Differential geometry for physicists and mathematicians :: moving frames and differential forms : from Euclid past Riemann /
This is a book that the author wishes had been available to him when he was student. It reflects his interest in knowing (like expert mathematicians) the most relevant mathematics for theoretical physics, but in the style of physicists. This means that one is not facing the study of a collection of...
Gespeichert in:
1. Verfasser: | |
---|---|
Körperschaft: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore ; Hackensack, N.J. :
World Scientific Pub. Co.,
©2010.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This is a book that the author wishes had been available to him when he was student. It reflects his interest in knowing (like expert mathematicians) the most relevant mathematics for theoretical physics, but in the style of physicists. This means that one is not facing the study of a collection of definitions, remarks, theorems, corollaries, lemmas, etc. but a narrative - almost like a story being told - that does not impede sophistication and deep results. It covers differential geometry far beyond what general relativists perceive they need to know. And it introduces readers to other areas of mathematics that are of interest to physicists and mathematicians, but are largely overlooked. Among these is Clifford Algebra and its uses in conjunction with differential forms and moving frames. It opens new research vistas that expand the subject matter. In an appendix on the classical theory of curves and surfaces, the author slashes not only the main proofs of the traditional approach, which uses vector calculus, but even existing treatments that also use differential forms for the same purpose. |
Beschreibung: | 1 online resource (xvii, 293 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 277-283) and index. |
ISBN: | 9789814566407 9814566403 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn874213903 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr buu|||uu||| | ||
008 | 091123s2014 si a ob 001 0 eng d | ||
040 | |a WSPC |b eng |e pn |c STF |d N$T |d YDXCP |d ZCU |d OCLCF |d OCLCQ |d PHADU |d OCLCQ |d AGLDB |d OCLCQ |d VTS |d OTZ |d STF |d M8D |d UKAHL |d LEAUB |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d SXB |d OCLCQ | ||
019 | |a 953679819 |a 1055243219 |a 1086532297 |a 1237229705 | ||
020 | |a 9789814566407 |q (electronic bk.) | ||
020 | |a 9814566403 |q (electronic bk.) | ||
020 | |z 9814566403 | ||
020 | |z 9789814566391 |q (hbk.) | ||
035 | |a (OCoLC)874213903 |z (OCoLC)953679819 |z (OCoLC)1055243219 |z (OCoLC)1086532297 |z (OCoLC)1237229705 | ||
050 | 4 | |a QC20 |b .V27 2014 | |
072 | 7 | |a MAT |x 012000 |2 bisacsh | |
082 | 7 | |a 516.3/6 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Vargas, José G. | |
245 | 1 | 0 | |a Differential geometry for physicists and mathematicians : |b moving frames and differential forms : from Euclid past Riemann / |c Jose G. Vargas. |
260 | |a Singapore ; |a Hackensack, N.J. : |b World Scientific Pub. Co., |c ©2010. | ||
300 | |a 1 online resource (xvii, 293 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references (pages 277-283) and index. | ||
505 | 0 | |a I. Introduction. 1. Orientations -- II. Tools. 2. Differential forms -- 3. Vector spaces and tensor products -- 4. Exterior differentiation -- III. Two Klein geometries. 5. Affine Klein geometry -- 6. Euclidean Klein geometry -- IV. Cartan connections. 7. Generalized geometry made simple -- 8. Affine connections -- 9. Euclidean connections -- 10. Riemannian spaces and pseudo-spaces -- V. The future? 11. Extensions of Cartan -- 12. Understand the past to imagine the future -- 13. A book of farewells. | |
520 | |a This is a book that the author wishes had been available to him when he was student. It reflects his interest in knowing (like expert mathematicians) the most relevant mathematics for theoretical physics, but in the style of physicists. This means that one is not facing the study of a collection of definitions, remarks, theorems, corollaries, lemmas, etc. but a narrative - almost like a story being told - that does not impede sophistication and deep results. It covers differential geometry far beyond what general relativists perceive they need to know. And it introduces readers to other areas of mathematics that are of interest to physicists and mathematicians, but are largely overlooked. Among these is Clifford Algebra and its uses in conjunction with differential forms and moving frames. It opens new research vistas that expand the subject matter. In an appendix on the classical theory of curves and surfaces, the author slashes not only the main proofs of the traditional approach, which uses vector calculus, but even existing treatments that also use differential forms for the same purpose. | ||
650 | 0 | |a Mathematical physics. |0 http://id.loc.gov/authorities/subjects/sh85082129 | |
650 | 0 | |a Geometry, Differential. |0 http://id.loc.gov/authorities/subjects/sh85054146 | |
650 | 6 | |a Physique mathématique. | |
650 | 6 | |a Géométrie différentielle. | |
650 | 7 | |a MATHEMATICS |x Geometry |x General. |2 bisacsh | |
650 | 7 | |a Geometry, Differential |2 fast | |
650 | 7 | |a Mathematical physics |2 fast | |
710 | 2 | |a World Scientific (Firm) |0 http://id.loc.gov/authorities/names/no2001005546 | |
776 | 0 | 8 | |i Print version: |z 9789814566391 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=752614 |3 Volltext |
936 | |a BATCHLOAD | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH26330779 | ||
938 | |a EBSCOhost |b EBSC |n 752614 | ||
938 | |a YBP Library Services |b YANK |n 11734370 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn874213903 |
---|---|
_version_ | 1816882265413648384 |
adam_text | |
any_adam_object | |
author | Vargas, José G. |
author_corporate | World Scientific (Firm) |
author_corporate_role | |
author_facet | Vargas, José G. World Scientific (Firm) |
author_role | |
author_sort | Vargas, José G. |
author_variant | j g v jg jgv |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QC20 |
callnumber-raw | QC20 .V27 2014 |
callnumber-search | QC20 .V27 2014 |
callnumber-sort | QC 220 V27 42014 |
callnumber-subject | QC - Physics |
collection | ZDB-4-EBA |
contents | I. Introduction. 1. Orientations -- II. Tools. 2. Differential forms -- 3. Vector spaces and tensor products -- 4. Exterior differentiation -- III. Two Klein geometries. 5. Affine Klein geometry -- 6. Euclidean Klein geometry -- IV. Cartan connections. 7. Generalized geometry made simple -- 8. Affine connections -- 9. Euclidean connections -- 10. Riemannian spaces and pseudo-spaces -- V. The future? 11. Extensions of Cartan -- 12. Understand the past to imagine the future -- 13. A book of farewells. |
ctrlnum | (OCoLC)874213903 |
dewey-full | 516.3/6 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.3/6 |
dewey-search | 516.3/6 |
dewey-sort | 3516.3 16 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03880cam a2200529 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn874213903</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr buu|||uu|||</controlfield><controlfield tag="008">091123s2014 si a ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">WSPC</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">STF</subfield><subfield code="d">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">ZCU</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">PHADU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">OTZ</subfield><subfield code="d">STF</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">LEAUB</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SXB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">953679819</subfield><subfield code="a">1055243219</subfield><subfield code="a">1086532297</subfield><subfield code="a">1237229705</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814566407</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814566403</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9814566403</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789814566391</subfield><subfield code="q">(hbk.)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)874213903</subfield><subfield code="z">(OCoLC)953679819</subfield><subfield code="z">(OCoLC)1055243219</subfield><subfield code="z">(OCoLC)1086532297</subfield><subfield code="z">(OCoLC)1237229705</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QC20</subfield><subfield code="b">.V27 2014</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">012000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">516.3/6</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Vargas, José G.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Differential geometry for physicists and mathematicians :</subfield><subfield code="b">moving frames and differential forms : from Euclid past Riemann /</subfield><subfield code="c">Jose G. Vargas.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Singapore ;</subfield><subfield code="a">Hackensack, N.J. :</subfield><subfield code="b">World Scientific Pub. Co.,</subfield><subfield code="c">©2010.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xvii, 293 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 277-283) and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">I. Introduction. 1. Orientations -- II. Tools. 2. Differential forms -- 3. Vector spaces and tensor products -- 4. Exterior differentiation -- III. Two Klein geometries. 5. Affine Klein geometry -- 6. Euclidean Klein geometry -- IV. Cartan connections. 7. Generalized geometry made simple -- 8. Affine connections -- 9. Euclidean connections -- 10. Riemannian spaces and pseudo-spaces -- V. The future? 11. Extensions of Cartan -- 12. Understand the past to imagine the future -- 13. A book of farewells.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This is a book that the author wishes had been available to him when he was student. It reflects his interest in knowing (like expert mathematicians) the most relevant mathematics for theoretical physics, but in the style of physicists. This means that one is not facing the study of a collection of definitions, remarks, theorems, corollaries, lemmas, etc. but a narrative - almost like a story being told - that does not impede sophistication and deep results. It covers differential geometry far beyond what general relativists perceive they need to know. And it introduces readers to other areas of mathematics that are of interest to physicists and mathematicians, but are largely overlooked. Among these is Clifford Algebra and its uses in conjunction with differential forms and moving frames. It opens new research vistas that expand the subject matter. In an appendix on the classical theory of curves and surfaces, the author slashes not only the main proofs of the traditional approach, which uses vector calculus, but even existing treatments that also use differential forms for the same purpose.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Mathematical physics.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85082129</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Geometry, Differential.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85054146</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Physique mathématique.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Géométrie différentielle.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Geometry</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Geometry, Differential</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematical physics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">World Scientific (Firm)</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2001005546</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="z">9789814566391</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=752614</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="936" ind1=" " ind2=" "><subfield code="a">BATCHLOAD</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH26330779</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">752614</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">11734370</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn874213903 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:25:52Z |
institution | BVB |
institution_GND | http://id.loc.gov/authorities/names/no2001005546 |
isbn | 9789814566407 9814566403 |
language | English |
oclc_num | 874213903 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xvii, 293 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2010 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | World Scientific Pub. Co., |
record_format | marc |
spelling | Vargas, José G. Differential geometry for physicists and mathematicians : moving frames and differential forms : from Euclid past Riemann / Jose G. Vargas. Singapore ; Hackensack, N.J. : World Scientific Pub. Co., ©2010. 1 online resource (xvii, 293 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references (pages 277-283) and index. I. Introduction. 1. Orientations -- II. Tools. 2. Differential forms -- 3. Vector spaces and tensor products -- 4. Exterior differentiation -- III. Two Klein geometries. 5. Affine Klein geometry -- 6. Euclidean Klein geometry -- IV. Cartan connections. 7. Generalized geometry made simple -- 8. Affine connections -- 9. Euclidean connections -- 10. Riemannian spaces and pseudo-spaces -- V. The future? 11. Extensions of Cartan -- 12. Understand the past to imagine the future -- 13. A book of farewells. This is a book that the author wishes had been available to him when he was student. It reflects his interest in knowing (like expert mathematicians) the most relevant mathematics for theoretical physics, but in the style of physicists. This means that one is not facing the study of a collection of definitions, remarks, theorems, corollaries, lemmas, etc. but a narrative - almost like a story being told - that does not impede sophistication and deep results. It covers differential geometry far beyond what general relativists perceive they need to know. And it introduces readers to other areas of mathematics that are of interest to physicists and mathematicians, but are largely overlooked. Among these is Clifford Algebra and its uses in conjunction with differential forms and moving frames. It opens new research vistas that expand the subject matter. In an appendix on the classical theory of curves and surfaces, the author slashes not only the main proofs of the traditional approach, which uses vector calculus, but even existing treatments that also use differential forms for the same purpose. Mathematical physics. http://id.loc.gov/authorities/subjects/sh85082129 Geometry, Differential. http://id.loc.gov/authorities/subjects/sh85054146 Physique mathématique. Géométrie différentielle. MATHEMATICS Geometry General. bisacsh Geometry, Differential fast Mathematical physics fast World Scientific (Firm) http://id.loc.gov/authorities/names/no2001005546 Print version: 9789814566391 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=752614 Volltext |
spellingShingle | Vargas, José G. Differential geometry for physicists and mathematicians : moving frames and differential forms : from Euclid past Riemann / I. Introduction. 1. Orientations -- II. Tools. 2. Differential forms -- 3. Vector spaces and tensor products -- 4. Exterior differentiation -- III. Two Klein geometries. 5. Affine Klein geometry -- 6. Euclidean Klein geometry -- IV. Cartan connections. 7. Generalized geometry made simple -- 8. Affine connections -- 9. Euclidean connections -- 10. Riemannian spaces and pseudo-spaces -- V. The future? 11. Extensions of Cartan -- 12. Understand the past to imagine the future -- 13. A book of farewells. Mathematical physics. http://id.loc.gov/authorities/subjects/sh85082129 Geometry, Differential. http://id.loc.gov/authorities/subjects/sh85054146 Physique mathématique. Géométrie différentielle. MATHEMATICS Geometry General. bisacsh Geometry, Differential fast Mathematical physics fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85082129 http://id.loc.gov/authorities/subjects/sh85054146 |
title | Differential geometry for physicists and mathematicians : moving frames and differential forms : from Euclid past Riemann / |
title_auth | Differential geometry for physicists and mathematicians : moving frames and differential forms : from Euclid past Riemann / |
title_exact_search | Differential geometry for physicists and mathematicians : moving frames and differential forms : from Euclid past Riemann / |
title_full | Differential geometry for physicists and mathematicians : moving frames and differential forms : from Euclid past Riemann / Jose G. Vargas. |
title_fullStr | Differential geometry for physicists and mathematicians : moving frames and differential forms : from Euclid past Riemann / Jose G. Vargas. |
title_full_unstemmed | Differential geometry for physicists and mathematicians : moving frames and differential forms : from Euclid past Riemann / Jose G. Vargas. |
title_short | Differential geometry for physicists and mathematicians : |
title_sort | differential geometry for physicists and mathematicians moving frames and differential forms from euclid past riemann |
title_sub | moving frames and differential forms : from Euclid past Riemann / |
topic | Mathematical physics. http://id.loc.gov/authorities/subjects/sh85082129 Geometry, Differential. http://id.loc.gov/authorities/subjects/sh85054146 Physique mathématique. Géométrie différentielle. MATHEMATICS Geometry General. bisacsh Geometry, Differential fast Mathematical physics fast |
topic_facet | Mathematical physics. Geometry, Differential. Physique mathématique. Géométrie différentielle. MATHEMATICS Geometry General. Geometry, Differential Mathematical physics |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=752614 |
work_keys_str_mv | AT vargasjoseg differentialgeometryforphysicistsandmathematiciansmovingframesanddifferentialformsfromeuclidpastriemann AT worldscientificfirm differentialgeometryforphysicistsandmathematiciansmovingframesanddifferentialformsfromeuclidpastriemann |