Knots.:
This 3. edition is an introduction to classical knot theory. It contains many figures and some tables of invariants of knots. This comprehensive account is an indispensable reference source for anyone interested in both classical and modern knot theory. Most of the topics considered in the book are...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin ; Boston :
Walter de Gruyter GmbH & Co. KG,
2013.
|
Ausgabe: | 3rd [edition] / |
Schriftenreihe: | De Gruyter studies in mathematics.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This 3. edition is an introduction to classical knot theory. It contains many figures and some tables of invariants of knots. This comprehensive account is an indispensable reference source for anyone interested in both classical and modern knot theory. Most of the topics considered in the book are developed in detail; only the main properties of fundamental groups and some basic results of combinatorial group theory are assumed to be known. |
Beschreibung: | 1 online resource |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 3110270781 9783110270785 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn872700642 | ||
003 | OCoLC | ||
005 | 20240705115654.0 | ||
006 | m o d | ||
007 | cr |n||||||||| | ||
008 | 140119s2013 gw ob 001 0 eng d | ||
040 | |a CNSPO |b eng |e pn |c CNSPO |d YDXCP |d OCLCO |d N$T |d CDX |d OCLCF |d CNKEY |d CCO |d LLB |d EBLCP |d IDEBK |d DEBSZ |d COO |d AZU |d SFB |d FVL |d NMC |d UV0 |d K6U |d DEBBG |d OCLCQ |d N15 |d S2H |d OCLCQ |d UIU |d Z5A |d ZCU |d MERUC |d OCLCQ |d VTS |d ICG |d OCLCQ |d WYU |d STF |d DKC |d OCLCQ |d M8D |d OCLCQ |d AJS |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d UEJ |d OCLCQ | ||
019 | |a 865329956 |a 958539879 | ||
020 | |a 3110270781 |q (electronic bk.) | ||
020 | |a 9783110270785 |q (electronic bk.) | ||
020 | |z 9783110270747 | ||
020 | |z 3110270749 | ||
035 | |a (OCoLC)872700642 |z (OCoLC)865329956 |z (OCoLC)958539879 | ||
050 | 4 | |a QA612.2 |b .B87 2013 | |
072 | 7 | |a MAT |x 038000 |2 bisacsh | |
082 | 7 | |a 514/.2242 |2 23 | |
084 | |a SK 300 |q hdub |2 rvk |0 (DE-625)rvk/143230 | ||
049 | |a MAIN | ||
100 | 1 | |a Burde, Gerhard, |d 1931- |e author. |1 https://id.oclc.org/worldcat/entity/E39PBJqbmkvCFXbYpc4BRGhj4q |0 http://id.loc.gov/authorities/names/n85093003 | |
245 | 1 | 0 | |a Knots. |
250 | |a 3rd [edition] / |b by Gerhard Burde, Heiner Zieschang, Michael Heusener. | ||
264 | 1 | |a Berlin ; |a Boston : |b Walter de Gruyter GmbH & Co. KG, |c 2013. | |
300 | |a 1 online resource | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a De Gruyter Studies in Mathematics | |
504 | |a Includes bibliographical references and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Preface to the First Edition; Preface to the Second Edition; Preface to the Third Edition; Contents; Chapter 1: Knots and isotopies; Chapter 2: Geometric concepts; Chapter 3: Knot groups; Chapter 4: Commutator subgroup of a knot group; Chapter 5: Fibered knots; Chapter 6: A characterization of torus knots; Chapter 7: Factorization of knots; Chapter 8: Cyclic coverings and Alexander invariants; Chapter 9: Free differential calculus and Alexander matrices; Chapter 10: Braids; Chapter 11: Manifolds as branched coverings; Chapter 12: Montesinos links; Chapter 13: Quadratic forms of a knot. | |
505 | 8 | |a Chapter 14: Representations of knot groupsChapter 15: Knots, knot manifolds, and knot groups; Chapter 16: Bridge number and companionship; Chapter 17: The 2-variable skein polynomial; Appendix A: Algebraic theorems; Appendix B: Theorems of 3-dimensional topology; Appendix C: Table; Appendix D: Knot projections 01-949; References; Author index; Glossary of Symbols; Index. | |
520 | |a This 3. edition is an introduction to classical knot theory. It contains many figures and some tables of invariants of knots. This comprehensive account is an indispensable reference source for anyone interested in both classical and modern knot theory. Most of the topics considered in the book are developed in detail; only the main properties of fundamental groups and some basic results of combinatorial group theory are assumed to be known. | ||
650 | 0 | |a Knot theory. |0 http://id.loc.gov/authorities/subjects/sh85072726 | |
650 | 6 | |a Théorie des nuds. | |
650 | 7 | |a MATHEMATICS |x Topology. |2 bisacsh | |
650 | 7 | |a Knot theory |2 fast | |
653 | |a Alexander Polynomials. | ||
653 | |a Braids. | ||
653 | |a Branched Coverings. | ||
653 | |a Cyclic Periods of Knots. | ||
653 | |a Factorization. | ||
653 | |a Fibred Knots. | ||
653 | |a Homfly Polynomials. | ||
653 | |a Knot Groups. | ||
653 | |a Knots. | ||
653 | |a Links. | ||
653 | |a Montesinos Links. | ||
653 | |a Seifert Matrices. | ||
653 | |a Seifert Surface. | ||
700 | 1 | |a Zieschang, Heiner, |e author. | |
700 | 1 | |a Heusener, Michael, |e author. | |
776 | 0 | 8 | |i Print version: |z 9783110270747 |z 3110270749 |w (DLC) 2013043504 |
830 | 0 | |a De Gruyter studies in mathematics. |0 http://id.loc.gov/authorities/names/n83742913 | |
856 | 1 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=674601 |3 Volltext | |
856 | 1 | |l CBO01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=674601 |3 Volltext | |
936 | |a BATCHLOAD | ||
938 | |a Coutts Information Services |b COUT |n 27055022 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL1130364 | ||
938 | |a EBSCOhost |b EBSC |n 674601 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis27055022 | ||
938 | |a YBP Library Services |b YANK |n 10817537 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn872700642 |
---|---|
_version_ | 1813903639101571074 |
adam_text | |
any_adam_object | |
author | Burde, Gerhard, 1931- Zieschang, Heiner Heusener, Michael |
author_GND | http://id.loc.gov/authorities/names/n85093003 |
author_facet | Burde, Gerhard, 1931- Zieschang, Heiner Heusener, Michael |
author_role | aut aut aut |
author_sort | Burde, Gerhard, 1931- |
author_variant | g b gb h z hz m h mh |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA612 |
callnumber-raw | QA612.2 .B87 2013 |
callnumber-search | QA612.2 .B87 2013 |
callnumber-sort | QA 3612.2 B87 42013 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 300 |
collection | ZDB-4-EBA |
contents | Preface to the First Edition; Preface to the Second Edition; Preface to the Third Edition; Contents; Chapter 1: Knots and isotopies; Chapter 2: Geometric concepts; Chapter 3: Knot groups; Chapter 4: Commutator subgroup of a knot group; Chapter 5: Fibered knots; Chapter 6: A characterization of torus knots; Chapter 7: Factorization of knots; Chapter 8: Cyclic coverings and Alexander invariants; Chapter 9: Free differential calculus and Alexander matrices; Chapter 10: Braids; Chapter 11: Manifolds as branched coverings; Chapter 12: Montesinos links; Chapter 13: Quadratic forms of a knot. Chapter 14: Representations of knot groupsChapter 15: Knots, knot manifolds, and knot groups; Chapter 16: Bridge number and companionship; Chapter 17: The 2-variable skein polynomial; Appendix A: Algebraic theorems; Appendix B: Theorems of 3-dimensional topology; Appendix C: Table; Appendix D: Knot projections 01-949; References; Author index; Glossary of Symbols; Index. |
ctrlnum | (OCoLC)872700642 |
dewey-full | 514/.2242 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514/.2242 |
dewey-search | 514/.2242 |
dewey-sort | 3514 42242 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | 3rd [edition] / |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04368cam a2200757 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn872700642</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20240705115654.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |n|||||||||</controlfield><controlfield tag="008">140119s2013 gw ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">CNSPO</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">CNSPO</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCO</subfield><subfield code="d">N$T</subfield><subfield code="d">CDX</subfield><subfield code="d">OCLCF</subfield><subfield code="d">CNKEY</subfield><subfield code="d">CCO</subfield><subfield code="d">LLB</subfield><subfield code="d">EBLCP</subfield><subfield code="d">IDEBK</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">COO</subfield><subfield code="d">AZU</subfield><subfield code="d">SFB</subfield><subfield code="d">FVL</subfield><subfield code="d">NMC</subfield><subfield code="d">UV0</subfield><subfield code="d">K6U</subfield><subfield code="d">DEBBG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">N15</subfield><subfield code="d">S2H</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UIU</subfield><subfield code="d">Z5A</subfield><subfield code="d">ZCU</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">ICG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">STF</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">UEJ</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">865329956</subfield><subfield code="a">958539879</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110270781</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110270785</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783110270747</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">3110270749</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)872700642</subfield><subfield code="z">(OCoLC)865329956</subfield><subfield code="z">(OCoLC)958539879</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA612.2</subfield><subfield code="b">.B87 2013</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">038000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">514/.2242</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 300</subfield><subfield code="q">hdub</subfield><subfield code="2">rvk</subfield><subfield code="0">(DE-625)rvk/143230</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Burde, Gerhard,</subfield><subfield code="d">1931-</subfield><subfield code="e">author.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJqbmkvCFXbYpc4BRGhj4q</subfield><subfield code="0">http://id.loc.gov/authorities/names/n85093003</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Knots.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">3rd [edition] /</subfield><subfield code="b">by Gerhard Burde, Heiner Zieschang, Michael Heusener.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ;</subfield><subfield code="a">Boston :</subfield><subfield code="b">Walter de Gruyter GmbH & Co. KG,</subfield><subfield code="c">2013.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">De Gruyter Studies in Mathematics</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Preface to the First Edition; Preface to the Second Edition; Preface to the Third Edition; Contents; Chapter 1: Knots and isotopies; Chapter 2: Geometric concepts; Chapter 3: Knot groups; Chapter 4: Commutator subgroup of a knot group; Chapter 5: Fibered knots; Chapter 6: A characterization of torus knots; Chapter 7: Factorization of knots; Chapter 8: Cyclic coverings and Alexander invariants; Chapter 9: Free differential calculus and Alexander matrices; Chapter 10: Braids; Chapter 11: Manifolds as branched coverings; Chapter 12: Montesinos links; Chapter 13: Quadratic forms of a knot.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter 14: Representations of knot groupsChapter 15: Knots, knot manifolds, and knot groups; Chapter 16: Bridge number and companionship; Chapter 17: The 2-variable skein polynomial; Appendix A: Algebraic theorems; Appendix B: Theorems of 3-dimensional topology; Appendix C: Table; Appendix D: Knot projections 01-949; References; Author index; Glossary of Symbols; Index.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This 3. edition is an introduction to classical knot theory. It contains many figures and some tables of invariants of knots. This comprehensive account is an indispensable reference source for anyone interested in both classical and modern knot theory. Most of the topics considered in the book are developed in detail; only the main properties of fundamental groups and some basic results of combinatorial group theory are assumed to be known.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Knot theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85072726</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie des nuds.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Topology.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Knot theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Alexander Polynomials.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Braids.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Branched Coverings.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Cyclic Periods of Knots.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Factorization.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Fibred Knots.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Homfly Polynomials.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Knot Groups.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Knots.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Links.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Montesinos Links.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Seifert Matrices.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Seifert Surface.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zieschang, Heiner,</subfield><subfield code="e">author.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Heusener, Michael,</subfield><subfield code="e">author.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="z">9783110270747</subfield><subfield code="z">3110270749</subfield><subfield code="w">(DLC) 2013043504</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">De Gruyter studies in mathematics.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n83742913</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=674601</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">CBO01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=674601</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="936" ind1=" " ind2=" "><subfield code="a">BATCHLOAD</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">27055022</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL1130364</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">674601</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis27055022</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10817537</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn872700642 |
illustrated | Not Illustrated |
indexdate | 2024-10-25T16:21:52Z |
institution | BVB |
isbn | 3110270781 9783110270785 |
language | English |
oclc_num | 872700642 |
open_access_boolean | |
owner | MAIN |
owner_facet | MAIN |
physical | 1 online resource |
psigel | ZDB-4-EBA |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Walter de Gruyter GmbH & Co. KG, |
record_format | marc |
series | De Gruyter studies in mathematics. |
series2 | De Gruyter Studies in Mathematics |
spelling | Burde, Gerhard, 1931- author. https://id.oclc.org/worldcat/entity/E39PBJqbmkvCFXbYpc4BRGhj4q http://id.loc.gov/authorities/names/n85093003 Knots. 3rd [edition] / by Gerhard Burde, Heiner Zieschang, Michael Heusener. Berlin ; Boston : Walter de Gruyter GmbH & Co. KG, 2013. 1 online resource text txt rdacontent computer c rdamedia online resource cr rdacarrier De Gruyter Studies in Mathematics Includes bibliographical references and index. Print version record. Preface to the First Edition; Preface to the Second Edition; Preface to the Third Edition; Contents; Chapter 1: Knots and isotopies; Chapter 2: Geometric concepts; Chapter 3: Knot groups; Chapter 4: Commutator subgroup of a knot group; Chapter 5: Fibered knots; Chapter 6: A characterization of torus knots; Chapter 7: Factorization of knots; Chapter 8: Cyclic coverings and Alexander invariants; Chapter 9: Free differential calculus and Alexander matrices; Chapter 10: Braids; Chapter 11: Manifolds as branched coverings; Chapter 12: Montesinos links; Chapter 13: Quadratic forms of a knot. Chapter 14: Representations of knot groupsChapter 15: Knots, knot manifolds, and knot groups; Chapter 16: Bridge number and companionship; Chapter 17: The 2-variable skein polynomial; Appendix A: Algebraic theorems; Appendix B: Theorems of 3-dimensional topology; Appendix C: Table; Appendix D: Knot projections 01-949; References; Author index; Glossary of Symbols; Index. This 3. edition is an introduction to classical knot theory. It contains many figures and some tables of invariants of knots. This comprehensive account is an indispensable reference source for anyone interested in both classical and modern knot theory. Most of the topics considered in the book are developed in detail; only the main properties of fundamental groups and some basic results of combinatorial group theory are assumed to be known. Knot theory. http://id.loc.gov/authorities/subjects/sh85072726 Théorie des nuds. MATHEMATICS Topology. bisacsh Knot theory fast Alexander Polynomials. Braids. Branched Coverings. Cyclic Periods of Knots. Factorization. Fibred Knots. Homfly Polynomials. Knot Groups. Links. Montesinos Links. Seifert Matrices. Seifert Surface. Zieschang, Heiner, author. Heusener, Michael, author. Print version: 9783110270747 3110270749 (DLC) 2013043504 De Gruyter studies in mathematics. http://id.loc.gov/authorities/names/n83742913 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=674601 Volltext CBO01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=674601 Volltext |
spellingShingle | Burde, Gerhard, 1931- Zieschang, Heiner Heusener, Michael Knots. De Gruyter studies in mathematics. Preface to the First Edition; Preface to the Second Edition; Preface to the Third Edition; Contents; Chapter 1: Knots and isotopies; Chapter 2: Geometric concepts; Chapter 3: Knot groups; Chapter 4: Commutator subgroup of a knot group; Chapter 5: Fibered knots; Chapter 6: A characterization of torus knots; Chapter 7: Factorization of knots; Chapter 8: Cyclic coverings and Alexander invariants; Chapter 9: Free differential calculus and Alexander matrices; Chapter 10: Braids; Chapter 11: Manifolds as branched coverings; Chapter 12: Montesinos links; Chapter 13: Quadratic forms of a knot. Chapter 14: Representations of knot groupsChapter 15: Knots, knot manifolds, and knot groups; Chapter 16: Bridge number and companionship; Chapter 17: The 2-variable skein polynomial; Appendix A: Algebraic theorems; Appendix B: Theorems of 3-dimensional topology; Appendix C: Table; Appendix D: Knot projections 01-949; References; Author index; Glossary of Symbols; Index. Knot theory. http://id.loc.gov/authorities/subjects/sh85072726 Théorie des nuds. MATHEMATICS Topology. bisacsh Knot theory fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85072726 |
title | Knots. |
title_auth | Knots. |
title_exact_search | Knots. |
title_full | Knots. |
title_fullStr | Knots. |
title_full_unstemmed | Knots. |
title_short | Knots. |
title_sort | knots |
topic | Knot theory. http://id.loc.gov/authorities/subjects/sh85072726 Théorie des nuds. MATHEMATICS Topology. bisacsh Knot theory fast |
topic_facet | Knot theory. Théorie des nuds. MATHEMATICS Topology. Knot theory |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=674601 |
work_keys_str_mv | AT burdegerhard knots AT zieschangheiner knots AT heusenermichael knots |