Function Classes on the Unit Disc :: an Introduction.
Themonograph contains a study on various function classes, a number of new results and new or easy proofs of old result (Fefferman Stein theorem on subharmonic behavior, theorem on conjugate functions on Bergman spaces), which might be interesting for specialists, a full discussion on g-function (al...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin :
De Gruyter,
[2013]
|
Schriftenreihe: | De Gruyter studies in mathematics.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Themonograph contains a study on various function classes, a number of new results and new or easy proofs of old result (Fefferman Stein theorem on subharmonic behavior, theorem on conjugate functions on Bergman spaces), which might be interesting for specialists, a full discussion on g-function (all p> 0), and a treatment of lacunary series with values in quasi-Banach spaces. |
Beschreibung: | 1 online resource (xiii, 449 pages) |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9783110281903 3110281902 3110281910 9783110281910 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn870589848 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr un||||||||| | ||
008 | 140215t20132013gw ob 001 0 eng d | ||
040 | |a EBLCP |b eng |e rda |e pn |c EBLCP |d OCLCQ |d OCLCO |d OCLCQ |d CDX |d IDEBK |d AZU |d N$T |d COO |d OCLCF |d E7B |d YDXCP |d DEBSZ |d OSU |d ADU |d CWR |d UIU |d AGLDB |d AZK |d COCUF |d MOR |d CCO |d PIFAG |d ZCU |d MERUC |d CUY |d OCLCQ |d OCLCO |d DEGRU |d VTS |d ICG |d OCLCQ |d WYU |d STF |d LEAUB |d DKC |d U3W |d OCLCQ |d M8D |d OCLCQ |d U9X |d AJS |d OCLCQ |d S2H |d OCLCO |d SNK |d OCLCO |d OCLCQ |d OCLCO |d OCLCL | ||
066 | |c (S | ||
019 | |a 870892319 |a 874162451 |a 921226947 |a 961621352 |a 988489615 |a 991928521 |a 1087398551 |a 1264958232 | ||
020 | |a 9783110281903 |q (e-ISBN) | ||
020 | |a 3110281902 | ||
020 | |z 3110281236 |q (hardcover) | ||
020 | |z 9783110281231 |q (hardcover) | ||
020 | |z 3110281910 | ||
020 | |z 9783110281910 |q (set-ISBN) | ||
020 | |z 9781306429634 | ||
020 | |z 1306429633 | ||
020 | |a 3110281910 | ||
020 | |a 9783110281910 | ||
024 | 3 | |a 9783110281910 | |
035 | |a (OCoLC)870589848 |z (OCoLC)870892319 |z (OCoLC)874162451 |z (OCoLC)921226947 |z (OCoLC)961621352 |z (OCoLC)988489615 |z (OCoLC)991928521 |z (OCoLC)1087398551 |z (OCoLC)1264958232 | ||
037 | |a 574214 |b MIL | ||
050 | 4 | |a QA320 | |
072 | 7 | |a MAT |x 005000 |2 bisacsh | |
072 | 7 | |a MAT |x 034000 |2 bisacsh | |
082 | 7 | |a 515.7222 | |
084 | |a SK 600 |2 rvk | ||
049 | |a MAIN | ||
100 | 1 | |a Pavlovic, Miroslav, |e author. | |
245 | 1 | 0 | |a Function Classes on the Unit Disc : |b an Introduction. |
264 | 1 | |a Berlin : |b De Gruyter, |c [2013] | |
264 | 4 | |c ©2013 | |
300 | |a 1 online resource (xiii, 449 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a De Gruyter Studies in Mathematics | |
588 | 0 | |a Print version record. | |
520 | 8 | |a Themonograph contains a study on various function classes, a number of new results and new or easy proofs of old result (Fefferman Stein theorem on subharmonic behavior, theorem on conjugate functions on Bergman spaces), which might be interesting for specialists, a full discussion on g-function (all p> 0), and a treatment of lacunary series with values in quasi-Banach spaces. | |
504 | |a Includes bibliographical references and index. | ||
505 | 0 | 0 | |t Frontmatter -- |t Preface / |r Pavlović, Miroslav -- |t Contents -- |t 1. The Poisson integral and Hardy spaces -- |t 2. Subharmonic functions and Hardy spaces -- |t 3. Subharmonic behavior and mixed norm spaces -- |t 4. Taylor coefficients with applications -- |t 5. Besov spaces -- |t 6. The dual of H -- |t 7. Littlewood-Paley theory -- |t 8. Lipschitz spaces of first order -- |t 9. Lipschitz spaces of higher order -- |t 10. One-to-one mappings -- |t 11. Coefficients multipliers -- |t 12. Toward a theory of vector-valued spaces -- |t A. Quasi-Banach spaces -- |t B. Interpolation and maximal functions -- |t Bibliography -- |t Index. |
650 | 0 | |a Functional analysis. |0 http://id.loc.gov/authorities/subjects/sh85052312 | |
650 | 0 | |a Function spaces. |0 http://id.loc.gov/authorities/subjects/sh85052310 | |
650 | 0 | |a Banach spaces. |0 http://id.loc.gov/authorities/subjects/sh85011441 | |
650 | 0 | |a Poisson integral formula. |0 http://id.loc.gov/authorities/subjects/sh85103957 | |
650 | 0 | |a Hardy spaces. |0 http://id.loc.gov/authorities/subjects/sh85058902 | |
650 | 0 | |a Lipschitz spaces. |0 http://id.loc.gov/authorities/subjects/sh99003370 | |
650 | 4 | |a Banach spaces. | |
650 | 4 | |a Function spaces. | |
650 | 4 | |a Functional analysis. | |
650 | 4 | |a Hardy spaces. | |
650 | 4 | |a Lipschitz spaces. | |
650 | 4 | |a Poisson integral formula. | |
650 | 4 | |a Mathematik. | |
650 | 6 | |a Analyse fonctionnelle. | |
650 | 6 | |a Espaces fonctionnels. | |
650 | 6 | |a Espaces de Banach. | |
650 | 6 | |a Espaces de Hardy. | |
650 | 6 | |a Espaces de Lipschitz. | |
650 | 7 | |a MATHEMATICS |x Calculus. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Mathematical Analysis. |2 bisacsh | |
650 | 7 | |a Banach spaces |2 fast | |
650 | 7 | |a Function spaces |2 fast | |
650 | 7 | |a Functional analysis |2 fast | |
650 | 7 | |a Hardy spaces |2 fast | |
650 | 7 | |a Lipschitz spaces |2 fast | |
650 | 7 | |a Poisson integral formula |2 fast | |
650 | 7 | |a Komplexe Funktion |2 gnd |0 http://d-nb.info/gnd/4217733-9 | |
650 | 7 | |a Analytische Funktion |2 gnd |0 http://d-nb.info/gnd/4142348-3 | |
758 | |i has work: |a Function classes on the unit disc (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGfM4rtC9bB7pbXyGT7TH3 |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Pavlovic, Miroslav. |t Function Classes on the Unit Disc : An Introduction. |d Berlin : De Gruyter, ©2013 |z 9783110281231 |
830 | 0 | |a De Gruyter studies in mathematics. |0 http://id.loc.gov/authorities/names/n83742913 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=699603 |3 Volltext |
880 | |6 520-00/(S |a This monograph contains a study on various function classes, a number of new results and new or easy proofs of old results (Fefferman-Stein theorem on subharmonic behavior, theorems on conjugate functions and fractional integration on Bergman spaces, Fefferman's duality theorem), which are interesting for specialists; applications of the Hardy-Littlewood inequalities on Taylor coefficients to (C, α)-maximal theorems and (C, α)-convergence; a study of BMOA, due to Knese, based only on Green's formula; the problem of membership of singular inner functions in Besov and Hardy-Sobolev spaces; a full discussion of g-function (all p › 0) and Calderón's area theorem; a new proof, due to Astala and Koskela, of the Littlewood-Paley inequality for univalent functions; and new results and proofs on Lipschitz spaces, coefficient multipliers and duality, including compact multipliers and multipliers on spaces with non-normal weights. It also contains a discussion of analytic functions and lacunary series with values in quasi-Banach spaces with applications to function spaces and composition operators. Sixteen open questions are posed. The reader is assumed to have a good foundation in Lebesgue integration, complex analysis, functional analysis, and Fourier series. Further information can be found at the author's website at http://poincare.matf.bg.ac.rs/~pavlovic. | ||
938 | |a YBP Library Services |b YANK |n 10817664 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis27540907 | ||
938 | |a EBSCOhost |b EBSC |n 699603 | ||
938 | |a ebrary |b EBRY |n ebr10838307 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL1130360 | ||
938 | |a De Gruyter |b DEGR |n 9783110281903 | ||
938 | |a Coutts Information Services |b COUT |n 27540907 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn870589848 |
---|---|
_version_ | 1816882260967686145 |
adam_text | |
any_adam_object | |
author | Pavlovic, Miroslav |
author_additional | Pavlović, Miroslav -- |
author_facet | Pavlovic, Miroslav |
author_role | aut |
author_sort | Pavlovic, Miroslav |
author_variant | m p mp |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA320 |
callnumber-raw | QA320 |
callnumber-search | QA320 |
callnumber-sort | QA 3320 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 600 |
collection | ZDB-4-EBA |
contents | Frontmatter -- Preface / Contents -- 1. The Poisson integral and Hardy spaces -- 2. Subharmonic functions and Hardy spaces -- 3. Subharmonic behavior and mixed norm spaces -- 4. Taylor coefficients with applications -- 5. Besov spaces -- 6. The dual of H -- 7. Littlewood-Paley theory -- 8. Lipschitz spaces of first order -- 9. Lipschitz spaces of higher order -- 10. One-to-one mappings -- 11. Coefficients multipliers -- 12. Toward a theory of vector-valued spaces -- A. Quasi-Banach spaces -- B. Interpolation and maximal functions -- Bibliography -- Index. |
ctrlnum | (OCoLC)870589848 |
dewey-full | 515.7222 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.7222 |
dewey-search | 515.7222 |
dewey-sort | 3515.7222 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06696cam a2201009 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn870589848</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr un|||||||||</controlfield><controlfield tag="008">140215t20132013gw ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">EBLCP</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">EBLCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">CDX</subfield><subfield code="d">IDEBK</subfield><subfield code="d">AZU</subfield><subfield code="d">N$T</subfield><subfield code="d">COO</subfield><subfield code="d">OCLCF</subfield><subfield code="d">E7B</subfield><subfield code="d">YDXCP</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OSU</subfield><subfield code="d">ADU</subfield><subfield code="d">CWR</subfield><subfield code="d">UIU</subfield><subfield code="d">AGLDB</subfield><subfield code="d">AZK</subfield><subfield code="d">COCUF</subfield><subfield code="d">MOR</subfield><subfield code="d">CCO</subfield><subfield code="d">PIFAG</subfield><subfield code="d">ZCU</subfield><subfield code="d">MERUC</subfield><subfield code="d">CUY</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">DEGRU</subfield><subfield code="d">VTS</subfield><subfield code="d">ICG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">STF</subfield><subfield code="d">LEAUB</subfield><subfield code="d">DKC</subfield><subfield code="d">U3W</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U9X</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">S2H</subfield><subfield code="d">OCLCO</subfield><subfield code="d">SNK</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="066" ind1=" " ind2=" "><subfield code="c">(S</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">870892319</subfield><subfield code="a">874162451</subfield><subfield code="a">921226947</subfield><subfield code="a">961621352</subfield><subfield code="a">988489615</subfield><subfield code="a">991928521</subfield><subfield code="a">1087398551</subfield><subfield code="a">1264958232</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110281903</subfield><subfield code="q">(e-ISBN)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110281902</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">3110281236</subfield><subfield code="q">(hardcover)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783110281231</subfield><subfield code="q">(hardcover)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">3110281910</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783110281910</subfield><subfield code="q">(set-ISBN)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781306429634</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1306429633</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110281910</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110281910</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783110281910</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)870589848</subfield><subfield code="z">(OCoLC)870892319</subfield><subfield code="z">(OCoLC)874162451</subfield><subfield code="z">(OCoLC)921226947</subfield><subfield code="z">(OCoLC)961621352</subfield><subfield code="z">(OCoLC)988489615</subfield><subfield code="z">(OCoLC)991928521</subfield><subfield code="z">(OCoLC)1087398551</subfield><subfield code="z">(OCoLC)1264958232</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">574214</subfield><subfield code="b">MIL</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA320</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">005000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">034000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515.7222</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 600</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pavlovic, Miroslav,</subfield><subfield code="e">author.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Function Classes on the Unit Disc :</subfield><subfield code="b">an Introduction.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin :</subfield><subfield code="b">De Gruyter,</subfield><subfield code="c">[2013]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiii, 449 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">De Gruyter Studies in Mathematics</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1="8" ind2=" "><subfield code="a">Themonograph contains a study on various function classes, a number of new results and new or easy proofs of old result (Fefferman Stein theorem on subharmonic behavior, theorem on conjugate functions on Bergman spaces), which might be interesting for specialists, a full discussion on g-function (all p> 0), and a treatment of lacunary series with values in quasi-Banach spaces.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="505" ind1="0" ind2="0"><subfield code="t">Frontmatter --</subfield><subfield code="t">Preface /</subfield><subfield code="r">Pavlović, Miroslav --</subfield><subfield code="t">Contents --</subfield><subfield code="t">1. The Poisson integral and Hardy spaces --</subfield><subfield code="t">2. Subharmonic functions and Hardy spaces --</subfield><subfield code="t">3. Subharmonic behavior and mixed norm spaces --</subfield><subfield code="t">4. Taylor coefficients with applications --</subfield><subfield code="t">5. Besov spaces --</subfield><subfield code="t">6. The dual of H --</subfield><subfield code="t">7. Littlewood-Paley theory --</subfield><subfield code="t">8. Lipschitz spaces of first order --</subfield><subfield code="t">9. Lipschitz spaces of higher order --</subfield><subfield code="t">10. One-to-one mappings --</subfield><subfield code="t">11. Coefficients multipliers --</subfield><subfield code="t">12. Toward a theory of vector-valued spaces --</subfield><subfield code="t">A. Quasi-Banach spaces --</subfield><subfield code="t">B. Interpolation and maximal functions --</subfield><subfield code="t">Bibliography --</subfield><subfield code="t">Index.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Functional analysis.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85052312</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Function spaces.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85052310</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Banach spaces.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85011441</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Poisson integral formula.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85103957</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Hardy spaces.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85058902</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Lipschitz spaces.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh99003370</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Banach spaces.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Function spaces.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional analysis.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hardy spaces.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lipschitz spaces.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Poisson integral formula.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Analyse fonctionnelle.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Espaces fonctionnels.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Espaces de Banach.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Espaces de Hardy.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Espaces de Lipschitz.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Calculus.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Mathematical Analysis.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Banach spaces</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Function spaces</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Functional analysis</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hardy spaces</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lipschitz spaces</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Poisson integral formula</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Komplexe Funktion</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4217733-9</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Analytische Funktion</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4142348-3</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Function classes on the unit disc (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGfM4rtC9bB7pbXyGT7TH3</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Pavlovic, Miroslav.</subfield><subfield code="t">Function Classes on the Unit Disc : An Introduction.</subfield><subfield code="d">Berlin : De Gruyter, ©2013</subfield><subfield code="z">9783110281231</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">De Gruyter studies in mathematics.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n83742913</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=699603</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="880" ind1=" " ind2=" "><subfield code="6">520-00/(S</subfield><subfield code="a">This monograph contains a study on various function classes, a number of new results and new or easy proofs of old results (Fefferman-Stein theorem on subharmonic behavior, theorems on conjugate functions and fractional integration on Bergman spaces, Fefferman's duality theorem), which are interesting for specialists; applications of the Hardy-Littlewood inequalities on Taylor coefficients to (C, α)-maximal theorems and (C, α)-convergence; a study of BMOA, due to Knese, based only on Green's formula; the problem of membership of singular inner functions in Besov and Hardy-Sobolev spaces; a full discussion of g-function (all p › 0) and Calderón's area theorem; a new proof, due to Astala and Koskela, of the Littlewood-Paley inequality for univalent functions; and new results and proofs on Lipschitz spaces, coefficient multipliers and duality, including compact multipliers and multipliers on spaces with non-normal weights. It also contains a discussion of analytic functions and lacunary series with values in quasi-Banach spaces with applications to function spaces and composition operators. Sixteen open questions are posed. The reader is assumed to have a good foundation in Lebesgue integration, complex analysis, functional analysis, and Fourier series. Further information can be found at the author's website at http://poincare.matf.bg.ac.rs/~pavlovic.</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10817664</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis27540907</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">699603</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10838307</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL1130360</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">De Gruyter</subfield><subfield code="b">DEGR</subfield><subfield code="n">9783110281903</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">27540907</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn870589848 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:25:48Z |
institution | BVB |
isbn | 9783110281903 3110281902 3110281910 9783110281910 |
language | English |
oclc_num | 870589848 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xiii, 449 pages) |
psigel | ZDB-4-EBA |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | De Gruyter, |
record_format | marc |
series | De Gruyter studies in mathematics. |
series2 | De Gruyter Studies in Mathematics |
spelling | Pavlovic, Miroslav, author. Function Classes on the Unit Disc : an Introduction. Berlin : De Gruyter, [2013] ©2013 1 online resource (xiii, 449 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier De Gruyter Studies in Mathematics Print version record. Themonograph contains a study on various function classes, a number of new results and new or easy proofs of old result (Fefferman Stein theorem on subharmonic behavior, theorem on conjugate functions on Bergman spaces), which might be interesting for specialists, a full discussion on g-function (all p> 0), and a treatment of lacunary series with values in quasi-Banach spaces. Includes bibliographical references and index. Frontmatter -- Preface / Pavlović, Miroslav -- Contents -- 1. The Poisson integral and Hardy spaces -- 2. Subharmonic functions and Hardy spaces -- 3. Subharmonic behavior and mixed norm spaces -- 4. Taylor coefficients with applications -- 5. Besov spaces -- 6. The dual of H -- 7. Littlewood-Paley theory -- 8. Lipschitz spaces of first order -- 9. Lipschitz spaces of higher order -- 10. One-to-one mappings -- 11. Coefficients multipliers -- 12. Toward a theory of vector-valued spaces -- A. Quasi-Banach spaces -- B. Interpolation and maximal functions -- Bibliography -- Index. Functional analysis. http://id.loc.gov/authorities/subjects/sh85052312 Function spaces. http://id.loc.gov/authorities/subjects/sh85052310 Banach spaces. http://id.loc.gov/authorities/subjects/sh85011441 Poisson integral formula. http://id.loc.gov/authorities/subjects/sh85103957 Hardy spaces. http://id.loc.gov/authorities/subjects/sh85058902 Lipschitz spaces. http://id.loc.gov/authorities/subjects/sh99003370 Banach spaces. Function spaces. Functional analysis. Hardy spaces. Lipschitz spaces. Poisson integral formula. Mathematik. Analyse fonctionnelle. Espaces fonctionnels. Espaces de Banach. Espaces de Hardy. Espaces de Lipschitz. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Banach spaces fast Function spaces fast Functional analysis fast Hardy spaces fast Lipschitz spaces fast Poisson integral formula fast Komplexe Funktion gnd http://d-nb.info/gnd/4217733-9 Analytische Funktion gnd http://d-nb.info/gnd/4142348-3 has work: Function classes on the unit disc (Text) https://id.oclc.org/worldcat/entity/E39PCGfM4rtC9bB7pbXyGT7TH3 https://id.oclc.org/worldcat/ontology/hasWork Print version: Pavlovic, Miroslav. Function Classes on the Unit Disc : An Introduction. Berlin : De Gruyter, ©2013 9783110281231 De Gruyter studies in mathematics. http://id.loc.gov/authorities/names/n83742913 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=699603 Volltext 520-00/(S This monograph contains a study on various function classes, a number of new results and new or easy proofs of old results (Fefferman-Stein theorem on subharmonic behavior, theorems on conjugate functions and fractional integration on Bergman spaces, Fefferman's duality theorem), which are interesting for specialists; applications of the Hardy-Littlewood inequalities on Taylor coefficients to (C, α)-maximal theorems and (C, α)-convergence; a study of BMOA, due to Knese, based only on Green's formula; the problem of membership of singular inner functions in Besov and Hardy-Sobolev spaces; a full discussion of g-function (all p › 0) and Calderón's area theorem; a new proof, due to Astala and Koskela, of the Littlewood-Paley inequality for univalent functions; and new results and proofs on Lipschitz spaces, coefficient multipliers and duality, including compact multipliers and multipliers on spaces with non-normal weights. It also contains a discussion of analytic functions and lacunary series with values in quasi-Banach spaces with applications to function spaces and composition operators. Sixteen open questions are posed. The reader is assumed to have a good foundation in Lebesgue integration, complex analysis, functional analysis, and Fourier series. Further information can be found at the author's website at http://poincare.matf.bg.ac.rs/~pavlovic. |
spellingShingle | Pavlovic, Miroslav Function Classes on the Unit Disc : an Introduction. De Gruyter studies in mathematics. Frontmatter -- Preface / Contents -- 1. The Poisson integral and Hardy spaces -- 2. Subharmonic functions and Hardy spaces -- 3. Subharmonic behavior and mixed norm spaces -- 4. Taylor coefficients with applications -- 5. Besov spaces -- 6. The dual of H -- 7. Littlewood-Paley theory -- 8. Lipschitz spaces of first order -- 9. Lipschitz spaces of higher order -- 10. One-to-one mappings -- 11. Coefficients multipliers -- 12. Toward a theory of vector-valued spaces -- A. Quasi-Banach spaces -- B. Interpolation and maximal functions -- Bibliography -- Index. Functional analysis. http://id.loc.gov/authorities/subjects/sh85052312 Function spaces. http://id.loc.gov/authorities/subjects/sh85052310 Banach spaces. http://id.loc.gov/authorities/subjects/sh85011441 Poisson integral formula. http://id.loc.gov/authorities/subjects/sh85103957 Hardy spaces. http://id.loc.gov/authorities/subjects/sh85058902 Lipschitz spaces. http://id.loc.gov/authorities/subjects/sh99003370 Banach spaces. Function spaces. Functional analysis. Hardy spaces. Lipschitz spaces. Poisson integral formula. Mathematik. Analyse fonctionnelle. Espaces fonctionnels. Espaces de Banach. Espaces de Hardy. Espaces de Lipschitz. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Banach spaces fast Function spaces fast Functional analysis fast Hardy spaces fast Lipschitz spaces fast Poisson integral formula fast Komplexe Funktion gnd http://d-nb.info/gnd/4217733-9 Analytische Funktion gnd http://d-nb.info/gnd/4142348-3 |
subject_GND | http://id.loc.gov/authorities/subjects/sh85052312 http://id.loc.gov/authorities/subjects/sh85052310 http://id.loc.gov/authorities/subjects/sh85011441 http://id.loc.gov/authorities/subjects/sh85103957 http://id.loc.gov/authorities/subjects/sh85058902 http://id.loc.gov/authorities/subjects/sh99003370 http://d-nb.info/gnd/4217733-9 http://d-nb.info/gnd/4142348-3 |
title | Function Classes on the Unit Disc : an Introduction. |
title_alt | Frontmatter -- Preface / Contents -- 1. The Poisson integral and Hardy spaces -- 2. Subharmonic functions and Hardy spaces -- 3. Subharmonic behavior and mixed norm spaces -- 4. Taylor coefficients with applications -- 5. Besov spaces -- 6. The dual of H -- 7. Littlewood-Paley theory -- 8. Lipschitz spaces of first order -- 9. Lipschitz spaces of higher order -- 10. One-to-one mappings -- 11. Coefficients multipliers -- 12. Toward a theory of vector-valued spaces -- A. Quasi-Banach spaces -- B. Interpolation and maximal functions -- Bibliography -- Index. |
title_auth | Function Classes on the Unit Disc : an Introduction. |
title_exact_search | Function Classes on the Unit Disc : an Introduction. |
title_full | Function Classes on the Unit Disc : an Introduction. |
title_fullStr | Function Classes on the Unit Disc : an Introduction. |
title_full_unstemmed | Function Classes on the Unit Disc : an Introduction. |
title_short | Function Classes on the Unit Disc : |
title_sort | function classes on the unit disc an introduction |
title_sub | an Introduction. |
topic | Functional analysis. http://id.loc.gov/authorities/subjects/sh85052312 Function spaces. http://id.loc.gov/authorities/subjects/sh85052310 Banach spaces. http://id.loc.gov/authorities/subjects/sh85011441 Poisson integral formula. http://id.loc.gov/authorities/subjects/sh85103957 Hardy spaces. http://id.loc.gov/authorities/subjects/sh85058902 Lipschitz spaces. http://id.loc.gov/authorities/subjects/sh99003370 Banach spaces. Function spaces. Functional analysis. Hardy spaces. Lipschitz spaces. Poisson integral formula. Mathematik. Analyse fonctionnelle. Espaces fonctionnels. Espaces de Banach. Espaces de Hardy. Espaces de Lipschitz. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Banach spaces fast Function spaces fast Functional analysis fast Hardy spaces fast Lipschitz spaces fast Poisson integral formula fast Komplexe Funktion gnd http://d-nb.info/gnd/4217733-9 Analytische Funktion gnd http://d-nb.info/gnd/4142348-3 |
topic_facet | Functional analysis. Function spaces. Banach spaces. Poisson integral formula. Hardy spaces. Lipschitz spaces. Mathematik. Analyse fonctionnelle. Espaces fonctionnels. Espaces de Banach. Espaces de Hardy. Espaces de Lipschitz. MATHEMATICS Calculus. MATHEMATICS Mathematical Analysis. Banach spaces Function spaces Functional analysis Hardy spaces Lipschitz spaces Poisson integral formula Komplexe Funktion Analytische Funktion |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=699603 |
work_keys_str_mv | AT pavlovicmiroslav functionclassesontheunitdiscanintroduction |