Ergodic theory and dynamical systems :: proceedings of the Ergodic Theory Workshops at University of North Carolina at Chapel Hill, 2011-2012 /
This is the proceedings of theworkshop on recent developments in ergodic theory and dynamical systemson March 2011and March 2012 at the University of North Carolina at Chapel Hill. Thearticles in this volume cover several aspects of vibrant research in ergodic theory and dynamical systems. It contai...
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin :
De Gruyter,
[2014]
|
Schriftenreihe: | Proceedings in mathematics.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This is the proceedings of theworkshop on recent developments in ergodic theory and dynamical systemson March 2011and March 2012 at the University of North Carolina at Chapel Hill. Thearticles in this volume cover several aspects of vibrant research in ergodic theory and dynamical systems. It contains contributions to Teichmuller dynamics, interval exchange transformations, continued fractions, return times averages, Furstenberg Fractals, fractal geometry of non-uniformly hyperbolic horseshoes, convergence along the sequence of squares, adic and horocycle flows, and topological flows. These co. |
Beschreibung: | 1 online resource (x, 276 pages) : illustrations |
Bibliographie: | Includes bibliographical references. |
ISBN: | 9783110298208 3110298201 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn874162417 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 140221t20142014gw a ob 100 0 eng d | ||
040 | |a E7B |b eng |e rda |e pn |c E7B |d OCLCO |d N$T |d ZCU |d OCLCO |d OCLCF |d OSU |d OCLCO |d YDXCP |d EBLCP |d IDEBK |d DEBSZ |d OCLCO |d OCL |d OCLCO |d COO |d OCLCO |d COCUF |d AGLDB |d MOR |d PIFAG |d VGM |d MERUC |d OCLCQ |d DEGRU |d U3W |d OCLCQ |d STF |d VTS |d NRAMU |d OCLCQ |d INT |d VT2 |d OCLCQ |d WYU |d TKN |d OCLCQ |d DKC |d OCLCQ |d M8D |d OCLCQ |d AJS |d OCLCO |d OCLCQ |d OCLCO |d OCLCL | ||
016 | 7 | |a 1027551572 |2 DE-101 | |
019 | |a 870590018 |a 900020958 |a 979745647 |a 990736437 |a 1055370823 |a 1058966031 |a 1066457516 |a 1081210142 | ||
020 | |a 9783110298208 |q (electronic bk.) | ||
020 | |a 3110298201 |q (electronic bk.) | ||
020 | |z 9783110298130 |q (hardcover) | ||
020 | |z 3110298139 |q (hardcover) | ||
020 | |z 9783110298215 | ||
024 | 7 | |a 10.1515/9783110298208 |2 doi | |
024 | 8 | |a 99962276718 | |
035 | |a (OCoLC)874162417 |z (OCoLC)870590018 |z (OCoLC)900020958 |z (OCoLC)979745647 |z (OCoLC)990736437 |z (OCoLC)1055370823 |z (OCoLC)1058966031 |z (OCoLC)1066457516 |z (OCoLC)1081210142 | ||
050 | 4 | |a QA611.5 |b .E74 2013eb | |
072 | 7 | |a MAT |x 039000 |2 bisacsh | |
072 | 7 | |a MAT |x 023000 |2 bisacsh | |
072 | 7 | |a MAT |x 026000 |2 bisacsh | |
072 | 7 | |a QA |2 lcco | |
082 | 7 | |a 510 | |
049 | |a MAIN | ||
245 | 0 | 0 | |a Ergodic theory and dynamical systems : |b proceedings of the Ergodic Theory Workshops at University of North Carolina at Chapel Hill, 2011-2012 / |c edited by Idris Assani. |
264 | 1 | |a Berlin : |b De Gruyter, |c [2014] | |
264 | 4 | |c ©2014 | |
300 | |a 1 online resource (x, 276 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a text file | ||
347 | |b PDF | ||
490 | 1 | |a De Gruyter Proceedings in Mathematics | |
504 | |a Includes bibliographical references. | ||
588 | 0 | |a Online resource; title from PDF title page (ebrary, viewed March 11, 2014). | |
505 | 0 | |a Preface; Furstenberg Fractals; 1 Introduction; 2 Furstenberg Fractals; 3 The Fractal Constructions; 4 Density of Non-Recurrent Points; 5 Isometries and Furstenberg Fractals; Idris Assani and Kimberly Presser A Survey of the Return Times Theorem; 1 Origins; 1.1 Averages along Subsequences; 1.2 Weighted Averages; 1.3 Wiener-Wintner Results; 2 Development; 2.1 The BFKO Proof of Bourgain's Return Times Theorem; 2.2 Extensions of the Return Times Theorem; 2.3 Unique Ergodicity and the Return Times Theorem; 2.4 A Joinings Proof of the Return Times Theorem; 3 The MultitermReturn Times Theorem. | |
505 | 8 | |a 3.1 Definitions4 Characteristic Factors; 4.1 Characteristic Factors and the Return Times Theorem; 5 Breaking the Duality; 5.1 Hilbert Transforms; 5.2 The (??1,??1) Case; 6 Other Notes on the Return Times Theorem; 6.1 The Sigma-Finite Case; 6.2 Recent Extensions; 6.3 Wiener-WintnerDynamical Functions; 7 Conclusion; Characterizations of Distal and Equicontinuous Extensions; Averages Along the Squares on the Torus; 1 Introduction and Statement of the Main Results; 2 Preliminary Results and Notation; 3 Proofs of the Main Results; Stepped Hyperplane and Extension of the Three Distance Theorem. | |
505 | 8 | |a 1 Introduction2 Kwapisz's Result for Translation; 3 Continued Fraction Expansions; 3.1 Brun's Algorithm; 3.2 Strong Convergence; 4 Proof of Theorem1.1; 5 Appendix: Proof of Theorem2.4 and Stepped Hyperplane; Remarks on Step Cocycles over Rotations, Centralizers and Coboundaries; 1 Introduction; 2 Preliminaries on Cocycles; 2.1 Cocycles and Group Extension of Dynamical Systems; 2.2 Essential Values, Nonregular Cocycle; 2.3 Z2-Actions and Centralizer; 2.4 Case of an Irrational Rotation; 3 Coboundary Equations for Irrational Rotations; 3.1 Classical Results, Expansion in Basis qna. | |
505 | 8 | |a 3.2 Linear and Multiplicative Equations4 Applications; 4.1 Non-Ergodic Cocycles with Ergodic Compact Quotients; 4.2 Examples of Nontrivial and Trivial Centralizer; 4.3 Example of a Nontrivial Conjugacy in a Group Family; 5 Appendix: Proof of Theorem3.3; Hamilton's Theorem for Smooth Lie Group Actions; 1 Introduction; 2 Preliminaries; 2.1 Fréchet Spaces and Tame Operators; 2.2 Hamilton's Nash-Moser Theoremfor Exact Sequences; 2.3 Cohomology; 3 An Application of Hamilton's Nash-Moser Theoremfor Exact Sequences to Lie Group Actions; 3.1 The Set-Up; 3.2 Tamely Split First Cohomology. | |
505 | 8 | |a 3.3 Existence of Tame Splitting for the Complex3.4 A Perturbation Result; 3.5 A Variation of Theorem 3.6; 4 Possible Applications; Mixing Automorphisms which are Markov Quasi-Equivalent but not Weakly Isomorphic; 1 Introduction; 2 Gaussian Automorphisms and Gaussian Cocycles; 3 Coalescence of Two-Sided Cocycle Extensions; 4 Main Result; On the Strong Convolution Singularity Property; 1 Introduction; 2 Definitions; 2.1 Spectral Theory; 2.2 Joinings; 2.3 Special Flows; 2.4 Continued Fractions; 3 Tools; 4 Smooth Flows on Surfaces; 5 Results; 5.1 New Tools -- The Main Proposition. | |
505 | 8 | |a 5.2 New Tools -- Technical Details. | |
520 | |a This is the proceedings of theworkshop on recent developments in ergodic theory and dynamical systemson March 2011and March 2012 at the University of North Carolina at Chapel Hill. Thearticles in this volume cover several aspects of vibrant research in ergodic theory and dynamical systems. It contains contributions to Teichmuller dynamics, interval exchange transformations, continued fractions, return times averages, Furstenberg Fractals, fractal geometry of non-uniformly hyperbolic horseshoes, convergence along the sequence of squares, adic and horocycle flows, and topological flows. These co. | ||
546 | |a In English. | ||
650 | 0 | |a Ergodic theory |v Congresses. | |
650 | 0 | |a Differentiable dynamical systems |v Congresses. | |
650 | 6 | |a Théorie ergodique |v Congrès. | |
650 | 6 | |a Dynamique différentiable |v Congrès. | |
650 | 7 | |a MATHEMATICS |x Essays. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Pre-Calculus. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Reference. |2 bisacsh | |
650 | 7 | |a Differentiable dynamical systems |2 fast | |
650 | 7 | |a Ergodic theory |2 fast | |
655 | 7 | |a Conference papers and proceedings |2 fast | |
700 | 1 | |a Assani, Idris, |e editor. | |
758 | |i has work: |a Ergodic theory and dynamical systems (Text) |1 https://id.oclc.org/worldcat/entity/E39PCFQt9JQ4JMJv3GG8jQWHJC |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | |z 9783110298215 | |
776 | 0 | |w (GyWOH)har120281809 | |
776 | 0 | |z 9783110298208 | |
776 | 0 | |w (GyWOH)har135010454 | |
776 | 0 | 8 | |i Print version: |t Ergodic theory and dynamical systems. |d Berlin : De Gruyter, [2014] |z 9783110298130 |z 3110298139 |
830 | 0 | |a Proceedings in mathematics. | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=699622 |3 Volltext |
936 | |a BATCHLOAD | ||
938 | |a De Gruyter |b DEGR |n 9783110298208 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL1113337 | ||
938 | |a ebrary |b EBRY |n ebr10838309 | ||
938 | |a EBSCOhost |b EBSC |n 699622 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis27541814 | ||
938 | |a YBP Library Services |b YANK |n 10817931 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn874162417 |
---|---|
_version_ | 1816882265156747266 |
adam_text | |
any_adam_object | |
author2 | Assani, Idris |
author2_role | edt |
author2_variant | i a ia |
author_facet | Assani, Idris |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA611 |
callnumber-raw | QA611.5 .E74 2013eb |
callnumber-search | QA611.5 .E74 2013eb |
callnumber-sort | QA 3611.5 E74 42013EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Preface; Furstenberg Fractals; 1 Introduction; 2 Furstenberg Fractals; 3 The Fractal Constructions; 4 Density of Non-Recurrent Points; 5 Isometries and Furstenberg Fractals; Idris Assani and Kimberly Presser A Survey of the Return Times Theorem; 1 Origins; 1.1 Averages along Subsequences; 1.2 Weighted Averages; 1.3 Wiener-Wintner Results; 2 Development; 2.1 The BFKO Proof of Bourgain's Return Times Theorem; 2.2 Extensions of the Return Times Theorem; 2.3 Unique Ergodicity and the Return Times Theorem; 2.4 A Joinings Proof of the Return Times Theorem; 3 The MultitermReturn Times Theorem. 3.1 Definitions4 Characteristic Factors; 4.1 Characteristic Factors and the Return Times Theorem; 5 Breaking the Duality; 5.1 Hilbert Transforms; 5.2 The (??1,??1) Case; 6 Other Notes on the Return Times Theorem; 6.1 The Sigma-Finite Case; 6.2 Recent Extensions; 6.3 Wiener-WintnerDynamical Functions; 7 Conclusion; Characterizations of Distal and Equicontinuous Extensions; Averages Along the Squares on the Torus; 1 Introduction and Statement of the Main Results; 2 Preliminary Results and Notation; 3 Proofs of the Main Results; Stepped Hyperplane and Extension of the Three Distance Theorem. 1 Introduction2 Kwapisz's Result for Translation; 3 Continued Fraction Expansions; 3.1 Brun's Algorithm; 3.2 Strong Convergence; 4 Proof of Theorem1.1; 5 Appendix: Proof of Theorem2.4 and Stepped Hyperplane; Remarks on Step Cocycles over Rotations, Centralizers and Coboundaries; 1 Introduction; 2 Preliminaries on Cocycles; 2.1 Cocycles and Group Extension of Dynamical Systems; 2.2 Essential Values, Nonregular Cocycle; 2.3 Z2-Actions and Centralizer; 2.4 Case of an Irrational Rotation; 3 Coboundary Equations for Irrational Rotations; 3.1 Classical Results, Expansion in Basis qna. 3.2 Linear and Multiplicative Equations4 Applications; 4.1 Non-Ergodic Cocycles with Ergodic Compact Quotients; 4.2 Examples of Nontrivial and Trivial Centralizer; 4.3 Example of a Nontrivial Conjugacy in a Group Family; 5 Appendix: Proof of Theorem3.3; Hamilton's Theorem for Smooth Lie Group Actions; 1 Introduction; 2 Preliminaries; 2.1 Fréchet Spaces and Tame Operators; 2.2 Hamilton's Nash-Moser Theoremfor Exact Sequences; 2.3 Cohomology; 3 An Application of Hamilton's Nash-Moser Theoremfor Exact Sequences to Lie Group Actions; 3.1 The Set-Up; 3.2 Tamely Split First Cohomology. 3.3 Existence of Tame Splitting for the Complex3.4 A Perturbation Result; 3.5 A Variation of Theorem 3.6; 4 Possible Applications; Mixing Automorphisms which are Markov Quasi-Equivalent but not Weakly Isomorphic; 1 Introduction; 2 Gaussian Automorphisms and Gaussian Cocycles; 3 Coalescence of Two-Sided Cocycle Extensions; 4 Main Result; On the Strong Convolution Singularity Property; 1 Introduction; 2 Definitions; 2.1 Spectral Theory; 2.2 Joinings; 2.3 Special Flows; 2.4 Continued Fractions; 3 Tools; 4 Smooth Flows on Surfaces; 5 Results; 5.1 New Tools -- The Main Proposition. 5.2 New Tools -- Technical Details. |
ctrlnum | (OCoLC)874162417 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07254cam a2200877 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn874162417</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cn|||||||||</controlfield><controlfield tag="008">140221t20142014gw a ob 100 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">E7B</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">E7B</subfield><subfield code="d">OCLCO</subfield><subfield code="d">N$T</subfield><subfield code="d">ZCU</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OSU</subfield><subfield code="d">OCLCO</subfield><subfield code="d">YDXCP</subfield><subfield code="d">EBLCP</subfield><subfield code="d">IDEBK</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCL</subfield><subfield code="d">OCLCO</subfield><subfield code="d">COO</subfield><subfield code="d">OCLCO</subfield><subfield code="d">COCUF</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFAG</subfield><subfield code="d">VGM</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEGRU</subfield><subfield code="d">U3W</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">STF</subfield><subfield code="d">VTS</subfield><subfield code="d">NRAMU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">TKN</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1027551572</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">870590018</subfield><subfield code="a">900020958</subfield><subfield code="a">979745647</subfield><subfield code="a">990736437</subfield><subfield code="a">1055370823</subfield><subfield code="a">1058966031</subfield><subfield code="a">1066457516</subfield><subfield code="a">1081210142</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110298208</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110298201</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783110298130</subfield><subfield code="q">(hardcover)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">3110298139</subfield><subfield code="q">(hardcover)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783110298215</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110298208</subfield><subfield code="2">doi</subfield></datafield><datafield tag="024" ind1="8" ind2=" "><subfield code="a">99962276718</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)874162417</subfield><subfield code="z">(OCoLC)870590018</subfield><subfield code="z">(OCoLC)900020958</subfield><subfield code="z">(OCoLC)979745647</subfield><subfield code="z">(OCoLC)990736437</subfield><subfield code="z">(OCoLC)1055370823</subfield><subfield code="z">(OCoLC)1058966031</subfield><subfield code="z">(OCoLC)1066457516</subfield><subfield code="z">(OCoLC)1081210142</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA611.5</subfield><subfield code="b">.E74 2013eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">039000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">023000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">026000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">QA</subfield><subfield code="2">lcco</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">510</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Ergodic theory and dynamical systems :</subfield><subfield code="b">proceedings of the Ergodic Theory Workshops at University of North Carolina at Chapel Hill, 2011-2012 /</subfield><subfield code="c">edited by Idris Assani.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin :</subfield><subfield code="b">De Gruyter,</subfield><subfield code="c">[2014]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (x, 276 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">text file</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="b">PDF</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">De Gruyter Proceedings in Mathematics</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Online resource; title from PDF title page (ebrary, viewed March 11, 2014).</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Preface; Furstenberg Fractals; 1 Introduction; 2 Furstenberg Fractals; 3 The Fractal Constructions; 4 Density of Non-Recurrent Points; 5 Isometries and Furstenberg Fractals; Idris Assani and Kimberly Presser A Survey of the Return Times Theorem; 1 Origins; 1.1 Averages along Subsequences; 1.2 Weighted Averages; 1.3 Wiener-Wintner Results; 2 Development; 2.1 The BFKO Proof of Bourgain's Return Times Theorem; 2.2 Extensions of the Return Times Theorem; 2.3 Unique Ergodicity and the Return Times Theorem; 2.4 A Joinings Proof of the Return Times Theorem; 3 The MultitermReturn Times Theorem.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.1 Definitions4 Characteristic Factors; 4.1 Characteristic Factors and the Return Times Theorem; 5 Breaking the Duality; 5.1 Hilbert Transforms; 5.2 The (??1,??1) Case; 6 Other Notes on the Return Times Theorem; 6.1 The Sigma-Finite Case; 6.2 Recent Extensions; 6.3 Wiener-WintnerDynamical Functions; 7 Conclusion; Characterizations of Distal and Equicontinuous Extensions; Averages Along the Squares on the Torus; 1 Introduction and Statement of the Main Results; 2 Preliminary Results and Notation; 3 Proofs of the Main Results; Stepped Hyperplane and Extension of the Three Distance Theorem.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1 Introduction2 Kwapisz's Result for Translation; 3 Continued Fraction Expansions; 3.1 Brun's Algorithm; 3.2 Strong Convergence; 4 Proof of Theorem1.1; 5 Appendix: Proof of Theorem2.4 and Stepped Hyperplane; Remarks on Step Cocycles over Rotations, Centralizers and Coboundaries; 1 Introduction; 2 Preliminaries on Cocycles; 2.1 Cocycles and Group Extension of Dynamical Systems; 2.2 Essential Values, Nonregular Cocycle; 2.3 Z2-Actions and Centralizer; 2.4 Case of an Irrational Rotation; 3 Coboundary Equations for Irrational Rotations; 3.1 Classical Results, Expansion in Basis qna.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.2 Linear and Multiplicative Equations4 Applications; 4.1 Non-Ergodic Cocycles with Ergodic Compact Quotients; 4.2 Examples of Nontrivial and Trivial Centralizer; 4.3 Example of a Nontrivial Conjugacy in a Group Family; 5 Appendix: Proof of Theorem3.3; Hamilton's Theorem for Smooth Lie Group Actions; 1 Introduction; 2 Preliminaries; 2.1 Fréchet Spaces and Tame Operators; 2.2 Hamilton's Nash-Moser Theoremfor Exact Sequences; 2.3 Cohomology; 3 An Application of Hamilton's Nash-Moser Theoremfor Exact Sequences to Lie Group Actions; 3.1 The Set-Up; 3.2 Tamely Split First Cohomology.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.3 Existence of Tame Splitting for the Complex3.4 A Perturbation Result; 3.5 A Variation of Theorem 3.6; 4 Possible Applications; Mixing Automorphisms which are Markov Quasi-Equivalent but not Weakly Isomorphic; 1 Introduction; 2 Gaussian Automorphisms and Gaussian Cocycles; 3 Coalescence of Two-Sided Cocycle Extensions; 4 Main Result; On the Strong Convolution Singularity Property; 1 Introduction; 2 Definitions; 2.1 Spectral Theory; 2.2 Joinings; 2.3 Special Flows; 2.4 Continued Fractions; 3 Tools; 4 Smooth Flows on Surfaces; 5 Results; 5.1 New Tools -- The Main Proposition.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.2 New Tools -- Technical Details.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This is the proceedings of theworkshop on recent developments in ergodic theory and dynamical systemson March 2011and March 2012 at the University of North Carolina at Chapel Hill. Thearticles in this volume cover several aspects of vibrant research in ergodic theory and dynamical systems. It contains contributions to Teichmuller dynamics, interval exchange transformations, continued fractions, return times averages, Furstenberg Fractals, fractal geometry of non-uniformly hyperbolic horseshoes, convergence along the sequence of squares, adic and horocycle flows, and topological flows. These co.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Ergodic theory</subfield><subfield code="v">Congresses.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Differentiable dynamical systems</subfield><subfield code="v">Congresses.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie ergodique</subfield><subfield code="v">Congrès.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Dynamique différentiable</subfield><subfield code="v">Congrès.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Essays.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Pre-Calculus.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Reference.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differentiable dynamical systems</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ergodic theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="a">Conference papers and proceedings</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Assani, Idris,</subfield><subfield code="e">editor.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Ergodic theory and dynamical systems (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCFQt9JQ4JMJv3GG8jQWHJC</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2=" "><subfield code="z">9783110298215</subfield></datafield><datafield tag="776" ind1="0" ind2=" "><subfield code="w">(GyWOH)har120281809</subfield></datafield><datafield tag="776" ind1="0" ind2=" "><subfield code="z">9783110298208</subfield></datafield><datafield tag="776" ind1="0" ind2=" "><subfield code="w">(GyWOH)har135010454</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="t">Ergodic theory and dynamical systems.</subfield><subfield code="d">Berlin : De Gruyter, [2014]</subfield><subfield code="z">9783110298130</subfield><subfield code="z">3110298139</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Proceedings in mathematics.</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=699622</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="936" ind1=" " ind2=" "><subfield code="a">BATCHLOAD</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">De Gruyter</subfield><subfield code="b">DEGR</subfield><subfield code="n">9783110298208</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL1113337</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10838309</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">699622</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis27541814</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10817931</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
genre | Conference papers and proceedings fast |
genre_facet | Conference papers and proceedings |
id | ZDB-4-EBA-ocn874162417 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:25:52Z |
institution | BVB |
isbn | 9783110298208 3110298201 |
language | English |
oclc_num | 874162417 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (x, 276 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | De Gruyter, |
record_format | marc |
series | Proceedings in mathematics. |
series2 | De Gruyter Proceedings in Mathematics |
spelling | Ergodic theory and dynamical systems : proceedings of the Ergodic Theory Workshops at University of North Carolina at Chapel Hill, 2011-2012 / edited by Idris Assani. Berlin : De Gruyter, [2014] ©2014 1 online resource (x, 276 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier text file De Gruyter Proceedings in Mathematics Includes bibliographical references. Online resource; title from PDF title page (ebrary, viewed March 11, 2014). Preface; Furstenberg Fractals; 1 Introduction; 2 Furstenberg Fractals; 3 The Fractal Constructions; 4 Density of Non-Recurrent Points; 5 Isometries and Furstenberg Fractals; Idris Assani and Kimberly Presser A Survey of the Return Times Theorem; 1 Origins; 1.1 Averages along Subsequences; 1.2 Weighted Averages; 1.3 Wiener-Wintner Results; 2 Development; 2.1 The BFKO Proof of Bourgain's Return Times Theorem; 2.2 Extensions of the Return Times Theorem; 2.3 Unique Ergodicity and the Return Times Theorem; 2.4 A Joinings Proof of the Return Times Theorem; 3 The MultitermReturn Times Theorem. 3.1 Definitions4 Characteristic Factors; 4.1 Characteristic Factors and the Return Times Theorem; 5 Breaking the Duality; 5.1 Hilbert Transforms; 5.2 The (??1,??1) Case; 6 Other Notes on the Return Times Theorem; 6.1 The Sigma-Finite Case; 6.2 Recent Extensions; 6.3 Wiener-WintnerDynamical Functions; 7 Conclusion; Characterizations of Distal and Equicontinuous Extensions; Averages Along the Squares on the Torus; 1 Introduction and Statement of the Main Results; 2 Preliminary Results and Notation; 3 Proofs of the Main Results; Stepped Hyperplane and Extension of the Three Distance Theorem. 1 Introduction2 Kwapisz's Result for Translation; 3 Continued Fraction Expansions; 3.1 Brun's Algorithm; 3.2 Strong Convergence; 4 Proof of Theorem1.1; 5 Appendix: Proof of Theorem2.4 and Stepped Hyperplane; Remarks on Step Cocycles over Rotations, Centralizers and Coboundaries; 1 Introduction; 2 Preliminaries on Cocycles; 2.1 Cocycles and Group Extension of Dynamical Systems; 2.2 Essential Values, Nonregular Cocycle; 2.3 Z2-Actions and Centralizer; 2.4 Case of an Irrational Rotation; 3 Coboundary Equations for Irrational Rotations; 3.1 Classical Results, Expansion in Basis qna. 3.2 Linear and Multiplicative Equations4 Applications; 4.1 Non-Ergodic Cocycles with Ergodic Compact Quotients; 4.2 Examples of Nontrivial and Trivial Centralizer; 4.3 Example of a Nontrivial Conjugacy in a Group Family; 5 Appendix: Proof of Theorem3.3; Hamilton's Theorem for Smooth Lie Group Actions; 1 Introduction; 2 Preliminaries; 2.1 Fréchet Spaces and Tame Operators; 2.2 Hamilton's Nash-Moser Theoremfor Exact Sequences; 2.3 Cohomology; 3 An Application of Hamilton's Nash-Moser Theoremfor Exact Sequences to Lie Group Actions; 3.1 The Set-Up; 3.2 Tamely Split First Cohomology. 3.3 Existence of Tame Splitting for the Complex3.4 A Perturbation Result; 3.5 A Variation of Theorem 3.6; 4 Possible Applications; Mixing Automorphisms which are Markov Quasi-Equivalent but not Weakly Isomorphic; 1 Introduction; 2 Gaussian Automorphisms and Gaussian Cocycles; 3 Coalescence of Two-Sided Cocycle Extensions; 4 Main Result; On the Strong Convolution Singularity Property; 1 Introduction; 2 Definitions; 2.1 Spectral Theory; 2.2 Joinings; 2.3 Special Flows; 2.4 Continued Fractions; 3 Tools; 4 Smooth Flows on Surfaces; 5 Results; 5.1 New Tools -- The Main Proposition. 5.2 New Tools -- Technical Details. This is the proceedings of theworkshop on recent developments in ergodic theory and dynamical systemson March 2011and March 2012 at the University of North Carolina at Chapel Hill. Thearticles in this volume cover several aspects of vibrant research in ergodic theory and dynamical systems. It contains contributions to Teichmuller dynamics, interval exchange transformations, continued fractions, return times averages, Furstenberg Fractals, fractal geometry of non-uniformly hyperbolic horseshoes, convergence along the sequence of squares, adic and horocycle flows, and topological flows. These co. In English. Ergodic theory Congresses. Differentiable dynamical systems Congresses. Théorie ergodique Congrès. Dynamique différentiable Congrès. MATHEMATICS Essays. bisacsh MATHEMATICS Pre-Calculus. bisacsh MATHEMATICS Reference. bisacsh Differentiable dynamical systems fast Ergodic theory fast Conference papers and proceedings fast Assani, Idris, editor. has work: Ergodic theory and dynamical systems (Text) https://id.oclc.org/worldcat/entity/E39PCFQt9JQ4JMJv3GG8jQWHJC https://id.oclc.org/worldcat/ontology/hasWork 9783110298215 (GyWOH)har120281809 9783110298208 (GyWOH)har135010454 Print version: Ergodic theory and dynamical systems. Berlin : De Gruyter, [2014] 9783110298130 3110298139 Proceedings in mathematics. FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=699622 Volltext |
spellingShingle | Ergodic theory and dynamical systems : proceedings of the Ergodic Theory Workshops at University of North Carolina at Chapel Hill, 2011-2012 / Proceedings in mathematics. Preface; Furstenberg Fractals; 1 Introduction; 2 Furstenberg Fractals; 3 The Fractal Constructions; 4 Density of Non-Recurrent Points; 5 Isometries and Furstenberg Fractals; Idris Assani and Kimberly Presser A Survey of the Return Times Theorem; 1 Origins; 1.1 Averages along Subsequences; 1.2 Weighted Averages; 1.3 Wiener-Wintner Results; 2 Development; 2.1 The BFKO Proof of Bourgain's Return Times Theorem; 2.2 Extensions of the Return Times Theorem; 2.3 Unique Ergodicity and the Return Times Theorem; 2.4 A Joinings Proof of the Return Times Theorem; 3 The MultitermReturn Times Theorem. 3.1 Definitions4 Characteristic Factors; 4.1 Characteristic Factors and the Return Times Theorem; 5 Breaking the Duality; 5.1 Hilbert Transforms; 5.2 The (??1,??1) Case; 6 Other Notes on the Return Times Theorem; 6.1 The Sigma-Finite Case; 6.2 Recent Extensions; 6.3 Wiener-WintnerDynamical Functions; 7 Conclusion; Characterizations of Distal and Equicontinuous Extensions; Averages Along the Squares on the Torus; 1 Introduction and Statement of the Main Results; 2 Preliminary Results and Notation; 3 Proofs of the Main Results; Stepped Hyperplane and Extension of the Three Distance Theorem. 1 Introduction2 Kwapisz's Result for Translation; 3 Continued Fraction Expansions; 3.1 Brun's Algorithm; 3.2 Strong Convergence; 4 Proof of Theorem1.1; 5 Appendix: Proof of Theorem2.4 and Stepped Hyperplane; Remarks on Step Cocycles over Rotations, Centralizers and Coboundaries; 1 Introduction; 2 Preliminaries on Cocycles; 2.1 Cocycles and Group Extension of Dynamical Systems; 2.2 Essential Values, Nonregular Cocycle; 2.3 Z2-Actions and Centralizer; 2.4 Case of an Irrational Rotation; 3 Coboundary Equations for Irrational Rotations; 3.1 Classical Results, Expansion in Basis qna. 3.2 Linear and Multiplicative Equations4 Applications; 4.1 Non-Ergodic Cocycles with Ergodic Compact Quotients; 4.2 Examples of Nontrivial and Trivial Centralizer; 4.3 Example of a Nontrivial Conjugacy in a Group Family; 5 Appendix: Proof of Theorem3.3; Hamilton's Theorem for Smooth Lie Group Actions; 1 Introduction; 2 Preliminaries; 2.1 Fréchet Spaces and Tame Operators; 2.2 Hamilton's Nash-Moser Theoremfor Exact Sequences; 2.3 Cohomology; 3 An Application of Hamilton's Nash-Moser Theoremfor Exact Sequences to Lie Group Actions; 3.1 The Set-Up; 3.2 Tamely Split First Cohomology. 3.3 Existence of Tame Splitting for the Complex3.4 A Perturbation Result; 3.5 A Variation of Theorem 3.6; 4 Possible Applications; Mixing Automorphisms which are Markov Quasi-Equivalent but not Weakly Isomorphic; 1 Introduction; 2 Gaussian Automorphisms and Gaussian Cocycles; 3 Coalescence of Two-Sided Cocycle Extensions; 4 Main Result; On the Strong Convolution Singularity Property; 1 Introduction; 2 Definitions; 2.1 Spectral Theory; 2.2 Joinings; 2.3 Special Flows; 2.4 Continued Fractions; 3 Tools; 4 Smooth Flows on Surfaces; 5 Results; 5.1 New Tools -- The Main Proposition. 5.2 New Tools -- Technical Details. Ergodic theory Congresses. Differentiable dynamical systems Congresses. Théorie ergodique Congrès. Dynamique différentiable Congrès. MATHEMATICS Essays. bisacsh MATHEMATICS Pre-Calculus. bisacsh MATHEMATICS Reference. bisacsh Differentiable dynamical systems fast Ergodic theory fast |
title | Ergodic theory and dynamical systems : proceedings of the Ergodic Theory Workshops at University of North Carolina at Chapel Hill, 2011-2012 / |
title_auth | Ergodic theory and dynamical systems : proceedings of the Ergodic Theory Workshops at University of North Carolina at Chapel Hill, 2011-2012 / |
title_exact_search | Ergodic theory and dynamical systems : proceedings of the Ergodic Theory Workshops at University of North Carolina at Chapel Hill, 2011-2012 / |
title_full | Ergodic theory and dynamical systems : proceedings of the Ergodic Theory Workshops at University of North Carolina at Chapel Hill, 2011-2012 / edited by Idris Assani. |
title_fullStr | Ergodic theory and dynamical systems : proceedings of the Ergodic Theory Workshops at University of North Carolina at Chapel Hill, 2011-2012 / edited by Idris Assani. |
title_full_unstemmed | Ergodic theory and dynamical systems : proceedings of the Ergodic Theory Workshops at University of North Carolina at Chapel Hill, 2011-2012 / edited by Idris Assani. |
title_short | Ergodic theory and dynamical systems : |
title_sort | ergodic theory and dynamical systems proceedings of the ergodic theory workshops at university of north carolina at chapel hill 2011 2012 |
title_sub | proceedings of the Ergodic Theory Workshops at University of North Carolina at Chapel Hill, 2011-2012 / |
topic | Ergodic theory Congresses. Differentiable dynamical systems Congresses. Théorie ergodique Congrès. Dynamique différentiable Congrès. MATHEMATICS Essays. bisacsh MATHEMATICS Pre-Calculus. bisacsh MATHEMATICS Reference. bisacsh Differentiable dynamical systems fast Ergodic theory fast |
topic_facet | Ergodic theory Congresses. Differentiable dynamical systems Congresses. Théorie ergodique Congrès. Dynamique différentiable Congrès. MATHEMATICS Essays. MATHEMATICS Pre-Calculus. MATHEMATICS Reference. Differentiable dynamical systems Ergodic theory Conference papers and proceedings |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=699622 |
work_keys_str_mv | AT assaniidris ergodictheoryanddynamicalsystemsproceedingsoftheergodictheoryworkshopsatuniversityofnorthcarolinaatchapelhill20112012 |