Advances in FDTD computational electrodynamics :: photonics and nanotechnology /
This book presents the current state-of-the-art in formulating and implementing computational models of light with materials such as silicon and gold at the nanoscale. Maxwell's equations are solved using the finite-difference time-domain (FDTD) technique. It will help you understand the latest...
Gespeichert in:
Weitere Verfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston :
Artech House,
2013.
|
Schriftenreihe: | Artech House antennas and propagation library.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This book presents the current state-of-the-art in formulating and implementing computational models of light with materials such as silicon and gold at the nanoscale. Maxwell's equations are solved using the finite-difference time-domain (FDTD) technique. It will help you understand the latest developments in computational modeling of nanoscale optical microscopy and microchip lithography. You will also explore cutting-edge details in modeling nanoscale plasmonics, including nonlocal dielectric functions, molecular interactions, and multi-level semiconductor gain. Other topics include nanoscale biophotonics, especially for detecting early-stage cancers, and quantum vacuum, including the Casimir effect and blackbody radiation. -- |
Beschreibung: | "This book reviews the current state-of-the-art in formulating and implementing computational models of optical interactions with nanoscale material structures"--Page xv |
Beschreibung: | 1 online resource (xxiii, 623 pages) : illustrations (some color) |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9781608071715 1608071715 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn875895008 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 140407s2013 maua ob 001 0 eng d | ||
040 | |a N$T |b eng |e rda |e pn |c N$T |d YDXCP |d DEBSZ |d E7B |d B24X7 |d CAUOI |d COO |d EBLCP |d CCO |d MERUC |d LOA |d AGLDB |d OCLCQ |d K6U |d FVL |d VGM |d ZCU |d OCLCQ |d U3W |d STF |d OCLCF |d VTS |d COCUF |d ICG |d INT |d VT2 |d CUY |d OCLCQ |d WYU |d TKN |d OCLCQ |d DKC |d AU@ |d OCLCQ |d UKAHL |d OCLCQ |d OCLCO |d UPM |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d SXB |d OCLCQ | ||
016 | 7 | |a 016302798 |2 Uk | |
019 | |a 880440217 |a 923567202 |a 929146947 |a 962054493 |a 1055333292 |a 1066605847 |a 1081221134 | ||
020 | |a 9781608071715 |q (electronic bk.) | ||
020 | |a 1608071715 |q (electronic bk.) | ||
020 | |z 9781608071708 | ||
020 | |z 1608071707 | ||
035 | |a (OCoLC)875895008 |z (OCoLC)880440217 |z (OCoLC)923567202 |z (OCoLC)929146947 |z (OCoLC)962054493 |z (OCoLC)1055333292 |z (OCoLC)1066605847 |z (OCoLC)1081221134 | ||
050 | 4 | |a TA1530 |b .A38 2013eb | |
072 | 7 | |a SCI |x 021000 |2 bisacsh | |
072 | 7 | |a SCI |x 022000 |2 bisacsh | |
082 | 7 | |a 537.6 |2 23 | |
049 | |a MAIN | ||
245 | 0 | 0 | |a Advances in FDTD computational electrodynamics : |b photonics and nanotechnology / |c Allen Taflove, editor ; Ardavan Oskooi and Steven G. Johnson, Coeditors. |
246 | 3 | 0 | |a FDTD computational electrodynamics |
246 | 3 | |a Finite-difference time-domain computational electrodynamics | |
246 | 3 | 0 | |a Photonics and nanotechnology |
264 | 1 | |a Boston : |b Artech House, |c 2013. | |
264 | 4 | |c ©2013 | |
300 | |a 1 online resource (xxiii, 623 pages) : |b illustrations (some color) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Artech House antennas and propagation library | |
500 | |a "This book reviews the current state-of-the-art in formulating and implementing computational models of optical interactions with nanoscale material structures"--Page xv | ||
504 | |a Includes bibliographical references and index. | ||
588 | 0 | |a Print version record. | |
520 | |a This book presents the current state-of-the-art in formulating and implementing computational models of light with materials such as silicon and gold at the nanoscale. Maxwell's equations are solved using the finite-difference time-domain (FDTD) technique. It will help you understand the latest developments in computational modeling of nanoscale optical microscopy and microchip lithography. You will also explore cutting-edge details in modeling nanoscale plasmonics, including nonlocal dielectric functions, molecular interactions, and multi-level semiconductor gain. Other topics include nanoscale biophotonics, especially for detecting early-stage cancers, and quantum vacuum, including the Casimir effect and blackbody radiation. -- |c Edited summary from book. | ||
505 | 0 | |a Advances in FDTD Computational Electrodynamics Photonics and Nanotechnology -- Contents -- Preface -- Chapter 1 Parallel-Processing Three-Dimensional Staggered-Grid Local-Fourier-Basis PSTD Technique -- 1.1 INTRODUCTION -- 1.2 MOTIVATION -- 1.3 LOCAL FOURIER BASIS AND OVERLAPPING DOMAIN DECOMPOSITION -- 1.4 KEY FEATURES OF THE SL-PSTD TECHNIQUE -- 1.4.1 FFT on a Local Fourier Basis -- 1.4.2 Absence of the Gibbs Phenomenon Artifact -- 1.5 TIME-STEPPING RELATIONS FOR DIELECTRIC SYSTEMS -- 1.6 ELIMINATION OF NUMERICAL PHASE VELOCITY ERROR FOR A MONOCHROMATIC EXCITATION | |
505 | 8 | |a 1.7 TIME-STEPPING RELATIONS WITHIN THE PERFECTLY MATCHED LAYER ABSORBING OUTER BOUNDARY1.8 REDUCTION OF THE NUMERICAL ERROR IN THE NEAR-FIELD TO FAR-FIELD TRANSFORMATION -- 1.9 IMPLEMENTATION ON A DISTRIBUTED-MEMORY SUPERCOMPUTING CLUSTER -- 1.10 VALIDATION OF THE SL-PSTD TECHNIQUE -- 1.10.1 Far-Field Scattering by a Plane-Wave-Illuminated Dielectric Sphere -- 1.10.2 Far-Field Radiation from an Electric Dipole Embedded within a Double-Layered Concentric Dielectric Sphere -- 1.11 SUMMARY -- REFERENCES | |
505 | 8 | |a Chapter 2 Unconditionally Stable Laguerre Polynomial-Based FDTD Method2.1 INTRODUCTION -- 2.2 FORMULATION OF THE CONVENTIONAL 3-D LAGUERRE-BASED FDTD METHOD -- 2.3 FORMULATION OF AN EFFICIENT 3-D LAGUERRE-BASED FDTD METHOD -- 2.4 PML ABSORBING BOUNDARY CONDITION -- 2.5 NUMERICAL RESULTS -- 2.5.1 Parallel-Plate Capacitor: Uniform 3-D Grid -- 2.5.2 Shielded Microstrip Line: Graded Grid in One Direction -- 2.5.3 PML Absorbing Boundary Condition Performance -- 2.6 SUMMARY AND CONCLUSIONS -- REFERENCES | |
505 | 8 | |a Chapter 3 Exact Total-Field/Scattered-Field Plane-WaveSource Condition3.1 INTRODUCTION -- 3.2 DEVELOPMENT OF THE EXACT TF/SF FORMULATION FOR FDTD -- 3.3 BASIC TF/SF FORMULATION -- 3.4 ELECTRIC AND MAGNETIC CURRENT SOURCES AT THE TF/SF INTERFACE -- 3.5 INCIDENT PLANE-WAVE FIELDS IN A HOMOGENEOUS BACKGROUND MEDIUM -- 3.6 FDTD REALIZATION OF THE BASIC TF/SF FORMULATION -- 3.7 ON CONSTRUCTING AN EXACT FDTD TF/SF PLANE-WAVE SOURCE -- 3.8 FDTD DISCRETE PLANE-WAVE SOURCE FOR THE EXACT TF/SF FORMULATION -- 3.9 AN EFFICIENT INTEGER MAPPING | |
505 | 8 | |a 3.10 BOUNDARY CONDITIONS AND VECTOR PLANE-WAVE POLARIZATION3.11 REQUIRED CURRENT DENSITIES Jinc AND Minc -- 3.12 SUMMARY OF METHOD -- 3.13 MODELING EXAMPLES -- 3.14 DISCUSSION -- REFERENCES -- Chapter 4 Electromagnetic Wave Source Conditions -- 4.1 OVERVIEW -- 4.2 INCIDENT FIELDS AND EQUIVALENT CURRENTS -- 4.2.1 The Principle of Equivalence -- 4.2.2 Discretization and Dispersion of Equivalent Currents -- 4.3 SEPARATING INCIDENT AND SCATTERED FIELDS -- 4.4 CURRENTS AND FIELDS: THE LOCAL DENSITY OF STATES | |
650 | 0 | |a Nanophotonics. |0 http://id.loc.gov/authorities/subjects/sh2007009336 | |
650 | 0 | |a Nanostructured materials |x Optical properties |x Mathematical models. | |
650 | 0 | |a Nanostructures |x Optical properties |x Mathematical models. | |
650 | 0 | |a Photonics |x Mathematical models. | |
650 | 0 | |a Maxwell equations |x Numerical solutions. |0 http://id.loc.gov/authorities/subjects/sh93000538 | |
650 | 0 | |a Finite differences. |0 http://id.loc.gov/authorities/subjects/sh85048348 | |
650 | 0 | |a Time-domain analysis. |0 http://id.loc.gov/authorities/subjects/sh88000505 | |
650 | 0 | |a Electrodynamics |x Mathematics. | |
650 | 6 | |a Nanophotonique. | |
650 | 6 | |a Nanomatériaux |x Propriétés optiques |x Modèles mathématiques. | |
650 | 6 | |a Nanostructures |x Propriétés optiques |x Modèles mathématiques. | |
650 | 6 | |a Photonique |x Modèles mathématiques. | |
650 | 6 | |a Équations de Maxwell |x Solutions numériques. | |
650 | 6 | |a Différences finies. | |
650 | 6 | |a Analyse temporelle. | |
650 | 6 | |a Électrodynamique |x Mathématiques. | |
650 | 7 | |a SCIENCE |x Physics |x Electricity. |2 bisacsh | |
650 | 7 | |a SCIENCE |x Physics |x Electromagnetism. |2 bisacsh | |
650 | 7 | |a Electrodynamics |x Mathematics |2 fast | |
650 | 7 | |a Finite differences |2 fast | |
650 | 7 | |a Maxwell equations |x Numerical solutions |2 fast | |
650 | 7 | |a Nanophotonics |2 fast | |
650 | 7 | |a Time-domain analysis |2 fast | |
700 | 1 | |a Taflove, Allen, |e editor. | |
700 | 1 | |a Oskooi, Ardavan, |e editor. | |
700 | 1 | |a Johnson, Steven G., |d 1973- |e editor. |1 https://id.oclc.org/worldcat/entity/E39PBJv8BDqP4crBX48Kqmd4v3 |0 http://id.loc.gov/authorities/names/n2001014714 | |
758 | |i has work: |a Advances in FDTD computational electrodynamics (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGgPmTbrQGhJh34MXwbpxC |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |t Advances in FDTD computational electrodynamics |z 9781608071708 |w (DLC) 2012540970 |w (OCoLC)811964793 |
830 | 0 | |a Artech House antennas and propagation library. |0 http://id.loc.gov/authorities/names/n99255581 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=753586 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH27085510 | ||
938 | |a Books 24x7 |b B247 |n bke00065239 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL3002024 | ||
938 | |a ebrary |b EBRY |n ebr10857825 | ||
938 | |a EBSCOhost |b EBSC |n 753586 | ||
938 | |a IEEE |b IEEE |n 9100982 | ||
938 | |a YBP Library Services |b YANK |n 11759231 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn875895008 |
---|---|
_version_ | 1816882267042086912 |
adam_text | |
any_adam_object | |
author2 | Taflove, Allen Oskooi, Ardavan Johnson, Steven G., 1973- |
author2_role | edt edt edt |
author2_variant | a t at a o ao s g j sg sgj |
author_GND | http://id.loc.gov/authorities/names/n2001014714 |
author_facet | Taflove, Allen Oskooi, Ardavan Johnson, Steven G., 1973- |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | T - Technology |
callnumber-label | TA1530 |
callnumber-raw | TA1530 .A38 2013eb |
callnumber-search | TA1530 .A38 2013eb |
callnumber-sort | TA 41530 A38 42013EB |
callnumber-subject | TA - General and Civil Engineering |
collection | ZDB-4-EBA |
contents | Advances in FDTD Computational Electrodynamics Photonics and Nanotechnology -- Contents -- Preface -- Chapter 1 Parallel-Processing Three-Dimensional Staggered-Grid Local-Fourier-Basis PSTD Technique -- 1.1 INTRODUCTION -- 1.2 MOTIVATION -- 1.3 LOCAL FOURIER BASIS AND OVERLAPPING DOMAIN DECOMPOSITION -- 1.4 KEY FEATURES OF THE SL-PSTD TECHNIQUE -- 1.4.1 FFT on a Local Fourier Basis -- 1.4.2 Absence of the Gibbs Phenomenon Artifact -- 1.5 TIME-STEPPING RELATIONS FOR DIELECTRIC SYSTEMS -- 1.6 ELIMINATION OF NUMERICAL PHASE VELOCITY ERROR FOR A MONOCHROMATIC EXCITATION 1.7 TIME-STEPPING RELATIONS WITHIN THE PERFECTLY MATCHED LAYER ABSORBING OUTER BOUNDARY1.8 REDUCTION OF THE NUMERICAL ERROR IN THE NEAR-FIELD TO FAR-FIELD TRANSFORMATION -- 1.9 IMPLEMENTATION ON A DISTRIBUTED-MEMORY SUPERCOMPUTING CLUSTER -- 1.10 VALIDATION OF THE SL-PSTD TECHNIQUE -- 1.10.1 Far-Field Scattering by a Plane-Wave-Illuminated Dielectric Sphere -- 1.10.2 Far-Field Radiation from an Electric Dipole Embedded within a Double-Layered Concentric Dielectric Sphere -- 1.11 SUMMARY -- REFERENCES Chapter 2 Unconditionally Stable Laguerre Polynomial-Based FDTD Method2.1 INTRODUCTION -- 2.2 FORMULATION OF THE CONVENTIONAL 3-D LAGUERRE-BASED FDTD METHOD -- 2.3 FORMULATION OF AN EFFICIENT 3-D LAGUERRE-BASED FDTD METHOD -- 2.4 PML ABSORBING BOUNDARY CONDITION -- 2.5 NUMERICAL RESULTS -- 2.5.1 Parallel-Plate Capacitor: Uniform 3-D Grid -- 2.5.2 Shielded Microstrip Line: Graded Grid in One Direction -- 2.5.3 PML Absorbing Boundary Condition Performance -- 2.6 SUMMARY AND CONCLUSIONS -- REFERENCES Chapter 3 Exact Total-Field/Scattered-Field Plane-WaveSource Condition3.1 INTRODUCTION -- 3.2 DEVELOPMENT OF THE EXACT TF/SF FORMULATION FOR FDTD -- 3.3 BASIC TF/SF FORMULATION -- 3.4 ELECTRIC AND MAGNETIC CURRENT SOURCES AT THE TF/SF INTERFACE -- 3.5 INCIDENT PLANE-WAVE FIELDS IN A HOMOGENEOUS BACKGROUND MEDIUM -- 3.6 FDTD REALIZATION OF THE BASIC TF/SF FORMULATION -- 3.7 ON CONSTRUCTING AN EXACT FDTD TF/SF PLANE-WAVE SOURCE -- 3.8 FDTD DISCRETE PLANE-WAVE SOURCE FOR THE EXACT TF/SF FORMULATION -- 3.9 AN EFFICIENT INTEGER MAPPING 3.10 BOUNDARY CONDITIONS AND VECTOR PLANE-WAVE POLARIZATION3.11 REQUIRED CURRENT DENSITIES Jinc AND Minc -- 3.12 SUMMARY OF METHOD -- 3.13 MODELING EXAMPLES -- 3.14 DISCUSSION -- REFERENCES -- Chapter 4 Electromagnetic Wave Source Conditions -- 4.1 OVERVIEW -- 4.2 INCIDENT FIELDS AND EQUIVALENT CURRENTS -- 4.2.1 The Principle of Equivalence -- 4.2.2 Discretization and Dispersion of Equivalent Currents -- 4.3 SEPARATING INCIDENT AND SCATTERED FIELDS -- 4.4 CURRENTS AND FIELDS: THE LOCAL DENSITY OF STATES |
ctrlnum | (OCoLC)875895008 |
dewey-full | 537.6 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 537 - Electricity and electronics |
dewey-raw | 537.6 |
dewey-search | 537.6 |
dewey-sort | 3537.6 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>08121cam a2200949 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn875895008</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">140407s2013 maua ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">E7B</subfield><subfield code="d">B24X7</subfield><subfield code="d">CAUOI</subfield><subfield code="d">COO</subfield><subfield code="d">EBLCP</subfield><subfield code="d">CCO</subfield><subfield code="d">MERUC</subfield><subfield code="d">LOA</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">FVL</subfield><subfield code="d">VGM</subfield><subfield code="d">ZCU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">STF</subfield><subfield code="d">OCLCF</subfield><subfield code="d">VTS</subfield><subfield code="d">COCUF</subfield><subfield code="d">ICG</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">CUY</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">TKN</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DKC</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">UPM</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SXB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">016302798</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">880440217</subfield><subfield code="a">923567202</subfield><subfield code="a">929146947</subfield><subfield code="a">962054493</subfield><subfield code="a">1055333292</subfield><subfield code="a">1066605847</subfield><subfield code="a">1081221134</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781608071715</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1608071715</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781608071708</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1608071707</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)875895008</subfield><subfield code="z">(OCoLC)880440217</subfield><subfield code="z">(OCoLC)923567202</subfield><subfield code="z">(OCoLC)929146947</subfield><subfield code="z">(OCoLC)962054493</subfield><subfield code="z">(OCoLC)1055333292</subfield><subfield code="z">(OCoLC)1066605847</subfield><subfield code="z">(OCoLC)1081221134</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">TA1530</subfield><subfield code="b">.A38 2013eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">021000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">022000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">537.6</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Advances in FDTD computational electrodynamics :</subfield><subfield code="b">photonics and nanotechnology /</subfield><subfield code="c">Allen Taflove, editor ; Ardavan Oskooi and Steven G. Johnson, Coeditors.</subfield></datafield><datafield tag="246" ind1="3" ind2="0"><subfield code="a">FDTD computational electrodynamics</subfield></datafield><datafield tag="246" ind1="3" ind2=" "><subfield code="a">Finite-difference time-domain computational electrodynamics</subfield></datafield><datafield tag="246" ind1="3" ind2="0"><subfield code="a">Photonics and nanotechnology</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston :</subfield><subfield code="b">Artech House,</subfield><subfield code="c">2013.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xxiii, 623 pages) :</subfield><subfield code="b">illustrations (some color)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Artech House antennas and propagation library</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">"This book reviews the current state-of-the-art in formulating and implementing computational models of optical interactions with nanoscale material structures"--Page xv</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book presents the current state-of-the-art in formulating and implementing computational models of light with materials such as silicon and gold at the nanoscale. Maxwell's equations are solved using the finite-difference time-domain (FDTD) technique. It will help you understand the latest developments in computational modeling of nanoscale optical microscopy and microchip lithography. You will also explore cutting-edge details in modeling nanoscale plasmonics, including nonlocal dielectric functions, molecular interactions, and multi-level semiconductor gain. Other topics include nanoscale biophotonics, especially for detecting early-stage cancers, and quantum vacuum, including the Casimir effect and blackbody radiation. --</subfield><subfield code="c">Edited summary from book.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Advances in FDTD Computational Electrodynamics Photonics and Nanotechnology -- Contents -- Preface -- Chapter 1 Parallel-Processing Three-Dimensional Staggered-Grid Local-Fourier-Basis PSTD Technique -- 1.1 INTRODUCTION -- 1.2 MOTIVATION -- 1.3 LOCAL FOURIER BASIS AND OVERLAPPING DOMAIN DECOMPOSITION -- 1.4 KEY FEATURES OF THE SL-PSTD TECHNIQUE -- 1.4.1 FFT on a Local Fourier Basis -- 1.4.2 Absence of the Gibbs Phenomenon Artifact -- 1.5 TIME-STEPPING RELATIONS FOR DIELECTRIC SYSTEMS -- 1.6 ELIMINATION OF NUMERICAL PHASE VELOCITY ERROR FOR A MONOCHROMATIC EXCITATION</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1.7 TIME-STEPPING RELATIONS WITHIN THE PERFECTLY MATCHED LAYER ABSORBING OUTER BOUNDARY1.8 REDUCTION OF THE NUMERICAL ERROR IN THE NEAR-FIELD TO FAR-FIELD TRANSFORMATION -- 1.9 IMPLEMENTATION ON A DISTRIBUTED-MEMORY SUPERCOMPUTING CLUSTER -- 1.10 VALIDATION OF THE SL-PSTD TECHNIQUE -- 1.10.1 Far-Field Scattering by a Plane-Wave-Illuminated Dielectric Sphere -- 1.10.2 Far-Field Radiation from an Electric Dipole Embedded within a Double-Layered Concentric Dielectric Sphere -- 1.11 SUMMARY -- REFERENCES</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter 2 Unconditionally Stable Laguerre Polynomial-Based FDTD Method2.1 INTRODUCTION -- 2.2 FORMULATION OF THE CONVENTIONAL 3-D LAGUERRE-BASED FDTD METHOD -- 2.3 FORMULATION OF AN EFFICIENT 3-D LAGUERRE-BASED FDTD METHOD -- 2.4 PML ABSORBING BOUNDARY CONDITION -- 2.5 NUMERICAL RESULTS -- 2.5.1 Parallel-Plate Capacitor: Uniform 3-D Grid -- 2.5.2 Shielded Microstrip Line: Graded Grid in One Direction -- 2.5.3 PML Absorbing Boundary Condition Performance -- 2.6 SUMMARY AND CONCLUSIONS -- REFERENCES</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter 3 Exact Total-Field/Scattered-Field Plane-WaveSource Condition3.1 INTRODUCTION -- 3.2 DEVELOPMENT OF THE EXACT TF/SF FORMULATION FOR FDTD -- 3.3 BASIC TF/SF FORMULATION -- 3.4 ELECTRIC AND MAGNETIC CURRENT SOURCES AT THE TF/SF INTERFACE -- 3.5 INCIDENT PLANE-WAVE FIELDS IN A HOMOGENEOUS BACKGROUND MEDIUM -- 3.6 FDTD REALIZATION OF THE BASIC TF/SF FORMULATION -- 3.7 ON CONSTRUCTING AN EXACT FDTD TF/SF PLANE-WAVE SOURCE -- 3.8 FDTD DISCRETE PLANE-WAVE SOURCE FOR THE EXACT TF/SF FORMULATION -- 3.9 AN EFFICIENT INTEGER MAPPING</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.10 BOUNDARY CONDITIONS AND VECTOR PLANE-WAVE POLARIZATION3.11 REQUIRED CURRENT DENSITIES Jinc AND Minc -- 3.12 SUMMARY OF METHOD -- 3.13 MODELING EXAMPLES -- 3.14 DISCUSSION -- REFERENCES -- Chapter 4 Electromagnetic Wave Source Conditions -- 4.1 OVERVIEW -- 4.2 INCIDENT FIELDS AND EQUIVALENT CURRENTS -- 4.2.1 The Principle of Equivalence -- 4.2.2 Discretization and Dispersion of Equivalent Currents -- 4.3 SEPARATING INCIDENT AND SCATTERED FIELDS -- 4.4 CURRENTS AND FIELDS: THE LOCAL DENSITY OF STATES</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Nanophotonics.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh2007009336</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Nanostructured materials</subfield><subfield code="x">Optical properties</subfield><subfield code="x">Mathematical models.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Nanostructures</subfield><subfield code="x">Optical properties</subfield><subfield code="x">Mathematical models.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Photonics</subfield><subfield code="x">Mathematical models.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Maxwell equations</subfield><subfield code="x">Numerical solutions.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh93000538</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Finite differences.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85048348</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Time-domain analysis.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh88000505</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Electrodynamics</subfield><subfield code="x">Mathematics.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Nanophotonique.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Nanomatériaux</subfield><subfield code="x">Propriétés optiques</subfield><subfield code="x">Modèles mathématiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Nanostructures</subfield><subfield code="x">Propriétés optiques</subfield><subfield code="x">Modèles mathématiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Photonique</subfield><subfield code="x">Modèles mathématiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Équations de Maxwell</subfield><subfield code="x">Solutions numériques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Différences finies.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Analyse temporelle.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Électrodynamique</subfield><subfield code="x">Mathématiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Physics</subfield><subfield code="x">Electricity.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Physics</subfield><subfield code="x">Electromagnetism.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Electrodynamics</subfield><subfield code="x">Mathematics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Finite differences</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Maxwell equations</subfield><subfield code="x">Numerical solutions</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nanophotonics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Time-domain analysis</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Taflove, Allen,</subfield><subfield code="e">editor.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Oskooi, Ardavan,</subfield><subfield code="e">editor.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Johnson, Steven G.,</subfield><subfield code="d">1973-</subfield><subfield code="e">editor.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJv8BDqP4crBX48Kqmd4v3</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2001014714</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Advances in FDTD computational electrodynamics (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGgPmTbrQGhJh34MXwbpxC</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="t">Advances in FDTD computational electrodynamics</subfield><subfield code="z">9781608071708</subfield><subfield code="w">(DLC) 2012540970</subfield><subfield code="w">(OCoLC)811964793</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Artech House antennas and propagation library.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n99255581</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=753586</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH27085510</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Books 24x7</subfield><subfield code="b">B247</subfield><subfield code="n">bke00065239</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL3002024</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10857825</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">753586</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">IEEE</subfield><subfield code="b">IEEE</subfield><subfield code="n">9100982</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">11759231</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn875895008 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:25:53Z |
institution | BVB |
isbn | 9781608071715 1608071715 |
language | English |
oclc_num | 875895008 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xxiii, 623 pages) : illustrations (some color) |
psigel | ZDB-4-EBA |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Artech House, |
record_format | marc |
series | Artech House antennas and propagation library. |
series2 | Artech House antennas and propagation library |
spelling | Advances in FDTD computational electrodynamics : photonics and nanotechnology / Allen Taflove, editor ; Ardavan Oskooi and Steven G. Johnson, Coeditors. FDTD computational electrodynamics Finite-difference time-domain computational electrodynamics Photonics and nanotechnology Boston : Artech House, 2013. ©2013 1 online resource (xxiii, 623 pages) : illustrations (some color) text txt rdacontent computer c rdamedia online resource cr rdacarrier Artech House antennas and propagation library "This book reviews the current state-of-the-art in formulating and implementing computational models of optical interactions with nanoscale material structures"--Page xv Includes bibliographical references and index. Print version record. This book presents the current state-of-the-art in formulating and implementing computational models of light with materials such as silicon and gold at the nanoscale. Maxwell's equations are solved using the finite-difference time-domain (FDTD) technique. It will help you understand the latest developments in computational modeling of nanoscale optical microscopy and microchip lithography. You will also explore cutting-edge details in modeling nanoscale plasmonics, including nonlocal dielectric functions, molecular interactions, and multi-level semiconductor gain. Other topics include nanoscale biophotonics, especially for detecting early-stage cancers, and quantum vacuum, including the Casimir effect and blackbody radiation. -- Edited summary from book. Advances in FDTD Computational Electrodynamics Photonics and Nanotechnology -- Contents -- Preface -- Chapter 1 Parallel-Processing Three-Dimensional Staggered-Grid Local-Fourier-Basis PSTD Technique -- 1.1 INTRODUCTION -- 1.2 MOTIVATION -- 1.3 LOCAL FOURIER BASIS AND OVERLAPPING DOMAIN DECOMPOSITION -- 1.4 KEY FEATURES OF THE SL-PSTD TECHNIQUE -- 1.4.1 FFT on a Local Fourier Basis -- 1.4.2 Absence of the Gibbs Phenomenon Artifact -- 1.5 TIME-STEPPING RELATIONS FOR DIELECTRIC SYSTEMS -- 1.6 ELIMINATION OF NUMERICAL PHASE VELOCITY ERROR FOR A MONOCHROMATIC EXCITATION 1.7 TIME-STEPPING RELATIONS WITHIN THE PERFECTLY MATCHED LAYER ABSORBING OUTER BOUNDARY1.8 REDUCTION OF THE NUMERICAL ERROR IN THE NEAR-FIELD TO FAR-FIELD TRANSFORMATION -- 1.9 IMPLEMENTATION ON A DISTRIBUTED-MEMORY SUPERCOMPUTING CLUSTER -- 1.10 VALIDATION OF THE SL-PSTD TECHNIQUE -- 1.10.1 Far-Field Scattering by a Plane-Wave-Illuminated Dielectric Sphere -- 1.10.2 Far-Field Radiation from an Electric Dipole Embedded within a Double-Layered Concentric Dielectric Sphere -- 1.11 SUMMARY -- REFERENCES Chapter 2 Unconditionally Stable Laguerre Polynomial-Based FDTD Method2.1 INTRODUCTION -- 2.2 FORMULATION OF THE CONVENTIONAL 3-D LAGUERRE-BASED FDTD METHOD -- 2.3 FORMULATION OF AN EFFICIENT 3-D LAGUERRE-BASED FDTD METHOD -- 2.4 PML ABSORBING BOUNDARY CONDITION -- 2.5 NUMERICAL RESULTS -- 2.5.1 Parallel-Plate Capacitor: Uniform 3-D Grid -- 2.5.2 Shielded Microstrip Line: Graded Grid in One Direction -- 2.5.3 PML Absorbing Boundary Condition Performance -- 2.6 SUMMARY AND CONCLUSIONS -- REFERENCES Chapter 3 Exact Total-Field/Scattered-Field Plane-WaveSource Condition3.1 INTRODUCTION -- 3.2 DEVELOPMENT OF THE EXACT TF/SF FORMULATION FOR FDTD -- 3.3 BASIC TF/SF FORMULATION -- 3.4 ELECTRIC AND MAGNETIC CURRENT SOURCES AT THE TF/SF INTERFACE -- 3.5 INCIDENT PLANE-WAVE FIELDS IN A HOMOGENEOUS BACKGROUND MEDIUM -- 3.6 FDTD REALIZATION OF THE BASIC TF/SF FORMULATION -- 3.7 ON CONSTRUCTING AN EXACT FDTD TF/SF PLANE-WAVE SOURCE -- 3.8 FDTD DISCRETE PLANE-WAVE SOURCE FOR THE EXACT TF/SF FORMULATION -- 3.9 AN EFFICIENT INTEGER MAPPING 3.10 BOUNDARY CONDITIONS AND VECTOR PLANE-WAVE POLARIZATION3.11 REQUIRED CURRENT DENSITIES Jinc AND Minc -- 3.12 SUMMARY OF METHOD -- 3.13 MODELING EXAMPLES -- 3.14 DISCUSSION -- REFERENCES -- Chapter 4 Electromagnetic Wave Source Conditions -- 4.1 OVERVIEW -- 4.2 INCIDENT FIELDS AND EQUIVALENT CURRENTS -- 4.2.1 The Principle of Equivalence -- 4.2.2 Discretization and Dispersion of Equivalent Currents -- 4.3 SEPARATING INCIDENT AND SCATTERED FIELDS -- 4.4 CURRENTS AND FIELDS: THE LOCAL DENSITY OF STATES Nanophotonics. http://id.loc.gov/authorities/subjects/sh2007009336 Nanostructured materials Optical properties Mathematical models. Nanostructures Optical properties Mathematical models. Photonics Mathematical models. Maxwell equations Numerical solutions. http://id.loc.gov/authorities/subjects/sh93000538 Finite differences. http://id.loc.gov/authorities/subjects/sh85048348 Time-domain analysis. http://id.loc.gov/authorities/subjects/sh88000505 Electrodynamics Mathematics. Nanophotonique. Nanomatériaux Propriétés optiques Modèles mathématiques. Nanostructures Propriétés optiques Modèles mathématiques. Photonique Modèles mathématiques. Équations de Maxwell Solutions numériques. Différences finies. Analyse temporelle. Électrodynamique Mathématiques. SCIENCE Physics Electricity. bisacsh SCIENCE Physics Electromagnetism. bisacsh Electrodynamics Mathematics fast Finite differences fast Maxwell equations Numerical solutions fast Nanophotonics fast Time-domain analysis fast Taflove, Allen, editor. Oskooi, Ardavan, editor. Johnson, Steven G., 1973- editor. https://id.oclc.org/worldcat/entity/E39PBJv8BDqP4crBX48Kqmd4v3 http://id.loc.gov/authorities/names/n2001014714 has work: Advances in FDTD computational electrodynamics (Text) https://id.oclc.org/worldcat/entity/E39PCGgPmTbrQGhJh34MXwbpxC https://id.oclc.org/worldcat/ontology/hasWork Print version: Advances in FDTD computational electrodynamics 9781608071708 (DLC) 2012540970 (OCoLC)811964793 Artech House antennas and propagation library. http://id.loc.gov/authorities/names/n99255581 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=753586 Volltext |
spellingShingle | Advances in FDTD computational electrodynamics : photonics and nanotechnology / Artech House antennas and propagation library. Advances in FDTD Computational Electrodynamics Photonics and Nanotechnology -- Contents -- Preface -- Chapter 1 Parallel-Processing Three-Dimensional Staggered-Grid Local-Fourier-Basis PSTD Technique -- 1.1 INTRODUCTION -- 1.2 MOTIVATION -- 1.3 LOCAL FOURIER BASIS AND OVERLAPPING DOMAIN DECOMPOSITION -- 1.4 KEY FEATURES OF THE SL-PSTD TECHNIQUE -- 1.4.1 FFT on a Local Fourier Basis -- 1.4.2 Absence of the Gibbs Phenomenon Artifact -- 1.5 TIME-STEPPING RELATIONS FOR DIELECTRIC SYSTEMS -- 1.6 ELIMINATION OF NUMERICAL PHASE VELOCITY ERROR FOR A MONOCHROMATIC EXCITATION 1.7 TIME-STEPPING RELATIONS WITHIN THE PERFECTLY MATCHED LAYER ABSORBING OUTER BOUNDARY1.8 REDUCTION OF THE NUMERICAL ERROR IN THE NEAR-FIELD TO FAR-FIELD TRANSFORMATION -- 1.9 IMPLEMENTATION ON A DISTRIBUTED-MEMORY SUPERCOMPUTING CLUSTER -- 1.10 VALIDATION OF THE SL-PSTD TECHNIQUE -- 1.10.1 Far-Field Scattering by a Plane-Wave-Illuminated Dielectric Sphere -- 1.10.2 Far-Field Radiation from an Electric Dipole Embedded within a Double-Layered Concentric Dielectric Sphere -- 1.11 SUMMARY -- REFERENCES Chapter 2 Unconditionally Stable Laguerre Polynomial-Based FDTD Method2.1 INTRODUCTION -- 2.2 FORMULATION OF THE CONVENTIONAL 3-D LAGUERRE-BASED FDTD METHOD -- 2.3 FORMULATION OF AN EFFICIENT 3-D LAGUERRE-BASED FDTD METHOD -- 2.4 PML ABSORBING BOUNDARY CONDITION -- 2.5 NUMERICAL RESULTS -- 2.5.1 Parallel-Plate Capacitor: Uniform 3-D Grid -- 2.5.2 Shielded Microstrip Line: Graded Grid in One Direction -- 2.5.3 PML Absorbing Boundary Condition Performance -- 2.6 SUMMARY AND CONCLUSIONS -- REFERENCES Chapter 3 Exact Total-Field/Scattered-Field Plane-WaveSource Condition3.1 INTRODUCTION -- 3.2 DEVELOPMENT OF THE EXACT TF/SF FORMULATION FOR FDTD -- 3.3 BASIC TF/SF FORMULATION -- 3.4 ELECTRIC AND MAGNETIC CURRENT SOURCES AT THE TF/SF INTERFACE -- 3.5 INCIDENT PLANE-WAVE FIELDS IN A HOMOGENEOUS BACKGROUND MEDIUM -- 3.6 FDTD REALIZATION OF THE BASIC TF/SF FORMULATION -- 3.7 ON CONSTRUCTING AN EXACT FDTD TF/SF PLANE-WAVE SOURCE -- 3.8 FDTD DISCRETE PLANE-WAVE SOURCE FOR THE EXACT TF/SF FORMULATION -- 3.9 AN EFFICIENT INTEGER MAPPING 3.10 BOUNDARY CONDITIONS AND VECTOR PLANE-WAVE POLARIZATION3.11 REQUIRED CURRENT DENSITIES Jinc AND Minc -- 3.12 SUMMARY OF METHOD -- 3.13 MODELING EXAMPLES -- 3.14 DISCUSSION -- REFERENCES -- Chapter 4 Electromagnetic Wave Source Conditions -- 4.1 OVERVIEW -- 4.2 INCIDENT FIELDS AND EQUIVALENT CURRENTS -- 4.2.1 The Principle of Equivalence -- 4.2.2 Discretization and Dispersion of Equivalent Currents -- 4.3 SEPARATING INCIDENT AND SCATTERED FIELDS -- 4.4 CURRENTS AND FIELDS: THE LOCAL DENSITY OF STATES Nanophotonics. http://id.loc.gov/authorities/subjects/sh2007009336 Nanostructured materials Optical properties Mathematical models. Nanostructures Optical properties Mathematical models. Photonics Mathematical models. Maxwell equations Numerical solutions. http://id.loc.gov/authorities/subjects/sh93000538 Finite differences. http://id.loc.gov/authorities/subjects/sh85048348 Time-domain analysis. http://id.loc.gov/authorities/subjects/sh88000505 Electrodynamics Mathematics. Nanophotonique. Nanomatériaux Propriétés optiques Modèles mathématiques. Nanostructures Propriétés optiques Modèles mathématiques. Photonique Modèles mathématiques. Équations de Maxwell Solutions numériques. Différences finies. Analyse temporelle. Électrodynamique Mathématiques. SCIENCE Physics Electricity. bisacsh SCIENCE Physics Electromagnetism. bisacsh Electrodynamics Mathematics fast Finite differences fast Maxwell equations Numerical solutions fast Nanophotonics fast Time-domain analysis fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh2007009336 http://id.loc.gov/authorities/subjects/sh93000538 http://id.loc.gov/authorities/subjects/sh85048348 http://id.loc.gov/authorities/subjects/sh88000505 |
title | Advances in FDTD computational electrodynamics : photonics and nanotechnology / |
title_alt | FDTD computational electrodynamics Finite-difference time-domain computational electrodynamics Photonics and nanotechnology |
title_auth | Advances in FDTD computational electrodynamics : photonics and nanotechnology / |
title_exact_search | Advances in FDTD computational electrodynamics : photonics and nanotechnology / |
title_full | Advances in FDTD computational electrodynamics : photonics and nanotechnology / Allen Taflove, editor ; Ardavan Oskooi and Steven G. Johnson, Coeditors. |
title_fullStr | Advances in FDTD computational electrodynamics : photonics and nanotechnology / Allen Taflove, editor ; Ardavan Oskooi and Steven G. Johnson, Coeditors. |
title_full_unstemmed | Advances in FDTD computational electrodynamics : photonics and nanotechnology / Allen Taflove, editor ; Ardavan Oskooi and Steven G. Johnson, Coeditors. |
title_short | Advances in FDTD computational electrodynamics : |
title_sort | advances in fdtd computational electrodynamics photonics and nanotechnology |
title_sub | photonics and nanotechnology / |
topic | Nanophotonics. http://id.loc.gov/authorities/subjects/sh2007009336 Nanostructured materials Optical properties Mathematical models. Nanostructures Optical properties Mathematical models. Photonics Mathematical models. Maxwell equations Numerical solutions. http://id.loc.gov/authorities/subjects/sh93000538 Finite differences. http://id.loc.gov/authorities/subjects/sh85048348 Time-domain analysis. http://id.loc.gov/authorities/subjects/sh88000505 Electrodynamics Mathematics. Nanophotonique. Nanomatériaux Propriétés optiques Modèles mathématiques. Nanostructures Propriétés optiques Modèles mathématiques. Photonique Modèles mathématiques. Équations de Maxwell Solutions numériques. Différences finies. Analyse temporelle. Électrodynamique Mathématiques. SCIENCE Physics Electricity. bisacsh SCIENCE Physics Electromagnetism. bisacsh Electrodynamics Mathematics fast Finite differences fast Maxwell equations Numerical solutions fast Nanophotonics fast Time-domain analysis fast |
topic_facet | Nanophotonics. Nanostructured materials Optical properties Mathematical models. Nanostructures Optical properties Mathematical models. Photonics Mathematical models. Maxwell equations Numerical solutions. Finite differences. Time-domain analysis. Electrodynamics Mathematics. Nanophotonique. Nanomatériaux Propriétés optiques Modèles mathématiques. Nanostructures Propriétés optiques Modèles mathématiques. Photonique Modèles mathématiques. Équations de Maxwell Solutions numériques. Différences finies. Analyse temporelle. Électrodynamique Mathématiques. SCIENCE Physics Electricity. SCIENCE Physics Electromagnetism. Electrodynamics Mathematics Finite differences Maxwell equations Numerical solutions Nanophotonics Time-domain analysis |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=753586 |
work_keys_str_mv | AT tafloveallen advancesinfdtdcomputationalelectrodynamicsphotonicsandnanotechnology AT oskooiardavan advancesinfdtdcomputationalelectrodynamicsphotonicsandnanotechnology AT johnsonsteveng advancesinfdtdcomputationalelectrodynamicsphotonicsandnanotechnology AT tafloveallen fdtdcomputationalelectrodynamics AT oskooiardavan fdtdcomputationalelectrodynamics AT johnsonsteveng fdtdcomputationalelectrodynamics AT tafloveallen finitedifferencetimedomaincomputationalelectrodynamics AT oskooiardavan finitedifferencetimedomaincomputationalelectrodynamics AT johnsonsteveng finitedifferencetimedomaincomputationalelectrodynamics AT tafloveallen photonicsandnanotechnology AT oskooiardavan photonicsandnanotechnology AT johnsonsteveng photonicsandnanotechnology |