Contents; Introduction; Acknowledgements; I Preliminaries; I.1 General notation; I.2 Generalities on representations; I.3 Admissible representations of GLg; I.4 Base change; I.5 Vanishing cycles and formal schemes; I.6 Involutions and unitary groups; I.7 Notation and running assumptions; II Barsotti-Tate groups; II. 1 Barsotti-Tate groups; II. 2 Drinfeld level structures; III Some simple Shimura varieties; III. 1 Characteristic zero theory; III. 2 Cohomology; III. 3 The trace formula; III. 4 Integral models; IV Igusa varieties. IV. 1 Igusa varieties of the first kindIV. 2 Igusa varieties of the second kind; V Counting Points; V.1 An application of Fujiwara's trace formula; V.2 Honda-Tate theory; V.3 Polarisations I; V.4 Polarisations II; V.5 Some local harmonic analysis; V.6 The main theorem; VI Automorphic forms; VI. 1 The Jacquet-Langlands correspondence; VI. 2 Clozel's base change; VII Applications; VII. 1 Galois representations; VII. 2 The local Langlands conjecture; Appendix. A result on vanishing cycles; Bibliography; Index. |
ctrlnum | (OCoLC)884646577 |
dewey-full | 516.3/5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.3/5 |
dewey-search | 516.3/5 |
dewey-sort | 3516.3 15 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06665cam a2201405Mu 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn884646577</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">140726s2001 nju o 000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">EBLCP</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">EBLCP</subfield><subfield code="d">OCLCO</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">JSTOR</subfield><subfield code="d">YDXCP</subfield><subfield code="d">RBN</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MOZ</subfield><subfield code="d">COO</subfield><subfield code="d">DEBBG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UIU</subfield><subfield code="d">JBG</subfield><subfield code="d">ZCU</subfield><subfield code="d">XFH</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">IOG</subfield><subfield code="d">DEGRU</subfield><subfield code="d">HEBIS</subfield><subfield code="d">EZ9</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">ICG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LVT</subfield><subfield code="d">STF</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">HS0</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">NUI</subfield><subfield code="d">UEJ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">939503961</subfield><subfield code="a">979954342</subfield><subfield code="a">990596752</subfield><subfield code="a">992927300</subfield><subfield code="a">994397714</subfield><subfield code="a">1162428572</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400837205</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1400837200</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0691090920</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691090924</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781400837205</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)884646577</subfield><subfield code="z">(OCoLC)939503961</subfield><subfield code="z">(OCoLC)979954342</subfield><subfield code="z">(OCoLC)990596752</subfield><subfield code="z">(OCoLC)992927300</subfield><subfield code="z">(OCoLC)994397714</subfield><subfield code="z">(OCoLC)1162428572</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">22573/ctt9v6sg2</subfield><subfield code="b">JSTOR</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA242.5</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">012000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT022000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">516.3/5</subfield><subfield code="2">21</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Harris, Michael,</subfield><subfield code="d">1954-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJxMpdBjtM3pgFtdK3q84q</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2001098112</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The Geometry and Cohomology of Some Simple Shimura Varieties. (AM-151).</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Princeton :</subfield><subfield code="b">Princeton University Press,</subfield><subfield code="c">2001.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (288 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">text file</subfield><subfield code="b">PDF</subfield><subfield code="2">rda</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Annals of Mathematics Studies ;</subfield><subfield code="v">v. 151</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Title; Copyright; Dedication; Contents; Introduction; Acknowledgements; I Preliminaries; I.1 General notation; I.2 Generalities on representations; I.3 Admissible representations of GLg; I.4 Base change; I.5 Vanishing cycles and formal schemes; I.6 Involutions and unitary groups; I.7 Notation and running assumptions; II Barsotti-Tate groups; II. 1 Barsotti-Tate groups; II. 2 Drinfeld level structures; III Some simple Shimura varieties; III. 1 Characteristic zero theory; III. 2 Cohomology; III. 3 The trace formula; III. 4 Integral models; IV Igusa varieties.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">IV. 1 Igusa varieties of the first kindIV. 2 Igusa varieties of the second kind; V Counting Points; V.1 An application of Fujiwara's trace formula; V.2 Honda-Tate theory; V.3 Polarisations I; V.4 Polarisations II; V.5 Some local harmonic analysis; V.6 The main theorem; VI Automorphic forms; VI. 1 The Jacquet-Langlands correspondence; VI. 2 Clozel's base change; VII Applications; VII. 1 Galois representations; VII. 2 The local Langlands conjecture; Appendix. A result on vanishing cycles; Bibliography; Index.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book aims first to prove the local Langlands conjecture for GLn over a p-adic field and, second, to identify the action of the decomposition group at a prime of bad reduction on the l-adic cohomology of the ""simple"" Shimura varieties. These two problems go hand in hand. The results represent a major advance in algebraic number theory, finally proving the conjecture first proposed in Langlands's 1969 Washington lecture as a non-abelian generalization of local class field theory. The local Langlands conjecture for GLn(K), where K is a p-adic field, asserts.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Shimura varieties.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh93007485</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Variétés de Shimura.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Geometry</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Number Theory.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Shimura varieties</subfield><subfield code="2">fast</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Abelian variety.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Absolute value.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Algebraic group.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Algebraically closed field.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Artinian.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Automorphic form.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Base change.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Bijection.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Canonical map.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Codimension.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Coefficient.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Cohomology.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Compactification (mathematics).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Conjecture.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Corollary.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Dimension (vector space).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Dimension.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Direct limit.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Division algebra.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Eigenvalues and eigenvectors.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Elliptic curve.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Embedding.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Equivalence class.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Equivalence of categories.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Existence theorem.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Field of fractions.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Finite field.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Function field.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Functor.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Galois cohomology.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Galois group.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Generic point.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Geometry.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Hasse invariant.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Infinitesimal character.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Integer.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Inverse system.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Isomorphism class.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Lie algebra.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Local class field theory.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Maximal torus.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Modular curve.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Moduli space.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Monic polynomial.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">P-adic number.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Prime number.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Profinite group.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Residue field.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Ring of integers.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Separable extension.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Sheaf (mathematics).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Shimura variety.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Simple group.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Special case.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Spectral sequence.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Square root.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Subset.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Tate module.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Theorem.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Transcendence degree.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Unitary group.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Valuative criterion.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Variable (mathematics).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Vector space.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Weil group.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Weil pairing.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Zariski topology.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Taylor, R. L.</subfield><subfield code="q">(Richard Lawrence),</subfield><subfield code="d">1962-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjGHJT8qWbbGjtbDqPmfdP</subfield><subfield code="0">http://id.loc.gov/authorities/names/nb2012018027</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Harris, Michael.</subfield><subfield code="t">Geometry and Cohomology of Some Simple Shimura Varieties. (AM-151).</subfield><subfield code="d">Princeton : Princeton University Press, ©2001</subfield><subfield code="z">9780691090924</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Annals of mathematics studies.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42002129</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=816474</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">De Gruyter</subfield><subfield code="b">DEGR</subfield><subfield code="n">9781400837205</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL1744818</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">816474</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">11999710</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn884646577 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:26:06Z |
institution | BVB |
isbn | 9781400837205 1400837200 0691090920 9780691090924 |
language | English |
oclc_num | 884646577 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (288 pages) |
psigel | ZDB-4-EBA |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Princeton University Press, |
record_format | marc |
series | Annals of mathematics studies. |
series2 | Annals of Mathematics Studies ; |
spelling | Harris, Michael, 1954- https://id.oclc.org/worldcat/entity/E39PBJxMpdBjtM3pgFtdK3q84q http://id.loc.gov/authorities/names/no2001098112 The Geometry and Cohomology of Some Simple Shimura Varieties. (AM-151). Princeton : Princeton University Press, 2001. 1 online resource (288 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier text file PDF rda Annals of Mathematics Studies ; v. 151 Print version record. Cover; Title; Copyright; Dedication; Contents; Introduction; Acknowledgements; I Preliminaries; I.1 General notation; I.2 Generalities on representations; I.3 Admissible representations of GLg; I.4 Base change; I.5 Vanishing cycles and formal schemes; I.6 Involutions and unitary groups; I.7 Notation and running assumptions; II Barsotti-Tate groups; II. 1 Barsotti-Tate groups; II. 2 Drinfeld level structures; III Some simple Shimura varieties; III. 1 Characteristic zero theory; III. 2 Cohomology; III. 3 The trace formula; III. 4 Integral models; IV Igusa varieties. IV. 1 Igusa varieties of the first kindIV. 2 Igusa varieties of the second kind; V Counting Points; V.1 An application of Fujiwara's trace formula; V.2 Honda-Tate theory; V.3 Polarisations I; V.4 Polarisations II; V.5 Some local harmonic analysis; V.6 The main theorem; VI Automorphic forms; VI. 1 The Jacquet-Langlands correspondence; VI. 2 Clozel's base change; VII Applications; VII. 1 Galois representations; VII. 2 The local Langlands conjecture; Appendix. A result on vanishing cycles; Bibliography; Index. This book aims first to prove the local Langlands conjecture for GLn over a p-adic field and, second, to identify the action of the decomposition group at a prime of bad reduction on the l-adic cohomology of the ""simple"" Shimura varieties. These two problems go hand in hand. The results represent a major advance in algebraic number theory, finally proving the conjecture first proposed in Langlands's 1969 Washington lecture as a non-abelian generalization of local class field theory. The local Langlands conjecture for GLn(K), where K is a p-adic field, asserts. In English. Shimura varieties. http://id.loc.gov/authorities/subjects/sh93007485 Variétés de Shimura. MATHEMATICS Geometry General. bisacsh MATHEMATICS Number Theory. bisacsh Shimura varieties fast Abelian variety. Absolute value. Algebraic group. Algebraically closed field. Artinian. Automorphic form. Base change. Bijection. Canonical map. Codimension. Coefficient. Cohomology. Compactification (mathematics). Conjecture. Corollary. Dimension (vector space). Dimension. Direct limit. Division algebra. Eigenvalues and eigenvectors. Elliptic curve. Embedding. Equivalence class. Equivalence of categories. Existence theorem. Field of fractions. Finite field. Function field. Functor. Galois cohomology. Galois group. Generic point. Geometry. Hasse invariant. Infinitesimal character. Integer. Inverse system. Isomorphism class. Lie algebra. Local class field theory. Maximal torus. Modular curve. Moduli space. Monic polynomial. P-adic number. Prime number. Profinite group. Residue field. Ring of integers. Separable extension. Sheaf (mathematics). Shimura variety. Simple group. Special case. Spectral sequence. Square root. Subset. Tate module. Theorem. Transcendence degree. Unitary group. Valuative criterion. Variable (mathematics). Vector space. Weil group. Weil pairing. Zariski topology. Taylor, R. L. (Richard Lawrence), 1962- https://id.oclc.org/worldcat/entity/E39PCjGHJT8qWbbGjtbDqPmfdP http://id.loc.gov/authorities/names/nb2012018027 Print version: Harris, Michael. Geometry and Cohomology of Some Simple Shimura Varieties. (AM-151). Princeton : Princeton University Press, ©2001 9780691090924 Annals of mathematics studies. http://id.loc.gov/authorities/names/n42002129 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=816474 Volltext |
spellingShingle | Harris, Michael, 1954- The Geometry and Cohomology of Some Simple Shimura Varieties. (AM-151). Annals of mathematics studies. Cover; Title; Copyright; Dedication; Contents; Introduction; Acknowledgements; I Preliminaries; I.1 General notation; I.2 Generalities on representations; I.3 Admissible representations of GLg; I.4 Base change; I.5 Vanishing cycles and formal schemes; I.6 Involutions and unitary groups; I.7 Notation and running assumptions; II Barsotti-Tate groups; II. 1 Barsotti-Tate groups; II. 2 Drinfeld level structures; III Some simple Shimura varieties; III. 1 Characteristic zero theory; III. 2 Cohomology; III. 3 The trace formula; III. 4 Integral models; IV Igusa varieties. IV. 1 Igusa varieties of the first kindIV. 2 Igusa varieties of the second kind; V Counting Points; V.1 An application of Fujiwara's trace formula; V.2 Honda-Tate theory; V.3 Polarisations I; V.4 Polarisations II; V.5 Some local harmonic analysis; V.6 The main theorem; VI Automorphic forms; VI. 1 The Jacquet-Langlands correspondence; VI. 2 Clozel's base change; VII Applications; VII. 1 Galois representations; VII. 2 The local Langlands conjecture; Appendix. A result on vanishing cycles; Bibliography; Index. Shimura varieties. http://id.loc.gov/authorities/subjects/sh93007485 Variétés de Shimura. MATHEMATICS Geometry General. bisacsh MATHEMATICS Number Theory. bisacsh Shimura varieties fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh93007485 |
title | The Geometry and Cohomology of Some Simple Shimura Varieties. (AM-151). |
title_auth | The Geometry and Cohomology of Some Simple Shimura Varieties. (AM-151). |
title_exact_search | The Geometry and Cohomology of Some Simple Shimura Varieties. (AM-151). |
title_full | The Geometry and Cohomology of Some Simple Shimura Varieties. (AM-151). |
title_fullStr | The Geometry and Cohomology of Some Simple Shimura Varieties. (AM-151). |
title_full_unstemmed | The Geometry and Cohomology of Some Simple Shimura Varieties. (AM-151). |
title_short | The Geometry and Cohomology of Some Simple Shimura Varieties. (AM-151). |
title_sort | geometry and cohomology of some simple shimura varieties am 151 |
topic | Shimura varieties. http://id.loc.gov/authorities/subjects/sh93007485 Variétés de Shimura. MATHEMATICS Geometry General. bisacsh MATHEMATICS Number Theory. bisacsh Shimura varieties fast |
topic_facet | Shimura varieties. Variétés de Shimura. MATHEMATICS Geometry General. MATHEMATICS Number Theory. Shimura varieties |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=816474 |
work_keys_str_mv | AT harrismichael thegeometryandcohomologyofsomesimpleshimuravarietiesam151 AT taylorrl thegeometryandcohomologyofsomesimpleshimuravarietiesam151 AT harrismichael geometryandcohomologyofsomesimpleshimuravarietiesam151 AT taylorrl geometryandcohomologyofsomesimpleshimuravarietiesam151 |