Learning NumPy Array /:
A step-by-step guide, packed with examples of practical numerical analysis that will give you a comprehensive, but concise overview of NumPy. This book is for programmers, scientists, or engineers, who have basic Python knowledge and would like to be able to do numerical computations with Python.
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Birmingham, UK :
Packt Publishing,
2014.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | A step-by-step guide, packed with examples of practical numerical analysis that will give you a comprehensive, but concise overview of NumPy. This book is for programmers, scientists, or engineers, who have basic Python knowledge and would like to be able to do numerical computations with Python. |
Beschreibung: | 1 online resource |
ISBN: | 1306875692 9781306875691 9781783983919 1783983914 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn881510167 | ||
003 | OCoLC | ||
005 | 20240705115654.0 | ||
006 | m o d | ||
007 | cr |n||||||||| | ||
008 | 140620s2014 enk o 000 0 eng d | ||
040 | |a IDEBK |b eng |e pn |c IDEBK |d EBLCP |d MHW |d DEBSZ |d S4S |d OCLCQ |d OCLCO |d COO |d OCLCF |d TEFOD |d OCLCO |d N$T |d OCLCO |d OCLCQ |d OCLCO |d FEM |d AGLDB |d ICA |d ZCU |d XFH |d MERUC |d OCLCQ |d D6H |d OCLCQ |d VNS |d VTS |d ICG |d AU@ |d OCLCQ |d STF |d DKC |d OCLCQ |d K6U |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d UEJ |d OCLCQ | ||
019 | |a 968038886 |a 969083180 |a 994611031 | ||
020 | |a 1306875692 |q (electronic bk.) | ||
020 | |a 9781306875691 |q (electronic bk.) | ||
020 | |a 9781783983919 |q (electronic bk.) | ||
020 | |a 1783983914 |q (electronic bk.) | ||
020 | |z 9781783983902 | ||
020 | |z 1783983906 | ||
035 | |a (OCoLC)881510167 |z (OCoLC)968038886 |z (OCoLC)969083180 |z (OCoLC)994611031 | ||
037 | |a 618820 |b MIL | ||
037 | |a EFBE5798-4818-4B6F-9292-B40BFE5150AB |b OverDrive, Inc. |n http://www.overdrive.com | ||
050 | 4 | |a QA76.73.P98 | |
050 | 4 | |a T55.4-60.8 | |
072 | 7 | |a COM |x 051360 |2 bisacsh | |
082 | 7 | |a 005.133 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Idris, Ivan. | |
245 | 1 | 0 | |a Learning NumPy Array / |c Ivan Idris. |
260 | |a Birmingham, UK : |b Packt Publishing, |c 2014. | ||
300 | |a 1 online resource | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a text file | ||
588 | 0 | |a Print version record. | |
520 | |a A step-by-step guide, packed with examples of practical numerical analysis that will give you a comprehensive, but concise overview of NumPy. This book is for programmers, scientists, or engineers, who have basic Python knowledge and would like to be able to do numerical computations with Python. | ||
505 | 0 | |a Cover; Copyright; Credits; About the Author; About the Reviewers; www.PacktPub.com; Table of Contents; Preface; Chapter 1: Getting Started with NumPy; Python; Installing NumPy, Matplotlib, SciPy, and IPython on Windows; Installing NumPy, Matplotlib, SciPy, and IPython on Linux; Installing NumPy, Matplotlib, and SciPy on Mac OS X; Building from source; NumPy arrays; Adding arrays; Online resources and help; Summary; Chapter 2: NumPy Basics; The NumPy array object; The advantages of using NumPy arrays; Creating a multidimensional array; Selecting array elements; NumPy numerical types. | |
505 | 8 | |a Data type objectsCharacter codes; dtype constructors; dtype attributes; Creating a record data type; One-dimensional slicing and indexing; Manipulating array shapes; Stacking arrays; Splitting arrays; Array attributes; Converting arrays; Creating views and copies; Fancy indexing; Indexing with a list of locations; Indexing arrays with Booleans; Stride tricks for Sudoku; Broadcasting arrays; Summary; Chapter 3: Basic Data Analysis with NumPy; Introducing the dataset; Determining the daily temperature range; Looking for evidence of global warming; Comparing solar radiation versus temperature. | |
505 | 8 | |a Analyzing wind directionAnalyzing wind speed; Analyzing precipitation and sunshine duration; Analyzing monthly precipitation in De Bilt; Analyzing atmospheric pressure in De Bilt; Analyzing atmospheric humidity in De Bilt; Summary; Chapter 4: Simple Predictive Analytics with NumPy; Examining autocorrelation of average temperature with pandas; Describing data with pandas DataFrames; Correlating weather and stocks with pandas; Predicting temperature; Autoregressive model with lag 1; Autoregressive model with lag 2; Analysing intra-year daily average temperatures. | |
505 | 8 | |a Introducing the day-of-the-year temperature modelModeling temperature with the SciPy leastsq function; Day-of-year temperature take two; Moving-average temperature model with lag 1; The Autoregressive Moving Average temperature model; The time-dependent temperature mean adjusted autoregressive model; Outliers analysis of average De Bilt temperature; Using more robust statistics; Summary; Chapter 5: Signal Processing Techniques; Introducing the Sunspot data; Sifting continued; Moving averages; Smoothing functions; Forecasting with an ARMA model; Filtering a signal; Designing the filter. | |
505 | 8 | |a Demonstrating cointegrationSummary; Chapter 6: Profiling, Debugging, and Testing; Assert functions; The assert_almost_equal function; Approximately equal arrays; The assert_array_almost_equal function; Profiling a program with IPython; Debugging with IPython; Performing Unit tests; Nose tests decorators; Summary; Chapter 7: The Scientific Python Ecosystem; Numerical integration; Interpolation; Using Cython with NumPy; Clustering stocks with scikit-learn; Detecting corners; Comparing NumPy to Blaze; Summary; Index. | |
546 | |a English. | ||
650 | 0 | |a Python (Computer program language) |0 http://id.loc.gov/authorities/subjects/sh96008834 | |
650 | 0 | |a Numerical analysis |x Data processing. | |
650 | 6 | |a Python (Langage de programmation) | |
650 | 6 | |a Analyse numérique |x Informatique. | |
650 | 7 | |a COMPUTERS |x Programming Languages |x Python. |2 bisacsh | |
650 | 7 | |a Numerical analysis |x Data processing |2 fast | |
650 | 7 | |a Python (Computer program language) |2 fast | |
758 | |i has work: |a Learning numpy array (Text) |1 https://id.oclc.org/worldcat/entity/E39PD33xcgDcPMDFDV3Wh8gYRq |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |z 9781306875691 |
856 | 1 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=797947 |3 Volltext | |
856 | 1 | |l CBO01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=797947 |3 Volltext | |
936 | |a BATCHLOAD | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL1706444 | ||
938 | |a EBSCOhost |b EBSC |n 797947 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis28514261 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn881510167 |
---|---|
_version_ | 1813903650646392832 |
adam_text | |
any_adam_object | |
author | Idris, Ivan |
author_facet | Idris, Ivan |
author_role | |
author_sort | Idris, Ivan |
author_variant | i i ii |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA76 |
callnumber-raw | QA76.73.P98 T55.4-60.8 |
callnumber-search | QA76.73.P98 T55.4-60.8 |
callnumber-sort | QA 276.73 P98 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Cover; Copyright; Credits; About the Author; About the Reviewers; www.PacktPub.com; Table of Contents; Preface; Chapter 1: Getting Started with NumPy; Python; Installing NumPy, Matplotlib, SciPy, and IPython on Windows; Installing NumPy, Matplotlib, SciPy, and IPython on Linux; Installing NumPy, Matplotlib, and SciPy on Mac OS X; Building from source; NumPy arrays; Adding arrays; Online resources and help; Summary; Chapter 2: NumPy Basics; The NumPy array object; The advantages of using NumPy arrays; Creating a multidimensional array; Selecting array elements; NumPy numerical types. Data type objectsCharacter codes; dtype constructors; dtype attributes; Creating a record data type; One-dimensional slicing and indexing; Manipulating array shapes; Stacking arrays; Splitting arrays; Array attributes; Converting arrays; Creating views and copies; Fancy indexing; Indexing with a list of locations; Indexing arrays with Booleans; Stride tricks for Sudoku; Broadcasting arrays; Summary; Chapter 3: Basic Data Analysis with NumPy; Introducing the dataset; Determining the daily temperature range; Looking for evidence of global warming; Comparing solar radiation versus temperature. Analyzing wind directionAnalyzing wind speed; Analyzing precipitation and sunshine duration; Analyzing monthly precipitation in De Bilt; Analyzing atmospheric pressure in De Bilt; Analyzing atmospheric humidity in De Bilt; Summary; Chapter 4: Simple Predictive Analytics with NumPy; Examining autocorrelation of average temperature with pandas; Describing data with pandas DataFrames; Correlating weather and stocks with pandas; Predicting temperature; Autoregressive model with lag 1; Autoregressive model with lag 2; Analysing intra-year daily average temperatures. Introducing the day-of-the-year temperature modelModeling temperature with the SciPy leastsq function; Day-of-year temperature take two; Moving-average temperature model with lag 1; The Autoregressive Moving Average temperature model; The time-dependent temperature mean adjusted autoregressive model; Outliers analysis of average De Bilt temperature; Using more robust statistics; Summary; Chapter 5: Signal Processing Techniques; Introducing the Sunspot data; Sifting continued; Moving averages; Smoothing functions; Forecasting with an ARMA model; Filtering a signal; Designing the filter. Demonstrating cointegrationSummary; Chapter 6: Profiling, Debugging, and Testing; Assert functions; The assert_almost_equal function; Approximately equal arrays; The assert_array_almost_equal function; Profiling a program with IPython; Debugging with IPython; Performing Unit tests; Nose tests decorators; Summary; Chapter 7: The Scientific Python Ecosystem; Numerical integration; Interpolation; Using Cython with NumPy; Clustering stocks with scikit-learn; Detecting corners; Comparing NumPy to Blaze; Summary; Index. |
ctrlnum | (OCoLC)881510167 |
dewey-full | 005.133 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 005 - Computer programming, programs, data, security |
dewey-raw | 005.133 |
dewey-search | 005.133 |
dewey-sort | 15.133 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05749cam a2200661 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn881510167</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20240705115654.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |n|||||||||</controlfield><controlfield tag="008">140620s2014 enk o 000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">IDEBK</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">IDEBK</subfield><subfield code="d">EBLCP</subfield><subfield code="d">MHW</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">S4S</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">COO</subfield><subfield code="d">OCLCF</subfield><subfield code="d">TEFOD</subfield><subfield code="d">OCLCO</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">FEM</subfield><subfield code="d">AGLDB</subfield><subfield code="d">ICA</subfield><subfield code="d">ZCU</subfield><subfield code="d">XFH</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">D6H</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VNS</subfield><subfield code="d">VTS</subfield><subfield code="d">ICG</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">STF</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">UEJ</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">968038886</subfield><subfield code="a">969083180</subfield><subfield code="a">994611031</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1306875692</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781306875691</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781783983919</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1783983914</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781783983902</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1783983906</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)881510167</subfield><subfield code="z">(OCoLC)968038886</subfield><subfield code="z">(OCoLC)969083180</subfield><subfield code="z">(OCoLC)994611031</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">618820</subfield><subfield code="b">MIL</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">EFBE5798-4818-4B6F-9292-B40BFE5150AB</subfield><subfield code="b">OverDrive, Inc.</subfield><subfield code="n">http://www.overdrive.com</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA76.73.P98</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">T55.4-60.8</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">051360</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">005.133</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Idris, Ivan.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Learning NumPy Array /</subfield><subfield code="c">Ivan Idris.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Birmingham, UK :</subfield><subfield code="b">Packt Publishing,</subfield><subfield code="c">2014.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">text file</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A step-by-step guide, packed with examples of practical numerical analysis that will give you a comprehensive, but concise overview of NumPy. This book is for programmers, scientists, or engineers, who have basic Python knowledge and would like to be able to do numerical computations with Python.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Copyright; Credits; About the Author; About the Reviewers; www.PacktPub.com; Table of Contents; Preface; Chapter 1: Getting Started with NumPy; Python; Installing NumPy, Matplotlib, SciPy, and IPython on Windows; Installing NumPy, Matplotlib, SciPy, and IPython on Linux; Installing NumPy, Matplotlib, and SciPy on Mac OS X; Building from source; NumPy arrays; Adding arrays; Online resources and help; Summary; Chapter 2: NumPy Basics; The NumPy array object; The advantages of using NumPy arrays; Creating a multidimensional array; Selecting array elements; NumPy numerical types.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Data type objectsCharacter codes; dtype constructors; dtype attributes; Creating a record data type; One-dimensional slicing and indexing; Manipulating array shapes; Stacking arrays; Splitting arrays; Array attributes; Converting arrays; Creating views and copies; Fancy indexing; Indexing with a list of locations; Indexing arrays with Booleans; Stride tricks for Sudoku; Broadcasting arrays; Summary; Chapter 3: Basic Data Analysis with NumPy; Introducing the dataset; Determining the daily temperature range; Looking for evidence of global warming; Comparing solar radiation versus temperature.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Analyzing wind directionAnalyzing wind speed; Analyzing precipitation and sunshine duration; Analyzing monthly precipitation in De Bilt; Analyzing atmospheric pressure in De Bilt; Analyzing atmospheric humidity in De Bilt; Summary; Chapter 4: Simple Predictive Analytics with NumPy; Examining autocorrelation of average temperature with pandas; Describing data with pandas DataFrames; Correlating weather and stocks with pandas; Predicting temperature; Autoregressive model with lag 1; Autoregressive model with lag 2; Analysing intra-year daily average temperatures.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Introducing the day-of-the-year temperature modelModeling temperature with the SciPy leastsq function; Day-of-year temperature take two; Moving-average temperature model with lag 1; The Autoregressive Moving Average temperature model; The time-dependent temperature mean adjusted autoregressive model; Outliers analysis of average De Bilt temperature; Using more robust statistics; Summary; Chapter 5: Signal Processing Techniques; Introducing the Sunspot data; Sifting continued; Moving averages; Smoothing functions; Forecasting with an ARMA model; Filtering a signal; Designing the filter.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Demonstrating cointegrationSummary; Chapter 6: Profiling, Debugging, and Testing; Assert functions; The assert_almost_equal function; Approximately equal arrays; The assert_array_almost_equal function; Profiling a program with IPython; Debugging with IPython; Performing Unit tests; Nose tests decorators; Summary; Chapter 7: The Scientific Python Ecosystem; Numerical integration; Interpolation; Using Cython with NumPy; Clustering stocks with scikit-learn; Detecting corners; Comparing NumPy to Blaze; Summary; Index.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Python (Computer program language)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh96008834</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Numerical analysis</subfield><subfield code="x">Data processing.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Python (Langage de programmation)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Analyse numérique</subfield><subfield code="x">Informatique.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">Programming Languages</subfield><subfield code="x">Python.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Numerical analysis</subfield><subfield code="x">Data processing</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Python (Computer program language)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Learning numpy array (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PD33xcgDcPMDFDV3Wh8gYRq</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="z">9781306875691</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=797947</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">CBO01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=797947</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="936" ind1=" " ind2=" "><subfield code="a">BATCHLOAD</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL1706444</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">797947</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis28514261</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn881510167 |
illustrated | Not Illustrated |
indexdate | 2024-10-25T16:22:03Z |
institution | BVB |
isbn | 1306875692 9781306875691 9781783983919 1783983914 |
language | English |
oclc_num | 881510167 |
open_access_boolean | |
owner | MAIN |
owner_facet | MAIN |
physical | 1 online resource |
psigel | ZDB-4-EBA |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | Packt Publishing, |
record_format | marc |
spelling | Idris, Ivan. Learning NumPy Array / Ivan Idris. Birmingham, UK : Packt Publishing, 2014. 1 online resource text txt rdacontent computer c rdamedia online resource cr rdacarrier text file Print version record. A step-by-step guide, packed with examples of practical numerical analysis that will give you a comprehensive, but concise overview of NumPy. This book is for programmers, scientists, or engineers, who have basic Python knowledge and would like to be able to do numerical computations with Python. Cover; Copyright; Credits; About the Author; About the Reviewers; www.PacktPub.com; Table of Contents; Preface; Chapter 1: Getting Started with NumPy; Python; Installing NumPy, Matplotlib, SciPy, and IPython on Windows; Installing NumPy, Matplotlib, SciPy, and IPython on Linux; Installing NumPy, Matplotlib, and SciPy on Mac OS X; Building from source; NumPy arrays; Adding arrays; Online resources and help; Summary; Chapter 2: NumPy Basics; The NumPy array object; The advantages of using NumPy arrays; Creating a multidimensional array; Selecting array elements; NumPy numerical types. Data type objectsCharacter codes; dtype constructors; dtype attributes; Creating a record data type; One-dimensional slicing and indexing; Manipulating array shapes; Stacking arrays; Splitting arrays; Array attributes; Converting arrays; Creating views and copies; Fancy indexing; Indexing with a list of locations; Indexing arrays with Booleans; Stride tricks for Sudoku; Broadcasting arrays; Summary; Chapter 3: Basic Data Analysis with NumPy; Introducing the dataset; Determining the daily temperature range; Looking for evidence of global warming; Comparing solar radiation versus temperature. Analyzing wind directionAnalyzing wind speed; Analyzing precipitation and sunshine duration; Analyzing monthly precipitation in De Bilt; Analyzing atmospheric pressure in De Bilt; Analyzing atmospheric humidity in De Bilt; Summary; Chapter 4: Simple Predictive Analytics with NumPy; Examining autocorrelation of average temperature with pandas; Describing data with pandas DataFrames; Correlating weather and stocks with pandas; Predicting temperature; Autoregressive model with lag 1; Autoregressive model with lag 2; Analysing intra-year daily average temperatures. Introducing the day-of-the-year temperature modelModeling temperature with the SciPy leastsq function; Day-of-year temperature take two; Moving-average temperature model with lag 1; The Autoregressive Moving Average temperature model; The time-dependent temperature mean adjusted autoregressive model; Outliers analysis of average De Bilt temperature; Using more robust statistics; Summary; Chapter 5: Signal Processing Techniques; Introducing the Sunspot data; Sifting continued; Moving averages; Smoothing functions; Forecasting with an ARMA model; Filtering a signal; Designing the filter. Demonstrating cointegrationSummary; Chapter 6: Profiling, Debugging, and Testing; Assert functions; The assert_almost_equal function; Approximately equal arrays; The assert_array_almost_equal function; Profiling a program with IPython; Debugging with IPython; Performing Unit tests; Nose tests decorators; Summary; Chapter 7: The Scientific Python Ecosystem; Numerical integration; Interpolation; Using Cython with NumPy; Clustering stocks with scikit-learn; Detecting corners; Comparing NumPy to Blaze; Summary; Index. English. Python (Computer program language) http://id.loc.gov/authorities/subjects/sh96008834 Numerical analysis Data processing. Python (Langage de programmation) Analyse numérique Informatique. COMPUTERS Programming Languages Python. bisacsh Numerical analysis Data processing fast Python (Computer program language) fast has work: Learning numpy array (Text) https://id.oclc.org/worldcat/entity/E39PD33xcgDcPMDFDV3Wh8gYRq https://id.oclc.org/worldcat/ontology/hasWork Print version: 9781306875691 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=797947 Volltext CBO01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=797947 Volltext |
spellingShingle | Idris, Ivan Learning NumPy Array / Cover; Copyright; Credits; About the Author; About the Reviewers; www.PacktPub.com; Table of Contents; Preface; Chapter 1: Getting Started with NumPy; Python; Installing NumPy, Matplotlib, SciPy, and IPython on Windows; Installing NumPy, Matplotlib, SciPy, and IPython on Linux; Installing NumPy, Matplotlib, and SciPy on Mac OS X; Building from source; NumPy arrays; Adding arrays; Online resources and help; Summary; Chapter 2: NumPy Basics; The NumPy array object; The advantages of using NumPy arrays; Creating a multidimensional array; Selecting array elements; NumPy numerical types. Data type objectsCharacter codes; dtype constructors; dtype attributes; Creating a record data type; One-dimensional slicing and indexing; Manipulating array shapes; Stacking arrays; Splitting arrays; Array attributes; Converting arrays; Creating views and copies; Fancy indexing; Indexing with a list of locations; Indexing arrays with Booleans; Stride tricks for Sudoku; Broadcasting arrays; Summary; Chapter 3: Basic Data Analysis with NumPy; Introducing the dataset; Determining the daily temperature range; Looking for evidence of global warming; Comparing solar radiation versus temperature. Analyzing wind directionAnalyzing wind speed; Analyzing precipitation and sunshine duration; Analyzing monthly precipitation in De Bilt; Analyzing atmospheric pressure in De Bilt; Analyzing atmospheric humidity in De Bilt; Summary; Chapter 4: Simple Predictive Analytics with NumPy; Examining autocorrelation of average temperature with pandas; Describing data with pandas DataFrames; Correlating weather and stocks with pandas; Predicting temperature; Autoregressive model with lag 1; Autoregressive model with lag 2; Analysing intra-year daily average temperatures. Introducing the day-of-the-year temperature modelModeling temperature with the SciPy leastsq function; Day-of-year temperature take two; Moving-average temperature model with lag 1; The Autoregressive Moving Average temperature model; The time-dependent temperature mean adjusted autoregressive model; Outliers analysis of average De Bilt temperature; Using more robust statistics; Summary; Chapter 5: Signal Processing Techniques; Introducing the Sunspot data; Sifting continued; Moving averages; Smoothing functions; Forecasting with an ARMA model; Filtering a signal; Designing the filter. Demonstrating cointegrationSummary; Chapter 6: Profiling, Debugging, and Testing; Assert functions; The assert_almost_equal function; Approximately equal arrays; The assert_array_almost_equal function; Profiling a program with IPython; Debugging with IPython; Performing Unit tests; Nose tests decorators; Summary; Chapter 7: The Scientific Python Ecosystem; Numerical integration; Interpolation; Using Cython with NumPy; Clustering stocks with scikit-learn; Detecting corners; Comparing NumPy to Blaze; Summary; Index. Python (Computer program language) http://id.loc.gov/authorities/subjects/sh96008834 Numerical analysis Data processing. Python (Langage de programmation) Analyse numérique Informatique. COMPUTERS Programming Languages Python. bisacsh Numerical analysis Data processing fast Python (Computer program language) fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh96008834 |
title | Learning NumPy Array / |
title_auth | Learning NumPy Array / |
title_exact_search | Learning NumPy Array / |
title_full | Learning NumPy Array / Ivan Idris. |
title_fullStr | Learning NumPy Array / Ivan Idris. |
title_full_unstemmed | Learning NumPy Array / Ivan Idris. |
title_short | Learning NumPy Array / |
title_sort | learning numpy array |
topic | Python (Computer program language) http://id.loc.gov/authorities/subjects/sh96008834 Numerical analysis Data processing. Python (Langage de programmation) Analyse numérique Informatique. COMPUTERS Programming Languages Python. bisacsh Numerical analysis Data processing fast Python (Computer program language) fast |
topic_facet | Python (Computer program language) Numerical analysis Data processing. Python (Langage de programmation) Analyse numérique Informatique. COMPUTERS Programming Languages Python. Numerical analysis Data processing |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=797947 |
work_keys_str_mv | AT idrisivan learningnumpyarray |