Forcing for mathematicians /:
Ever since Paul Cohen's spectacular use of the forcing concept to prove the independence of the continuum hypothesis from the standard axioms of set theory, forcing has been seen by the general mathematical community as a subject of great intrinsic interest but one that is technically so forbid...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
[Hackensack] New Jersey :
World Scientific,
[2014]
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Ever since Paul Cohen's spectacular use of the forcing concept to prove the independence of the continuum hypothesis from the standard axioms of set theory, forcing has been seen by the general mathematical community as a subject of great intrinsic interest but one that is technically so forbidding that it is only accessible to specialists. In the past decade, a series of remarkable solutions to long-standing problems in C*-algebra using set-theoretic methods, many achieved by the author and his collaborators, have generated new interest in this subject. This is the first book aimed at explaining forcing to general mathematicians. It simultaneously makes the subject broadly accessible by explaining it in a clear, simple manner, and surveys advanced applications of set theory to mainstream topics. |
Beschreibung: | 1 online resource (x, 142 pages) |
Bibliographie: | Includes bibliographical references and indexes. |
ISBN: | 9789814566018 9814566012 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn872114307 | ||
003 | OCoLC | ||
005 | 20240705115654.0 | ||
006 | m o d | ||
007 | cr mn||||||||| | ||
008 | 140310t20142014nju ob 001 0 eng d | ||
040 | |a N$T |b eng |e rda |e pn |c N$T |d YDXCP |d IDEBK |d STF |d OSU |d GGVRL |d DEBSZ |d EBLCP |d CDX |d E7B |d CCO |d OCLCF |d OCLCQ |d LOA |d COCUF |d AGLDB |d MOR |d PIFAG |d ZCU |d MERUC |d OCLCQ |d JBG |d OCLCQ |d U3W |d VTS |d NRAMU |d ICG |d OCLCQ |d INT |d OTZ |d VT2 |d OCLCQ |d WYU |d TKN |d OCLCQ |d LEAUB |d DKC |d AU@ |d OCLCQ |d M8D |d UKAHL |d OCLCQ |d K6U |d OCLCQ |d OCLCO |d TXE |d OCLCQ |d OCLCO |d OCLCL |d SXB |d OCLCQ |d OCLCO | ||
019 | |a 873140116 | ||
020 | |a 9789814566018 |q (electronic bk.) | ||
020 | |a 9814566012 |q (electronic bk.) | ||
020 | |z 9789814566001 |q (hardcover ; |q alk. paper) | ||
020 | |z 9814566004 |q (hardcover ; |q alk. paper) | ||
020 | |z 9789814566957 |q (pbk. ; |q alk. paper) | ||
020 | |z 9814566950 |q (pbk. ; |q alk. paper) | ||
035 | |a (OCoLC)872114307 |z (OCoLC)873140116 | ||
050 | 4 | |a QA9.7 |b .W435 2014eb | |
072 | 7 | |a MAT |x 000000 |2 bisacsh | |
082 | 7 | |a 511.3/4 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Weaver, Nik, |e author. |1 https://id.oclc.org/worldcat/entity/E39PBJhGVpCcdybKqTCgkMpF8C |0 http://id.loc.gov/authorities/names/n99029534 | |
245 | 1 | 0 | |a Forcing for mathematicians / |c by Nik Weaver, Washington University in St. Louis, USA. |
264 | 1 | |a [Hackensack] New Jersey : |b World Scientific, |c [2014] | |
264 | 4 | |c ©2014 | |
300 | |a 1 online resource (x, 142 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
520 | |a Ever since Paul Cohen's spectacular use of the forcing concept to prove the independence of the continuum hypothesis from the standard axioms of set theory, forcing has been seen by the general mathematical community as a subject of great intrinsic interest but one that is technically so forbidding that it is only accessible to specialists. In the past decade, a series of remarkable solutions to long-standing problems in C*-algebra using set-theoretic methods, many achieved by the author and his collaborators, have generated new interest in this subject. This is the first book aimed at explaining forcing to general mathematicians. It simultaneously makes the subject broadly accessible by explaining it in a clear, simple manner, and surveys advanced applications of set theory to mainstream topics. | ||
504 | |a Includes bibliographical references and indexes. | ||
505 | 0 | |a 1. Peano arithmetic -- 2. Zermelo-Fraenkel set theory -- 3. Well-ordered sets -- 4. Ordinals -- 5. Cardinals -- 6. Relativization -- 7. Reflection -- 8. Forcing notions -- 9. Generic extensions -- 10. Forcing equality -- 11. The fundamental theorem -- 12. Forcing CH -- 13. Forcing [symbol]CH -- 14. Families of entire functions -- 15. Self-homeomorphisms of [symbols]I* -- 16. Pure sttes on [symbol](H)* -- 17. The diamond principle -- 18. Suslin's problem, I* -- 19. Naimark's problem* -- 20. A stronger diamond -- 21. Whitehead's problem, I* -- 22. Iterated forcing -- 23. Martin's axiom -- 24. Suslin's problem, II* -- 25. Whitehead's problem, II* -- 26. The open coloring axiom -- 27. Self-homeomorphisms of [symbols], II* -- 28. Automorphisms of the Calkin algebra, I* -- 29. Automorphisms of the Calkin algebra, II* -- 30. The multiverse interpretation. | |
588 | 0 | |a Print version record. | |
650 | 0 | |a Forcing (Model theory) |0 http://id.loc.gov/authorities/subjects/sh85050461 | |
650 | 0 | |a Set theory. |0 http://id.loc.gov/authorities/subjects/sh85120387 | |
650 | 0 | |a Axiom of choice. |0 http://id.loc.gov/authorities/subjects/sh85010586 | |
650 | 0 | |a Continuum hypothesis. |0 http://id.loc.gov/authorities/subjects/sh93002990 | |
650 | 6 | |a Forcing (Théorie des modèles) | |
650 | 6 | |a Théorie des ensembles. | |
650 | 6 | |a Axiome du choix. | |
650 | 6 | |a Hypothèse du continu. | |
650 | 7 | |a MATHEMATICS |x General. |2 bisacsh | |
650 | 7 | |a Axiom of choice |2 fast | |
650 | 7 | |a Continuum hypothesis |2 fast | |
650 | 7 | |a Forcing (Model theory) |2 fast | |
650 | 7 | |a Set theory |2 fast | |
758 | |i has work: |a Forcing for mathematicians (Text) |1 https://id.oclc.org/worldcat/entity/E39PCFX8Fpf3C3yHjDkdPJC6Gb |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Weaver, Nik. |t Forcing for mathematicians. |d [Hackensack] New Jersey : World Scientific, 2014 |z 9789814566001 |w (DLC) 2013047943 |w (OCoLC)860881611 |
856 | 1 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=711759 |3 Volltext | |
856 | 1 | |l CBO01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=711759 |3 Volltext | |
938 | |a Askews and Holts Library Services |b ASKH |n AH26207398 | ||
938 | |a Coutts Information Services |b COUT |n 27621865 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL1647247 | ||
938 | |a ebrary |b EBRY |n ebr10845314 | ||
938 | |a EBSCOhost |b EBSC |n 711759 | ||
938 | |a Cengage Learning |b GVRL |n GVRL8RBL | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis27621865 | ||
938 | |a YBP Library Services |b YANK |n 11685020 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn872114307 |
---|---|
_version_ | 1813903638368616448 |
adam_text | |
any_adam_object | |
author | Weaver, Nik |
author_GND | http://id.loc.gov/authorities/names/n99029534 |
author_facet | Weaver, Nik |
author_role | aut |
author_sort | Weaver, Nik |
author_variant | n w nw |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA9 |
callnumber-raw | QA9.7 .W435 2014eb |
callnumber-search | QA9.7 .W435 2014eb |
callnumber-sort | QA 19.7 W435 42014EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | 1. Peano arithmetic -- 2. Zermelo-Fraenkel set theory -- 3. Well-ordered sets -- 4. Ordinals -- 5. Cardinals -- 6. Relativization -- 7. Reflection -- 8. Forcing notions -- 9. Generic extensions -- 10. Forcing equality -- 11. The fundamental theorem -- 12. Forcing CH -- 13. Forcing [symbol]CH -- 14. Families of entire functions -- 15. Self-homeomorphisms of [symbols]I* -- 16. Pure sttes on [symbol](H)* -- 17. The diamond principle -- 18. Suslin's problem, I* -- 19. Naimark's problem* -- 20. A stronger diamond -- 21. Whitehead's problem, I* -- 22. Iterated forcing -- 23. Martin's axiom -- 24. Suslin's problem, II* -- 25. Whitehead's problem, II* -- 26. The open coloring axiom -- 27. Self-homeomorphisms of [symbols], II* -- 28. Automorphisms of the Calkin algebra, I* -- 29. Automorphisms of the Calkin algebra, II* -- 30. The multiverse interpretation. |
ctrlnum | (OCoLC)872114307 |
dewey-full | 511.3/4 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.3/4 |
dewey-search | 511.3/4 |
dewey-sort | 3511.3 14 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05016cam a2200697 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn872114307</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20240705115654.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr mn|||||||||</controlfield><controlfield tag="008">140310t20142014nju ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">IDEBK</subfield><subfield code="d">STF</subfield><subfield code="d">OSU</subfield><subfield code="d">GGVRL</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">EBLCP</subfield><subfield code="d">CDX</subfield><subfield code="d">E7B</subfield><subfield code="d">CCO</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LOA</subfield><subfield code="d">COCUF</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFAG</subfield><subfield code="d">ZCU</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">JBG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">VTS</subfield><subfield code="d">NRAMU</subfield><subfield code="d">ICG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">INT</subfield><subfield code="d">OTZ</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">TKN</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LEAUB</subfield><subfield code="d">DKC</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">TXE</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SXB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">873140116</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814566018</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814566012</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789814566001</subfield><subfield code="q">(hardcover ;</subfield><subfield code="q">alk. paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9814566004</subfield><subfield code="q">(hardcover ;</subfield><subfield code="q">alk. paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789814566957</subfield><subfield code="q">(pbk. ;</subfield><subfield code="q">alk. paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9814566950</subfield><subfield code="q">(pbk. ;</subfield><subfield code="q">alk. paper)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)872114307</subfield><subfield code="z">(OCoLC)873140116</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA9.7</subfield><subfield code="b">.W435 2014eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">000000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">511.3/4</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Weaver, Nik,</subfield><subfield code="e">author.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJhGVpCcdybKqTCgkMpF8C</subfield><subfield code="0">http://id.loc.gov/authorities/names/n99029534</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Forcing for mathematicians /</subfield><subfield code="c">by Nik Weaver, Washington University in St. Louis, USA.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Hackensack] New Jersey :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">[2014]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (x, 142 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Ever since Paul Cohen's spectacular use of the forcing concept to prove the independence of the continuum hypothesis from the standard axioms of set theory, forcing has been seen by the general mathematical community as a subject of great intrinsic interest but one that is technically so forbidding that it is only accessible to specialists. In the past decade, a series of remarkable solutions to long-standing problems in C*-algebra using set-theoretic methods, many achieved by the author and his collaborators, have generated new interest in this subject. This is the first book aimed at explaining forcing to general mathematicians. It simultaneously makes the subject broadly accessible by explaining it in a clear, simple manner, and surveys advanced applications of set theory to mainstream topics.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and indexes.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">1. Peano arithmetic -- 2. Zermelo-Fraenkel set theory -- 3. Well-ordered sets -- 4. Ordinals -- 5. Cardinals -- 6. Relativization -- 7. Reflection -- 8. Forcing notions -- 9. Generic extensions -- 10. Forcing equality -- 11. The fundamental theorem -- 12. Forcing CH -- 13. Forcing [symbol]CH -- 14. Families of entire functions -- 15. Self-homeomorphisms of [symbols]I* -- 16. Pure sttes on [symbol](H)* -- 17. The diamond principle -- 18. Suslin's problem, I* -- 19. Naimark's problem* -- 20. A stronger diamond -- 21. Whitehead's problem, I* -- 22. Iterated forcing -- 23. Martin's axiom -- 24. Suslin's problem, II* -- 25. Whitehead's problem, II* -- 26. The open coloring axiom -- 27. Self-homeomorphisms of [symbols], II* -- 28. Automorphisms of the Calkin algebra, I* -- 29. Automorphisms of the Calkin algebra, II* -- 30. The multiverse interpretation.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Forcing (Model theory)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85050461</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Set theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85120387</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Axiom of choice.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85010586</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Continuum hypothesis.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh93002990</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Forcing (Théorie des modèles)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie des ensembles.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Axiome du choix.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Hypothèse du continu.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Axiom of choice</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Continuum hypothesis</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Forcing (Model theory)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Set theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Forcing for mathematicians (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCFX8Fpf3C3yHjDkdPJC6Gb</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Weaver, Nik.</subfield><subfield code="t">Forcing for mathematicians.</subfield><subfield code="d">[Hackensack] New Jersey : World Scientific, 2014</subfield><subfield code="z">9789814566001</subfield><subfield code="w">(DLC) 2013047943</subfield><subfield code="w">(OCoLC)860881611</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=711759</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">CBO01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=711759</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH26207398</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">27621865</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL1647247</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10845314</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">711759</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Cengage Learning</subfield><subfield code="b">GVRL</subfield><subfield code="n">GVRL8RBL</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis27621865</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">11685020</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn872114307 |
illustrated | Not Illustrated |
indexdate | 2024-10-25T16:21:52Z |
institution | BVB |
isbn | 9789814566018 9814566012 |
language | English |
oclc_num | 872114307 |
open_access_boolean | |
owner | MAIN |
owner_facet | MAIN |
physical | 1 online resource (x, 142 pages) |
psigel | ZDB-4-EBA |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | World Scientific, |
record_format | marc |
spelling | Weaver, Nik, author. https://id.oclc.org/worldcat/entity/E39PBJhGVpCcdybKqTCgkMpF8C http://id.loc.gov/authorities/names/n99029534 Forcing for mathematicians / by Nik Weaver, Washington University in St. Louis, USA. [Hackensack] New Jersey : World Scientific, [2014] ©2014 1 online resource (x, 142 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier Ever since Paul Cohen's spectacular use of the forcing concept to prove the independence of the continuum hypothesis from the standard axioms of set theory, forcing has been seen by the general mathematical community as a subject of great intrinsic interest but one that is technically so forbidding that it is only accessible to specialists. In the past decade, a series of remarkable solutions to long-standing problems in C*-algebra using set-theoretic methods, many achieved by the author and his collaborators, have generated new interest in this subject. This is the first book aimed at explaining forcing to general mathematicians. It simultaneously makes the subject broadly accessible by explaining it in a clear, simple manner, and surveys advanced applications of set theory to mainstream topics. Includes bibliographical references and indexes. 1. Peano arithmetic -- 2. Zermelo-Fraenkel set theory -- 3. Well-ordered sets -- 4. Ordinals -- 5. Cardinals -- 6. Relativization -- 7. Reflection -- 8. Forcing notions -- 9. Generic extensions -- 10. Forcing equality -- 11. The fundamental theorem -- 12. Forcing CH -- 13. Forcing [symbol]CH -- 14. Families of entire functions -- 15. Self-homeomorphisms of [symbols]I* -- 16. Pure sttes on [symbol](H)* -- 17. The diamond principle -- 18. Suslin's problem, I* -- 19. Naimark's problem* -- 20. A stronger diamond -- 21. Whitehead's problem, I* -- 22. Iterated forcing -- 23. Martin's axiom -- 24. Suslin's problem, II* -- 25. Whitehead's problem, II* -- 26. The open coloring axiom -- 27. Self-homeomorphisms of [symbols], II* -- 28. Automorphisms of the Calkin algebra, I* -- 29. Automorphisms of the Calkin algebra, II* -- 30. The multiverse interpretation. Print version record. Forcing (Model theory) http://id.loc.gov/authorities/subjects/sh85050461 Set theory. http://id.loc.gov/authorities/subjects/sh85120387 Axiom of choice. http://id.loc.gov/authorities/subjects/sh85010586 Continuum hypothesis. http://id.loc.gov/authorities/subjects/sh93002990 Forcing (Théorie des modèles) Théorie des ensembles. Axiome du choix. Hypothèse du continu. MATHEMATICS General. bisacsh Axiom of choice fast Continuum hypothesis fast Forcing (Model theory) fast Set theory fast has work: Forcing for mathematicians (Text) https://id.oclc.org/worldcat/entity/E39PCFX8Fpf3C3yHjDkdPJC6Gb https://id.oclc.org/worldcat/ontology/hasWork Print version: Weaver, Nik. Forcing for mathematicians. [Hackensack] New Jersey : World Scientific, 2014 9789814566001 (DLC) 2013047943 (OCoLC)860881611 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=711759 Volltext CBO01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=711759 Volltext |
spellingShingle | Weaver, Nik Forcing for mathematicians / 1. Peano arithmetic -- 2. Zermelo-Fraenkel set theory -- 3. Well-ordered sets -- 4. Ordinals -- 5. Cardinals -- 6. Relativization -- 7. Reflection -- 8. Forcing notions -- 9. Generic extensions -- 10. Forcing equality -- 11. The fundamental theorem -- 12. Forcing CH -- 13. Forcing [symbol]CH -- 14. Families of entire functions -- 15. Self-homeomorphisms of [symbols]I* -- 16. Pure sttes on [symbol](H)* -- 17. The diamond principle -- 18. Suslin's problem, I* -- 19. Naimark's problem* -- 20. A stronger diamond -- 21. Whitehead's problem, I* -- 22. Iterated forcing -- 23. Martin's axiom -- 24. Suslin's problem, II* -- 25. Whitehead's problem, II* -- 26. The open coloring axiom -- 27. Self-homeomorphisms of [symbols], II* -- 28. Automorphisms of the Calkin algebra, I* -- 29. Automorphisms of the Calkin algebra, II* -- 30. The multiverse interpretation. Forcing (Model theory) http://id.loc.gov/authorities/subjects/sh85050461 Set theory. http://id.loc.gov/authorities/subjects/sh85120387 Axiom of choice. http://id.loc.gov/authorities/subjects/sh85010586 Continuum hypothesis. http://id.loc.gov/authorities/subjects/sh93002990 Forcing (Théorie des modèles) Théorie des ensembles. Axiome du choix. Hypothèse du continu. MATHEMATICS General. bisacsh Axiom of choice fast Continuum hypothesis fast Forcing (Model theory) fast Set theory fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85050461 http://id.loc.gov/authorities/subjects/sh85120387 http://id.loc.gov/authorities/subjects/sh85010586 http://id.loc.gov/authorities/subjects/sh93002990 |
title | Forcing for mathematicians / |
title_auth | Forcing for mathematicians / |
title_exact_search | Forcing for mathematicians / |
title_full | Forcing for mathematicians / by Nik Weaver, Washington University in St. Louis, USA. |
title_fullStr | Forcing for mathematicians / by Nik Weaver, Washington University in St. Louis, USA. |
title_full_unstemmed | Forcing for mathematicians / by Nik Weaver, Washington University in St. Louis, USA. |
title_short | Forcing for mathematicians / |
title_sort | forcing for mathematicians |
topic | Forcing (Model theory) http://id.loc.gov/authorities/subjects/sh85050461 Set theory. http://id.loc.gov/authorities/subjects/sh85120387 Axiom of choice. http://id.loc.gov/authorities/subjects/sh85010586 Continuum hypothesis. http://id.loc.gov/authorities/subjects/sh93002990 Forcing (Théorie des modèles) Théorie des ensembles. Axiome du choix. Hypothèse du continu. MATHEMATICS General. bisacsh Axiom of choice fast Continuum hypothesis fast Forcing (Model theory) fast Set theory fast |
topic_facet | Forcing (Model theory) Set theory. Axiom of choice. Continuum hypothesis. Forcing (Théorie des modèles) Théorie des ensembles. Axiome du choix. Hypothèse du continu. MATHEMATICS General. Axiom of choice Continuum hypothesis Set theory |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=711759 |
work_keys_str_mv | AT weavernik forcingformathematicians |