Optimizing Hadoop for MapReduce :: learn how to configure your Hadoop cluster to run optimal MapReduce jobs /
This book is an example-based tutorial that deals with Optimizing Hadoop for MapReduce job performance. If you are a Hadoop administrator, developer, MapReduce user, or beginner, this book is the best choice available if you wish to optimize your clusters and applications. Having prior knowledge of...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Birmingham, UK :
Packt Pub.,
2014.
|
Schriftenreihe: | Community experience distilled.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This book is an example-based tutorial that deals with Optimizing Hadoop for MapReduce job performance. If you are a Hadoop administrator, developer, MapReduce user, or beginner, this book is the best choice available if you wish to optimize your clusters and applications. Having prior knowledge of creating MapReduce applications is not necessary, but will help you better understand the concepts and snippets of MapReduce class template code. |
Beschreibung: | Includes index. |
Beschreibung: | 1 online resource (iii, 103 pages) : illustrations |
ISBN: | 9781783285662 1783285664 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn883632323 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 140714s2014 enka o 001 0 eng d | ||
040 | |a N$T |b eng |e rda |e pn |c N$T |d UMI |d E7B |d COO |d DEBBG |d YDXCP |d VT2 |d OCLCQ |d OCLCO |d OCLCF |d OCLCO |d D6H |d AGLDB |d OCLCQ |d OCLCO |d COCUF |d ICA |d CNNOR |d OCLCQ |d OCLCO |d MOR |d PIFAG |d OCLCQ |d OCLCO |d U3W |d REB |d STF |d VTS |d CEF |d NLE |d INT |d UKMGB |d OCLCQ |d WYU |d OCLCO |d G3B |d ICG |d TKN |d OCLCQ |d OCLCO |d UAB |d AU@ |d M8D |d HS0 |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO | ||
016 | 7 | |a 018006551 |2 Uk | |
019 | |a 873843694 |a 878827551 |a 894369302 |a 900287258 | ||
020 | |a 9781783285662 |q (electronic bk.) | ||
020 | |a 1783285664 |q (electronic bk.) | ||
020 | |z 9781783285655 | ||
020 | |z 1783285656 | ||
035 | |a (OCoLC)883632323 |z (OCoLC)873843694 |z (OCoLC)878827551 |z (OCoLC)894369302 |z (OCoLC)900287258 | ||
037 | |a CL0500000403 |b Safari Books Online | ||
050 | 4 | |a QA76.9.D5 |b T36 2014eb | |
072 | 7 | |a COM |x 013000 |2 bisacsh | |
072 | 7 | |a COM |x 014000 |2 bisacsh | |
072 | 7 | |a COM |x 018000 |2 bisacsh | |
072 | 7 | |a COM |x 067000 |2 bisacsh | |
072 | 7 | |a COM |x 032000 |2 bisacsh | |
072 | 7 | |a COM |x 037000 |2 bisacsh | |
072 | 7 | |a COM |x 052000 |2 bisacsh | |
082 | 7 | |a 004/.36 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Tannir, Khaled. | |
245 | 1 | 0 | |a Optimizing Hadoop for MapReduce : |b learn how to configure your Hadoop cluster to run optimal MapReduce jobs / |c Khaled Tannir. |
264 | 1 | |a Birmingham, UK : |b Packt Pub., |c 2014. | |
300 | |a 1 online resource (iii, 103 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Community experience distilled | |
500 | |a Includes index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Cover; Copyright; Credits; About the Author; Acknowledgments; About the Reviewers; www.PacktPub.com; Table of Contents; Preface; Chapter 1: Understanding Hadoop MapReduce; The MapReduce model; Overview of Hadoop MapReduce; Hadoop MapReduce internals; Factors affecting the performance of MapReduce; Summary; Chapter 2: An Overview of the Hadoop Parameters; Investigating the Hadoop parameters; The mapred-site.xml configuration file; The CPU-related parameters; The disk I/O related parameters; The memory-related parameters; The network-related parameters; The hdfs-site.xml configuration file | |
505 | 8 | |a The core-site.xml configuration fileHadoop MapReduce metrics; Performance monitoring tools; Using Chukwa to monitor Hadoop; Using Ganglia to monitor Hadoop; Using Nagios to monitor Hadoop; Using Apache Ambari to monitor Hadoop; Summary; Chapter 3: Detecting System Bottlenecks; Performance tuning; Creating a performance baseline; Identifying resource bottlenecks; Identifying RAM bottlenecks; Identifying CPU bottlenecks; Identifying storage bottlenecks; Identifying network bandwidth bottlenecks; Summary; Chapter 4: Identifying Resource Weaknesses; Identifying cluster weakness | |
505 | 8 | |a Checking the Hadoop cluster node's healthChecking the input data size; Checking massive I/O and network traffic; Checking for insufficient concurrent tasks; Checking for CPU contention; Sizing your Hadoop cluster; Configuring your cluster correctly; Summary; Chapter 5: Enhancement of Map and Reduce Tasks; Enhancing Map tasks; Input data and block size impact; Dealing with small and unsplittable files; Reducing spilled records during the Map phase; Calculating map tasks' throughput; Enhancing Reduce tasks; Calculating reduce task throughput; Improving Reduce execution phase | |
505 | 8 | |a Tuning map and reduce parametersSummary; Chapter 6: Optimizing MapReduce Tasks; Using Combiners; Using compression; Using appropriate Writable types; Reusing types smartly; Optimizing mappers and reducers code; Summary; Chapter 7: Best Practices and Recommendations; Hardware tuning and OS recommendations; Hadoop cluster checklists; The Bios tuning checklist; OS configuration recommendations; Hadoop best practices and recommendations; Deploying Hadoop; Hadoop tuning recommendations; Using a MapReduce template class code; Summary; Index | |
520 | |a This book is an example-based tutorial that deals with Optimizing Hadoop for MapReduce job performance. If you are a Hadoop administrator, developer, MapReduce user, or beginner, this book is the best choice available if you wish to optimize your clusters and applications. Having prior knowledge of creating MapReduce applications is not necessary, but will help you better understand the concepts and snippets of MapReduce class template code. | ||
630 | 0 | 0 | |a Apache Hadoop. |0 http://id.loc.gov/authorities/names/n2013024279 |
630 | 0 | 7 | |a Apache Hadoop |2 fast |
650 | 0 | |a Electronic data processing |x Distributed processing. |0 http://id.loc.gov/authorities/subjects/sh85042293 | |
650 | 0 | |a Cluster analysis |x Data processing. | |
650 | 6 | |a Traitement réparti. | |
650 | 6 | |a Classification automatique (Statistique) |x Informatique. | |
650 | 7 | |a COMPUTERS |x Computer Literacy. |2 bisacsh | |
650 | 7 | |a COMPUTERS |x Computer Science. |2 bisacsh | |
650 | 7 | |a COMPUTERS |x Data Processing. |2 bisacsh | |
650 | 7 | |a COMPUTERS |x Hardware |x General. |2 bisacsh | |
650 | 7 | |a COMPUTERS |x Information Technology. |2 bisacsh | |
650 | 7 | |a COMPUTERS |x Machine Theory. |2 bisacsh | |
650 | 7 | |a COMPUTERS |x Reference. |2 bisacsh | |
650 | 7 | |a Cluster analysis |x Data processing |2 fast | |
650 | 7 | |a Electronic data processing |x Distributed processing |2 fast | |
776 | 0 | 8 | |i Print version: |a Tannir, Khaled. |t Optimizing Hadoop for MapReduce |z 9781783285655 |w (OCoLC)879573172 |
830 | 0 | |a Community experience distilled. |0 http://id.loc.gov/authorities/names/no2011030603 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=707232 |3 Volltext |
938 | |a ebrary |b EBRY |n ebr10842106 | ||
938 | |a EBSCOhost |b EBSC |n 707232 | ||
938 | |a YBP Library Services |b YANK |n 11629330 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn883632323 |
---|---|
_version_ | 1816882278685474816 |
adam_text | |
any_adam_object | |
author | Tannir, Khaled |
author_facet | Tannir, Khaled |
author_role | |
author_sort | Tannir, Khaled |
author_variant | k t kt |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA76 |
callnumber-raw | QA76.9.D5 T36 2014eb |
callnumber-search | QA76.9.D5 T36 2014eb |
callnumber-sort | QA 276.9 D5 T36 42014EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Cover; Copyright; Credits; About the Author; Acknowledgments; About the Reviewers; www.PacktPub.com; Table of Contents; Preface; Chapter 1: Understanding Hadoop MapReduce; The MapReduce model; Overview of Hadoop MapReduce; Hadoop MapReduce internals; Factors affecting the performance of MapReduce; Summary; Chapter 2: An Overview of the Hadoop Parameters; Investigating the Hadoop parameters; The mapred-site.xml configuration file; The CPU-related parameters; The disk I/O related parameters; The memory-related parameters; The network-related parameters; The hdfs-site.xml configuration file The core-site.xml configuration fileHadoop MapReduce metrics; Performance monitoring tools; Using Chukwa to monitor Hadoop; Using Ganglia to monitor Hadoop; Using Nagios to monitor Hadoop; Using Apache Ambari to monitor Hadoop; Summary; Chapter 3: Detecting System Bottlenecks; Performance tuning; Creating a performance baseline; Identifying resource bottlenecks; Identifying RAM bottlenecks; Identifying CPU bottlenecks; Identifying storage bottlenecks; Identifying network bandwidth bottlenecks; Summary; Chapter 4: Identifying Resource Weaknesses; Identifying cluster weakness Checking the Hadoop cluster node's healthChecking the input data size; Checking massive I/O and network traffic; Checking for insufficient concurrent tasks; Checking for CPU contention; Sizing your Hadoop cluster; Configuring your cluster correctly; Summary; Chapter 5: Enhancement of Map and Reduce Tasks; Enhancing Map tasks; Input data and block size impact; Dealing with small and unsplittable files; Reducing spilled records during the Map phase; Calculating map tasks' throughput; Enhancing Reduce tasks; Calculating reduce task throughput; Improving Reduce execution phase Tuning map and reduce parametersSummary; Chapter 6: Optimizing MapReduce Tasks; Using Combiners; Using compression; Using appropriate Writable types; Reusing types smartly; Optimizing mappers and reducers code; Summary; Chapter 7: Best Practices and Recommendations; Hardware tuning and OS recommendations; Hadoop cluster checklists; The Bios tuning checklist; OS configuration recommendations; Hadoop best practices and recommendations; Deploying Hadoop; Hadoop tuning recommendations; Using a MapReduce template class code; Summary; Index |
ctrlnum | (OCoLC)883632323 |
dewey-full | 004/.36 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 004 - Computer science |
dewey-raw | 004/.36 |
dewey-search | 004/.36 |
dewey-sort | 14 236 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06004cam a2200769 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn883632323</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">140714s2014 enka o 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">UMI</subfield><subfield code="d">E7B</subfield><subfield code="d">COO</subfield><subfield code="d">DEBBG</subfield><subfield code="d">YDXCP</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCO</subfield><subfield code="d">D6H</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">COCUF</subfield><subfield code="d">ICA</subfield><subfield code="d">CNNOR</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFAG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">U3W</subfield><subfield code="d">REB</subfield><subfield code="d">STF</subfield><subfield code="d">VTS</subfield><subfield code="d">CEF</subfield><subfield code="d">NLE</subfield><subfield code="d">INT</subfield><subfield code="d">UKMGB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">OCLCO</subfield><subfield code="d">G3B</subfield><subfield code="d">ICG</subfield><subfield code="d">TKN</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">UAB</subfield><subfield code="d">AU@</subfield><subfield code="d">M8D</subfield><subfield code="d">HS0</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">018006551</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">873843694</subfield><subfield code="a">878827551</subfield><subfield code="a">894369302</subfield><subfield code="a">900287258</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781783285662</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1783285664</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781783285655</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1783285656</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)883632323</subfield><subfield code="z">(OCoLC)873843694</subfield><subfield code="z">(OCoLC)878827551</subfield><subfield code="z">(OCoLC)894369302</subfield><subfield code="z">(OCoLC)900287258</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">CL0500000403</subfield><subfield code="b">Safari Books Online</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA76.9.D5</subfield><subfield code="b">T36 2014eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">013000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">014000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">018000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">067000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">032000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">037000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">052000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">004/.36</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tannir, Khaled.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimizing Hadoop for MapReduce :</subfield><subfield code="b">learn how to configure your Hadoop cluster to run optimal MapReduce jobs /</subfield><subfield code="c">Khaled Tannir.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Birmingham, UK :</subfield><subfield code="b">Packt Pub.,</subfield><subfield code="c">2014.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (iii, 103 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Community experience distilled</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Copyright; Credits; About the Author; Acknowledgments; About the Reviewers; www.PacktPub.com; Table of Contents; Preface; Chapter 1: Understanding Hadoop MapReduce; The MapReduce model; Overview of Hadoop MapReduce; Hadoop MapReduce internals; Factors affecting the performance of MapReduce; Summary; Chapter 2: An Overview of the Hadoop Parameters; Investigating the Hadoop parameters; The mapred-site.xml configuration file; The CPU-related parameters; The disk I/O related parameters; The memory-related parameters; The network-related parameters; The hdfs-site.xml configuration file</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">The core-site.xml configuration fileHadoop MapReduce metrics; Performance monitoring tools; Using Chukwa to monitor Hadoop; Using Ganglia to monitor Hadoop; Using Nagios to monitor Hadoop; Using Apache Ambari to monitor Hadoop; Summary; Chapter 3: Detecting System Bottlenecks; Performance tuning; Creating a performance baseline; Identifying resource bottlenecks; Identifying RAM bottlenecks; Identifying CPU bottlenecks; Identifying storage bottlenecks; Identifying network bandwidth bottlenecks; Summary; Chapter 4: Identifying Resource Weaknesses; Identifying cluster weakness</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Checking the Hadoop cluster node's healthChecking the input data size; Checking massive I/O and network traffic; Checking for insufficient concurrent tasks; Checking for CPU contention; Sizing your Hadoop cluster; Configuring your cluster correctly; Summary; Chapter 5: Enhancement of Map and Reduce Tasks; Enhancing Map tasks; Input data and block size impact; Dealing with small and unsplittable files; Reducing spilled records during the Map phase; Calculating map tasks' throughput; Enhancing Reduce tasks; Calculating reduce task throughput; Improving Reduce execution phase</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Tuning map and reduce parametersSummary; Chapter 6: Optimizing MapReduce Tasks; Using Combiners; Using compression; Using appropriate Writable types; Reusing types smartly; Optimizing mappers and reducers code; Summary; Chapter 7: Best Practices and Recommendations; Hardware tuning and OS recommendations; Hadoop cluster checklists; The Bios tuning checklist; OS configuration recommendations; Hadoop best practices and recommendations; Deploying Hadoop; Hadoop tuning recommendations; Using a MapReduce template class code; Summary; Index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book is an example-based tutorial that deals with Optimizing Hadoop for MapReduce job performance. If you are a Hadoop administrator, developer, MapReduce user, or beginner, this book is the best choice available if you wish to optimize your clusters and applications. Having prior knowledge of creating MapReduce applications is not necessary, but will help you better understand the concepts and snippets of MapReduce class template code.</subfield></datafield><datafield tag="630" ind1="0" ind2="0"><subfield code="a">Apache Hadoop.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2013024279</subfield></datafield><datafield tag="630" ind1="0" ind2="7"><subfield code="a">Apache Hadoop</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Electronic data processing</subfield><subfield code="x">Distributed processing.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85042293</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Cluster analysis</subfield><subfield code="x">Data processing.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Traitement réparti.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Classification automatique (Statistique)</subfield><subfield code="x">Informatique.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">Computer Literacy.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">Computer Science.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">Data Processing.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">Hardware</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">Information Technology.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">Machine Theory.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">Reference.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Cluster analysis</subfield><subfield code="x">Data processing</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Electronic data processing</subfield><subfield code="x">Distributed processing</subfield><subfield code="2">fast</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Tannir, Khaled.</subfield><subfield code="t">Optimizing Hadoop for MapReduce</subfield><subfield code="z">9781783285655</subfield><subfield code="w">(OCoLC)879573172</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Community experience distilled.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2011030603</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=707232</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10842106</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">707232</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">11629330</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn883632323 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:26:05Z |
institution | BVB |
isbn | 9781783285662 1783285664 |
language | English |
oclc_num | 883632323 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (iii, 103 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | Packt Pub., |
record_format | marc |
series | Community experience distilled. |
series2 | Community experience distilled |
spelling | Tannir, Khaled. Optimizing Hadoop for MapReduce : learn how to configure your Hadoop cluster to run optimal MapReduce jobs / Khaled Tannir. Birmingham, UK : Packt Pub., 2014. 1 online resource (iii, 103 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Community experience distilled Includes index. Print version record. Cover; Copyright; Credits; About the Author; Acknowledgments; About the Reviewers; www.PacktPub.com; Table of Contents; Preface; Chapter 1: Understanding Hadoop MapReduce; The MapReduce model; Overview of Hadoop MapReduce; Hadoop MapReduce internals; Factors affecting the performance of MapReduce; Summary; Chapter 2: An Overview of the Hadoop Parameters; Investigating the Hadoop parameters; The mapred-site.xml configuration file; The CPU-related parameters; The disk I/O related parameters; The memory-related parameters; The network-related parameters; The hdfs-site.xml configuration file The core-site.xml configuration fileHadoop MapReduce metrics; Performance monitoring tools; Using Chukwa to monitor Hadoop; Using Ganglia to monitor Hadoop; Using Nagios to monitor Hadoop; Using Apache Ambari to monitor Hadoop; Summary; Chapter 3: Detecting System Bottlenecks; Performance tuning; Creating a performance baseline; Identifying resource bottlenecks; Identifying RAM bottlenecks; Identifying CPU bottlenecks; Identifying storage bottlenecks; Identifying network bandwidth bottlenecks; Summary; Chapter 4: Identifying Resource Weaknesses; Identifying cluster weakness Checking the Hadoop cluster node's healthChecking the input data size; Checking massive I/O and network traffic; Checking for insufficient concurrent tasks; Checking for CPU contention; Sizing your Hadoop cluster; Configuring your cluster correctly; Summary; Chapter 5: Enhancement of Map and Reduce Tasks; Enhancing Map tasks; Input data and block size impact; Dealing with small and unsplittable files; Reducing spilled records during the Map phase; Calculating map tasks' throughput; Enhancing Reduce tasks; Calculating reduce task throughput; Improving Reduce execution phase Tuning map and reduce parametersSummary; Chapter 6: Optimizing MapReduce Tasks; Using Combiners; Using compression; Using appropriate Writable types; Reusing types smartly; Optimizing mappers and reducers code; Summary; Chapter 7: Best Practices and Recommendations; Hardware tuning and OS recommendations; Hadoop cluster checklists; The Bios tuning checklist; OS configuration recommendations; Hadoop best practices and recommendations; Deploying Hadoop; Hadoop tuning recommendations; Using a MapReduce template class code; Summary; Index This book is an example-based tutorial that deals with Optimizing Hadoop for MapReduce job performance. If you are a Hadoop administrator, developer, MapReduce user, or beginner, this book is the best choice available if you wish to optimize your clusters and applications. Having prior knowledge of creating MapReduce applications is not necessary, but will help you better understand the concepts and snippets of MapReduce class template code. Apache Hadoop. http://id.loc.gov/authorities/names/n2013024279 Apache Hadoop fast Electronic data processing Distributed processing. http://id.loc.gov/authorities/subjects/sh85042293 Cluster analysis Data processing. Traitement réparti. Classification automatique (Statistique) Informatique. COMPUTERS Computer Literacy. bisacsh COMPUTERS Computer Science. bisacsh COMPUTERS Data Processing. bisacsh COMPUTERS Hardware General. bisacsh COMPUTERS Information Technology. bisacsh COMPUTERS Machine Theory. bisacsh COMPUTERS Reference. bisacsh Cluster analysis Data processing fast Electronic data processing Distributed processing fast Print version: Tannir, Khaled. Optimizing Hadoop for MapReduce 9781783285655 (OCoLC)879573172 Community experience distilled. http://id.loc.gov/authorities/names/no2011030603 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=707232 Volltext |
spellingShingle | Tannir, Khaled Optimizing Hadoop for MapReduce : learn how to configure your Hadoop cluster to run optimal MapReduce jobs / Community experience distilled. Cover; Copyright; Credits; About the Author; Acknowledgments; About the Reviewers; www.PacktPub.com; Table of Contents; Preface; Chapter 1: Understanding Hadoop MapReduce; The MapReduce model; Overview of Hadoop MapReduce; Hadoop MapReduce internals; Factors affecting the performance of MapReduce; Summary; Chapter 2: An Overview of the Hadoop Parameters; Investigating the Hadoop parameters; The mapred-site.xml configuration file; The CPU-related parameters; The disk I/O related parameters; The memory-related parameters; The network-related parameters; The hdfs-site.xml configuration file The core-site.xml configuration fileHadoop MapReduce metrics; Performance monitoring tools; Using Chukwa to monitor Hadoop; Using Ganglia to monitor Hadoop; Using Nagios to monitor Hadoop; Using Apache Ambari to monitor Hadoop; Summary; Chapter 3: Detecting System Bottlenecks; Performance tuning; Creating a performance baseline; Identifying resource bottlenecks; Identifying RAM bottlenecks; Identifying CPU bottlenecks; Identifying storage bottlenecks; Identifying network bandwidth bottlenecks; Summary; Chapter 4: Identifying Resource Weaknesses; Identifying cluster weakness Checking the Hadoop cluster node's healthChecking the input data size; Checking massive I/O and network traffic; Checking for insufficient concurrent tasks; Checking for CPU contention; Sizing your Hadoop cluster; Configuring your cluster correctly; Summary; Chapter 5: Enhancement of Map and Reduce Tasks; Enhancing Map tasks; Input data and block size impact; Dealing with small and unsplittable files; Reducing spilled records during the Map phase; Calculating map tasks' throughput; Enhancing Reduce tasks; Calculating reduce task throughput; Improving Reduce execution phase Tuning map and reduce parametersSummary; Chapter 6: Optimizing MapReduce Tasks; Using Combiners; Using compression; Using appropriate Writable types; Reusing types smartly; Optimizing mappers and reducers code; Summary; Chapter 7: Best Practices and Recommendations; Hardware tuning and OS recommendations; Hadoop cluster checklists; The Bios tuning checklist; OS configuration recommendations; Hadoop best practices and recommendations; Deploying Hadoop; Hadoop tuning recommendations; Using a MapReduce template class code; Summary; Index Apache Hadoop. http://id.loc.gov/authorities/names/n2013024279 Apache Hadoop fast Electronic data processing Distributed processing. http://id.loc.gov/authorities/subjects/sh85042293 Cluster analysis Data processing. Traitement réparti. Classification automatique (Statistique) Informatique. COMPUTERS Computer Literacy. bisacsh COMPUTERS Computer Science. bisacsh COMPUTERS Data Processing. bisacsh COMPUTERS Hardware General. bisacsh COMPUTERS Information Technology. bisacsh COMPUTERS Machine Theory. bisacsh COMPUTERS Reference. bisacsh Cluster analysis Data processing fast Electronic data processing Distributed processing fast |
subject_GND | http://id.loc.gov/authorities/names/n2013024279 http://id.loc.gov/authorities/subjects/sh85042293 |
title | Optimizing Hadoop for MapReduce : learn how to configure your Hadoop cluster to run optimal MapReduce jobs / |
title_auth | Optimizing Hadoop for MapReduce : learn how to configure your Hadoop cluster to run optimal MapReduce jobs / |
title_exact_search | Optimizing Hadoop for MapReduce : learn how to configure your Hadoop cluster to run optimal MapReduce jobs / |
title_full | Optimizing Hadoop for MapReduce : learn how to configure your Hadoop cluster to run optimal MapReduce jobs / Khaled Tannir. |
title_fullStr | Optimizing Hadoop for MapReduce : learn how to configure your Hadoop cluster to run optimal MapReduce jobs / Khaled Tannir. |
title_full_unstemmed | Optimizing Hadoop for MapReduce : learn how to configure your Hadoop cluster to run optimal MapReduce jobs / Khaled Tannir. |
title_short | Optimizing Hadoop for MapReduce : |
title_sort | optimizing hadoop for mapreduce learn how to configure your hadoop cluster to run optimal mapreduce jobs |
title_sub | learn how to configure your Hadoop cluster to run optimal MapReduce jobs / |
topic | Apache Hadoop. http://id.loc.gov/authorities/names/n2013024279 Apache Hadoop fast Electronic data processing Distributed processing. http://id.loc.gov/authorities/subjects/sh85042293 Cluster analysis Data processing. Traitement réparti. Classification automatique (Statistique) Informatique. COMPUTERS Computer Literacy. bisacsh COMPUTERS Computer Science. bisacsh COMPUTERS Data Processing. bisacsh COMPUTERS Hardware General. bisacsh COMPUTERS Information Technology. bisacsh COMPUTERS Machine Theory. bisacsh COMPUTERS Reference. bisacsh Cluster analysis Data processing fast Electronic data processing Distributed processing fast |
topic_facet | Apache Hadoop. Apache Hadoop Electronic data processing Distributed processing. Cluster analysis Data processing. Traitement réparti. Classification automatique (Statistique) Informatique. COMPUTERS Computer Literacy. COMPUTERS Computer Science. COMPUTERS Data Processing. COMPUTERS Hardware General. COMPUTERS Information Technology. COMPUTERS Machine Theory. COMPUTERS Reference. Cluster analysis Data processing Electronic data processing Distributed processing |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=707232 |
work_keys_str_mv | AT tannirkhaled optimizinghadoopformapreducelearnhowtoconfigureyourhadoopclustertorunoptimalmapreducejobs |