Spinors and space-time.: Volume 1, Two-spinor calculus and relativistic fields /
This volume introduces and systematically develops the calculus of 2-spinors. This is the first detailed exposition of this technique which leads not only to a deeper understanding of the structure of space-time, but also provides shortcuts to some very tedious calculations. Many results are given h...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge ; New York :
Cambridge University Press,
[1986]
|
Schriftenreihe: | Cambridge monographs on mathematical physics.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This volume introduces and systematically develops the calculus of 2-spinors. This is the first detailed exposition of this technique which leads not only to a deeper understanding of the structure of space-time, but also provides shortcuts to some very tedious calculations. Many results are given here for the first time. |
Beschreibung: | "Reprinted with corrections 1986"--Title page verso |
Beschreibung: | 1 online resource |
Bibliographie: | Includes bibliographical references (pages 435-443) and index. |
ISBN: | 9781316140697 1316140695 9780511564048 051156404X |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn882261931 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 140701r19861984enka ob 001 0 eng d | ||
040 | |a N$T |b eng |e rda |e pn |c N$T |d MNU |d CAMBR |d OCLCF |d OL$ |d OCLCO |d E7B |d DEBSZ |d OCL |d OCLCQ |d COO |d UAB |d OCLCQ |d VTS |d AU@ |d STF |d OCLCQ |d YDXIT |d AJS |d OCLCQ |d OCLCO |d TXE |d OCLCQ |d OCLCO |d OCLCL |d SFB |d OCLCQ | ||
019 | |a 668203513 |a 851929311 | ||
020 | |a 9781316140697 |q (electronic book) | ||
020 | |a 1316140695 |q (electronic book) | ||
020 | |a 9780511564048 |q (electronic book) | ||
020 | |a 051156404X |q (electronic book) | ||
020 | |z 0521245273 | ||
020 | |z 9780521245272 | ||
035 | |a (OCoLC)882261931 |z (OCoLC)668203513 |z (OCoLC)851929311 | ||
050 | 4 | |a QC173.59.S65 |b P46 1986 | |
072 | 7 | |a SCI |x 024000 |2 bisacsh | |
072 | 7 | |a SCI |x 041000 |2 bisacsh | |
072 | 7 | |a SCI |x 055000 |2 bisacsh | |
082 | 7 | |a 530.11 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Penrose, Roger, |e author. |0 http://id.loc.gov/authorities/names/n82139094 | |
245 | 1 | 0 | |a Spinors and space-time. |n Volume 1, |p Two-spinor calculus and relativistic fields / |c Roger Penrose, Wolfgang Rindler. |
246 | 3 | 0 | |a Two-spinor calculus and relativistic fields |
264 | 1 | |a Cambridge ; |a New York : |b Cambridge University Press, |c [1986] | |
264 | 4 | |c ©1984 | |
300 | |a 1 online resource | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Cambridge monographs on mathematical physics | |
500 | |a "Reprinted with corrections 1986"--Title page verso | ||
504 | |a Includes bibliographical references (pages 435-443) and index. | ||
520 | |a This volume introduces and systematically develops the calculus of 2-spinors. This is the first detailed exposition of this technique which leads not only to a deeper understanding of the structure of space-time, but also provides shortcuts to some very tedious calculations. Many results are given here for the first time. | ||
505 | 0 | |a Cover -- Half-title -- Title -- Copyright -- Contents -- Preface -- 1 The geometry of world-vectors and spin-vectors -- 1.1 Minkowski vector space -- 1.2 Null directions and spin transformations -- 1.3 Some properties of Lorentz transformations -- 1.4 Null flags and spin-vectors -- 1.5 Spinorial objects and spin structure -- 1.6 The geometry of spinor operations -- 2 Abstract indices and spinor algebra -- 2.1 Motivation for abstract-index approach -- 2.2 The abstract-index formalism for tensor algebra -- 2.3 Bases. | |
505 | 8 | |a 2.4 The total reflexivity of 6* on a manifold -- 2.5 Spinor algebra -- 3 Spinors and world-tensors -- 3.1 World-tensors as spinors -- 3.2 Null flags and complex null vectors -- 3.3 Symmetry operations -- 3.4 Tensor representation of spinor operations -- 3.5 Simple propositions about tensors and spinors at a point -- 3.6 Lorentz transformations -- 4 Differentiation and curvature -- 4.1 Manifolds -- 4.2 Covariant derivative -- 4.3 Connection-independent derivatives -- 4.4 Differentiation of spinors -- 4.5 Differentiation of spinor components. | |
505 | 8 | |a 4.6 The curvature spinors -- 4.7 Spinor formulation of the Einstein-Cartan-Sciama-Kibble theory -- 4.8 The Weyl tensor and the Bel-Robinson tensor -- 4.9 Spinor form of commutators -- 4.10 Spinor form of the Bianchi identity -- 4.11 Curvature spinors and spin-coefficients -- 4.12 Compacted spin-coefficient formalism -- 4.13 Cartan's method -- 4.14 Applications to 2-surfaces -- 4.15 Spin-weighted spherical harmonics -- 5 Fields in space-time -- 5.1 The electromagnetic field and its derivative operator. | |
505 | 8 | |a 5.2 Einstein-Maxwell equations in spinor form -- 5.3 The Rainich conditions -- 5.4 Vector bundles -- 5.5 Yang-Mills fields -- 5.6 Conformal rescalings -- 5.7 Massless fields -- 5.8 Consistency conditions -- 5.9 Conformal invariance of various field quantities -- 5.10 Exact sets of fields -- 5.11 Initial data on a light cone -- 5.12 Explicit field integrals -- Appendix: diagrammatic notation -- References -- Subject and author index -- Index of symbols. | |
588 | 0 | |a Online resource; title from digital title page (viewed on December 13, 2019). | |
650 | 0 | |a Space and time. |0 http://id.loc.gov/authorities/subjects/sh85125911 | |
650 | 0 | |a Spinor analysis. |0 http://id.loc.gov/authorities/subjects/sh85126718 | |
650 | 6 | |a Analyse spinorielle. | |
650 | 7 | |a SCIENCE |x Energy. |2 bisacsh | |
650 | 7 | |a SCIENCE |x Mechanics |x General. |2 bisacsh | |
650 | 7 | |a SCIENCE |x Physics |x General. |2 bisacsh | |
650 | 7 | |a Space and time |2 fast | |
650 | 7 | |a Spinor analysis |2 fast | |
700 | 1 | |a Rindler, Wolfgang, |d 1924- |e author. |1 https://id.oclc.org/worldcat/entity/E39PBJhMp4G36W8BxVTr9hx4bd |0 http://id.loc.gov/authorities/names/n81128257 | |
776 | 0 | 8 | |i Print version: |a Penrose, Roger. |t Spinors and space-time |z 0521245273 |w (DLC) 82019861 |w (OCoLC)877068985 |
830 | 0 | |a Cambridge monographs on mathematical physics. |0 http://id.loc.gov/authorities/names/n42005691 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=800941 |3 Volltext |
938 | |a ebrary |b EBRY |n ebr10891536 | ||
938 | |a EBSCOhost |b EBSC |n 800941 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn882261931 |
---|---|
_version_ | 1816882277414600704 |
adam_text | |
any_adam_object | |
author | Penrose, Roger Rindler, Wolfgang, 1924- |
author_GND | http://id.loc.gov/authorities/names/n82139094 http://id.loc.gov/authorities/names/n81128257 |
author_facet | Penrose, Roger Rindler, Wolfgang, 1924- |
author_role | aut aut |
author_sort | Penrose, Roger |
author_variant | r p rp w r wr |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QC173 |
callnumber-raw | QC173.59.S65 P46 1986 |
callnumber-search | QC173.59.S65 P46 1986 |
callnumber-sort | QC 3173.59 S65 P46 41986 |
callnumber-subject | QC - Physics |
collection | ZDB-4-EBA |
contents | Cover -- Half-title -- Title -- Copyright -- Contents -- Preface -- 1 The geometry of world-vectors and spin-vectors -- 1.1 Minkowski vector space -- 1.2 Null directions and spin transformations -- 1.3 Some properties of Lorentz transformations -- 1.4 Null flags and spin-vectors -- 1.5 Spinorial objects and spin structure -- 1.6 The geometry of spinor operations -- 2 Abstract indices and spinor algebra -- 2.1 Motivation for abstract-index approach -- 2.2 The abstract-index formalism for tensor algebra -- 2.3 Bases. 2.4 The total reflexivity of 6* on a manifold -- 2.5 Spinor algebra -- 3 Spinors and world-tensors -- 3.1 World-tensors as spinors -- 3.2 Null flags and complex null vectors -- 3.3 Symmetry operations -- 3.4 Tensor representation of spinor operations -- 3.5 Simple propositions about tensors and spinors at a point -- 3.6 Lorentz transformations -- 4 Differentiation and curvature -- 4.1 Manifolds -- 4.2 Covariant derivative -- 4.3 Connection-independent derivatives -- 4.4 Differentiation of spinors -- 4.5 Differentiation of spinor components. 4.6 The curvature spinors -- 4.7 Spinor formulation of the Einstein-Cartan-Sciama-Kibble theory -- 4.8 The Weyl tensor and the Bel-Robinson tensor -- 4.9 Spinor form of commutators -- 4.10 Spinor form of the Bianchi identity -- 4.11 Curvature spinors and spin-coefficients -- 4.12 Compacted spin-coefficient formalism -- 4.13 Cartan's method -- 4.14 Applications to 2-surfaces -- 4.15 Spin-weighted spherical harmonics -- 5 Fields in space-time -- 5.1 The electromagnetic field and its derivative operator. 5.2 Einstein-Maxwell equations in spinor form -- 5.3 The Rainich conditions -- 5.4 Vector bundles -- 5.5 Yang-Mills fields -- 5.6 Conformal rescalings -- 5.7 Massless fields -- 5.8 Consistency conditions -- 5.9 Conformal invariance of various field quantities -- 5.10 Exact sets of fields -- 5.11 Initial data on a light cone -- 5.12 Explicit field integrals -- Appendix: diagrammatic notation -- References -- Subject and author index -- Index of symbols. |
ctrlnum | (OCoLC)882261931 |
dewey-full | 530.11 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.11 |
dewey-search | 530.11 |
dewey-sort | 3530.11 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05257cam a2200673 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn882261931</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">140701r19861984enka ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">MNU</subfield><subfield code="d">CAMBR</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OL$</subfield><subfield code="d">OCLCO</subfield><subfield code="d">E7B</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COO</subfield><subfield code="d">UAB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">AU@</subfield><subfield code="d">STF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDXIT</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">TXE</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">668203513</subfield><subfield code="a">851929311</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781316140697</subfield><subfield code="q">(electronic book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1316140695</subfield><subfield code="q">(electronic book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511564048</subfield><subfield code="q">(electronic book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">051156404X</subfield><subfield code="q">(electronic book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521245273</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521245272</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)882261931</subfield><subfield code="z">(OCoLC)668203513</subfield><subfield code="z">(OCoLC)851929311</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QC173.59.S65</subfield><subfield code="b">P46 1986</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">024000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">041000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">055000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">530.11</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Penrose, Roger,</subfield><subfield code="e">author.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n82139094</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Spinors and space-time.</subfield><subfield code="n">Volume 1,</subfield><subfield code="p">Two-spinor calculus and relativistic fields /</subfield><subfield code="c">Roger Penrose, Wolfgang Rindler.</subfield></datafield><datafield tag="246" ind1="3" ind2="0"><subfield code="a">Two-spinor calculus and relativistic fields</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">[1986]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©1984</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge monographs on mathematical physics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">"Reprinted with corrections 1986"--Title page verso</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 435-443) and index.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This volume introduces and systematically develops the calculus of 2-spinors. This is the first detailed exposition of this technique which leads not only to a deeper understanding of the structure of space-time, but also provides shortcuts to some very tedious calculations. Many results are given here for the first time.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover -- Half-title -- Title -- Copyright -- Contents -- Preface -- 1 The geometry of world-vectors and spin-vectors -- 1.1 Minkowski vector space -- 1.2 Null directions and spin transformations -- 1.3 Some properties of Lorentz transformations -- 1.4 Null flags and spin-vectors -- 1.5 Spinorial objects and spin structure -- 1.6 The geometry of spinor operations -- 2 Abstract indices and spinor algebra -- 2.1 Motivation for abstract-index approach -- 2.2 The abstract-index formalism for tensor algebra -- 2.3 Bases.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.4 The total reflexivity of 6* on a manifold -- 2.5 Spinor algebra -- 3 Spinors and world-tensors -- 3.1 World-tensors as spinors -- 3.2 Null flags and complex null vectors -- 3.3 Symmetry operations -- 3.4 Tensor representation of spinor operations -- 3.5 Simple propositions about tensors and spinors at a point -- 3.6 Lorentz transformations -- 4 Differentiation and curvature -- 4.1 Manifolds -- 4.2 Covariant derivative -- 4.3 Connection-independent derivatives -- 4.4 Differentiation of spinors -- 4.5 Differentiation of spinor components.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.6 The curvature spinors -- 4.7 Spinor formulation of the Einstein-Cartan-Sciama-Kibble theory -- 4.8 The Weyl tensor and the Bel-Robinson tensor -- 4.9 Spinor form of commutators -- 4.10 Spinor form of the Bianchi identity -- 4.11 Curvature spinors and spin-coefficients -- 4.12 Compacted spin-coefficient formalism -- 4.13 Cartan's method -- 4.14 Applications to 2-surfaces -- 4.15 Spin-weighted spherical harmonics -- 5 Fields in space-time -- 5.1 The electromagnetic field and its derivative operator.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.2 Einstein-Maxwell equations in spinor form -- 5.3 The Rainich conditions -- 5.4 Vector bundles -- 5.5 Yang-Mills fields -- 5.6 Conformal rescalings -- 5.7 Massless fields -- 5.8 Consistency conditions -- 5.9 Conformal invariance of various field quantities -- 5.10 Exact sets of fields -- 5.11 Initial data on a light cone -- 5.12 Explicit field integrals -- Appendix: diagrammatic notation -- References -- Subject and author index -- Index of symbols.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Online resource; title from digital title page (viewed on December 13, 2019).</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Space and time.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85125911</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Spinor analysis.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85126718</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Analyse spinorielle.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Energy.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Mechanics</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Physics</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Space and time</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Spinor analysis</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rindler, Wolfgang,</subfield><subfield code="d">1924-</subfield><subfield code="e">author.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJhMp4G36W8BxVTr9hx4bd</subfield><subfield code="0">http://id.loc.gov/authorities/names/n81128257</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Penrose, Roger.</subfield><subfield code="t">Spinors and space-time</subfield><subfield code="z">0521245273</subfield><subfield code="w">(DLC) 82019861</subfield><subfield code="w">(OCoLC)877068985</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Cambridge monographs on mathematical physics.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42005691</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=800941</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10891536</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">800941</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn882261931 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:26:03Z |
institution | BVB |
isbn | 9781316140697 1316140695 9780511564048 051156404X |
language | English |
oclc_num | 882261931 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource |
psigel | ZDB-4-EBA |
publishDate | 1986 |
publishDateSearch | 1984 1986 |
publishDateSort | 1986 |
publisher | Cambridge University Press, |
record_format | marc |
series | Cambridge monographs on mathematical physics. |
series2 | Cambridge monographs on mathematical physics |
spelling | Penrose, Roger, author. http://id.loc.gov/authorities/names/n82139094 Spinors and space-time. Volume 1, Two-spinor calculus and relativistic fields / Roger Penrose, Wolfgang Rindler. Two-spinor calculus and relativistic fields Cambridge ; New York : Cambridge University Press, [1986] ©1984 1 online resource text txt rdacontent computer c rdamedia online resource cr rdacarrier Cambridge monographs on mathematical physics "Reprinted with corrections 1986"--Title page verso Includes bibliographical references (pages 435-443) and index. This volume introduces and systematically develops the calculus of 2-spinors. This is the first detailed exposition of this technique which leads not only to a deeper understanding of the structure of space-time, but also provides shortcuts to some very tedious calculations. Many results are given here for the first time. Cover -- Half-title -- Title -- Copyright -- Contents -- Preface -- 1 The geometry of world-vectors and spin-vectors -- 1.1 Minkowski vector space -- 1.2 Null directions and spin transformations -- 1.3 Some properties of Lorentz transformations -- 1.4 Null flags and spin-vectors -- 1.5 Spinorial objects and spin structure -- 1.6 The geometry of spinor operations -- 2 Abstract indices and spinor algebra -- 2.1 Motivation for abstract-index approach -- 2.2 The abstract-index formalism for tensor algebra -- 2.3 Bases. 2.4 The total reflexivity of 6* on a manifold -- 2.5 Spinor algebra -- 3 Spinors and world-tensors -- 3.1 World-tensors as spinors -- 3.2 Null flags and complex null vectors -- 3.3 Symmetry operations -- 3.4 Tensor representation of spinor operations -- 3.5 Simple propositions about tensors and spinors at a point -- 3.6 Lorentz transformations -- 4 Differentiation and curvature -- 4.1 Manifolds -- 4.2 Covariant derivative -- 4.3 Connection-independent derivatives -- 4.4 Differentiation of spinors -- 4.5 Differentiation of spinor components. 4.6 The curvature spinors -- 4.7 Spinor formulation of the Einstein-Cartan-Sciama-Kibble theory -- 4.8 The Weyl tensor and the Bel-Robinson tensor -- 4.9 Spinor form of commutators -- 4.10 Spinor form of the Bianchi identity -- 4.11 Curvature spinors and spin-coefficients -- 4.12 Compacted spin-coefficient formalism -- 4.13 Cartan's method -- 4.14 Applications to 2-surfaces -- 4.15 Spin-weighted spherical harmonics -- 5 Fields in space-time -- 5.1 The electromagnetic field and its derivative operator. 5.2 Einstein-Maxwell equations in spinor form -- 5.3 The Rainich conditions -- 5.4 Vector bundles -- 5.5 Yang-Mills fields -- 5.6 Conformal rescalings -- 5.7 Massless fields -- 5.8 Consistency conditions -- 5.9 Conformal invariance of various field quantities -- 5.10 Exact sets of fields -- 5.11 Initial data on a light cone -- 5.12 Explicit field integrals -- Appendix: diagrammatic notation -- References -- Subject and author index -- Index of symbols. Online resource; title from digital title page (viewed on December 13, 2019). Space and time. http://id.loc.gov/authorities/subjects/sh85125911 Spinor analysis. http://id.loc.gov/authorities/subjects/sh85126718 Analyse spinorielle. SCIENCE Energy. bisacsh SCIENCE Mechanics General. bisacsh SCIENCE Physics General. bisacsh Space and time fast Spinor analysis fast Rindler, Wolfgang, 1924- author. https://id.oclc.org/worldcat/entity/E39PBJhMp4G36W8BxVTr9hx4bd http://id.loc.gov/authorities/names/n81128257 Print version: Penrose, Roger. Spinors and space-time 0521245273 (DLC) 82019861 (OCoLC)877068985 Cambridge monographs on mathematical physics. http://id.loc.gov/authorities/names/n42005691 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=800941 Volltext |
spellingShingle | Penrose, Roger Rindler, Wolfgang, 1924- Spinors and space-time. Cambridge monographs on mathematical physics. Cover -- Half-title -- Title -- Copyright -- Contents -- Preface -- 1 The geometry of world-vectors and spin-vectors -- 1.1 Minkowski vector space -- 1.2 Null directions and spin transformations -- 1.3 Some properties of Lorentz transformations -- 1.4 Null flags and spin-vectors -- 1.5 Spinorial objects and spin structure -- 1.6 The geometry of spinor operations -- 2 Abstract indices and spinor algebra -- 2.1 Motivation for abstract-index approach -- 2.2 The abstract-index formalism for tensor algebra -- 2.3 Bases. 2.4 The total reflexivity of 6* on a manifold -- 2.5 Spinor algebra -- 3 Spinors and world-tensors -- 3.1 World-tensors as spinors -- 3.2 Null flags and complex null vectors -- 3.3 Symmetry operations -- 3.4 Tensor representation of spinor operations -- 3.5 Simple propositions about tensors and spinors at a point -- 3.6 Lorentz transformations -- 4 Differentiation and curvature -- 4.1 Manifolds -- 4.2 Covariant derivative -- 4.3 Connection-independent derivatives -- 4.4 Differentiation of spinors -- 4.5 Differentiation of spinor components. 4.6 The curvature spinors -- 4.7 Spinor formulation of the Einstein-Cartan-Sciama-Kibble theory -- 4.8 The Weyl tensor and the Bel-Robinson tensor -- 4.9 Spinor form of commutators -- 4.10 Spinor form of the Bianchi identity -- 4.11 Curvature spinors and spin-coefficients -- 4.12 Compacted spin-coefficient formalism -- 4.13 Cartan's method -- 4.14 Applications to 2-surfaces -- 4.15 Spin-weighted spherical harmonics -- 5 Fields in space-time -- 5.1 The electromagnetic field and its derivative operator. 5.2 Einstein-Maxwell equations in spinor form -- 5.3 The Rainich conditions -- 5.4 Vector bundles -- 5.5 Yang-Mills fields -- 5.6 Conformal rescalings -- 5.7 Massless fields -- 5.8 Consistency conditions -- 5.9 Conformal invariance of various field quantities -- 5.10 Exact sets of fields -- 5.11 Initial data on a light cone -- 5.12 Explicit field integrals -- Appendix: diagrammatic notation -- References -- Subject and author index -- Index of symbols. Space and time. http://id.loc.gov/authorities/subjects/sh85125911 Spinor analysis. http://id.loc.gov/authorities/subjects/sh85126718 Analyse spinorielle. SCIENCE Energy. bisacsh SCIENCE Mechanics General. bisacsh SCIENCE Physics General. bisacsh Space and time fast Spinor analysis fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85125911 http://id.loc.gov/authorities/subjects/sh85126718 |
title | Spinors and space-time. |
title_alt | Two-spinor calculus and relativistic fields |
title_auth | Spinors and space-time. |
title_exact_search | Spinors and space-time. |
title_full | Spinors and space-time. Volume 1, Two-spinor calculus and relativistic fields / Roger Penrose, Wolfgang Rindler. |
title_fullStr | Spinors and space-time. Volume 1, Two-spinor calculus and relativistic fields / Roger Penrose, Wolfgang Rindler. |
title_full_unstemmed | Spinors and space-time. Volume 1, Two-spinor calculus and relativistic fields / Roger Penrose, Wolfgang Rindler. |
title_short | Spinors and space-time. |
title_sort | spinors and space time two spinor calculus and relativistic fields |
topic | Space and time. http://id.loc.gov/authorities/subjects/sh85125911 Spinor analysis. http://id.loc.gov/authorities/subjects/sh85126718 Analyse spinorielle. SCIENCE Energy. bisacsh SCIENCE Mechanics General. bisacsh SCIENCE Physics General. bisacsh Space and time fast Spinor analysis fast |
topic_facet | Space and time. Spinor analysis. Analyse spinorielle. SCIENCE Energy. SCIENCE Mechanics General. SCIENCE Physics General. Space and time Spinor analysis |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=800941 |
work_keys_str_mv | AT penroseroger spinorsandspacetimevolume1 AT rindlerwolfgang spinorsandspacetimevolume1 AT penroseroger twospinorcalculusandrelativisticfields AT rindlerwolfgang twospinorcalculusandrelativisticfields |