Analysis for diffusion processes on Riemannian manifolds /:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
[Hackensack], New Jersey :
World Scientific,
2013.
|
Schriftenreihe: | Advanced series on statistical science & applied probability ;
18. |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | 1 online resource (xii, 379 pages) |
ISBN: | 9789814452656 9814452653 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn870517099 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130906s2013 nju fo 000 0 eng d | ||
040 | |a CDX |b eng |e pn |c CDX |d OCLCQ |d N$T |d ZCU |d OCLCO |d OCLCF |d OCLCQ |d AGLDB |d OCLCQ |d VTS |d M8D |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ | ||
020 | |a 9789814452656 |q (electronic bk.) | ||
020 | |a 9814452653 |q (electronic bk.) | ||
020 | |z 9814452645 |q (cloth) | ||
020 | |z 9789814452649 |q (cloth) | ||
020 | |z 9781306120296 |q (MyiLibrary) | ||
020 | |z 1306120292 |q (MyiLibrary) | ||
035 | |a (OCoLC)870517099 | ||
050 | 4 | |a QA649 | |
072 | 7 | |a MAT |2 ukslc | |
072 | 7 | |a MAT |x 012000 |2 bisacsh | |
082 | 7 | |a 516.3/73 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Wang, Feng-Yu, |e author. | |
245 | 1 | 0 | |a Analysis for diffusion processes on Riemannian manifolds / |c Feng-Yu Wang. |
260 | |a [Hackensack], New Jersey : |b World Scientific, |c 2013. | ||
300 | |a 1 online resource (xii, 379 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Advanced series on statistical science & applied probability ; |v 18 | |
588 | 0 | |a Print version record. | |
650 | 0 | |a Riemannian manifolds. |0 http://id.loc.gov/authorities/subjects/sh85114045 | |
650 | 0 | |a Diffusion processes. |0 http://id.loc.gov/authorities/subjects/sh85037941 | |
650 | 6 | |a Variétés de Riemann. | |
650 | 6 | |a Processus de diffusion. | |
650 | 7 | |a MATHEMATICS |x Geometry |x General. |2 bisacsh | |
650 | 7 | |a Diffusion processes |2 fast | |
650 | 7 | |a Riemannian manifolds |2 fast | |
776 | 0 | 8 | |i Print version: |a Wang, Feng-Yu. |t Analysis for diffusion processes on Riemannian manifolds. |d [Hackensack], New Jersey : World Scientific, 2013 |z 9789814452649 |
830 | 0 | |a Advanced series on statistical science & applied probability ; |v 18. |0 http://id.loc.gov/authorities/names/n97121977 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=661911 |3 Volltext |
938 | |a Coutts Information Services |b COUT |n 26680636 | ||
938 | |a EBSCOhost |b EBSC |n 661911 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn870517099 |
---|---|
_version_ | 1816882260795719681 |
adam_text | |
any_adam_object | |
author | Wang, Feng-Yu |
author_facet | Wang, Feng-Yu |
author_role | aut |
author_sort | Wang, Feng-Yu |
author_variant | f y w fyw |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA649 |
callnumber-raw | QA649 |
callnumber-search | QA649 |
callnumber-sort | QA 3649 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)870517099 |
dewey-full | 516.3/73 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.3/73 |
dewey-search | 516.3/73 |
dewey-sort | 3516.3 273 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02184cam a2200517 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn870517099</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">130906s2013 nju fo 000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">CDX</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">CDX</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">N$T</subfield><subfield code="d">ZCU</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814452656</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814452653</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9814452645</subfield><subfield code="q">(cloth)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789814452649</subfield><subfield code="q">(cloth)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781306120296</subfield><subfield code="q">(MyiLibrary)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1306120292</subfield><subfield code="q">(MyiLibrary)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)870517099</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA649</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="2">ukslc</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">012000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">516.3/73</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Feng-Yu,</subfield><subfield code="e">author.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analysis for diffusion processes on Riemannian manifolds /</subfield><subfield code="c">Feng-Yu Wang.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">[Hackensack], New Jersey :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">2013.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xii, 379 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Advanced series on statistical science & applied probability ;</subfield><subfield code="v">18</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Riemannian manifolds.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85114045</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Diffusion processes.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85037941</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Variétés de Riemann.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Processus de diffusion.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Geometry</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Diffusion processes</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Riemannian manifolds</subfield><subfield code="2">fast</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Wang, Feng-Yu.</subfield><subfield code="t">Analysis for diffusion processes on Riemannian manifolds.</subfield><subfield code="d">[Hackensack], New Jersey : World Scientific, 2013</subfield><subfield code="z">9789814452649</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Advanced series on statistical science & applied probability ;</subfield><subfield code="v">18.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n97121977</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=661911</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">26680636</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">661911</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn870517099 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:25:47Z |
institution | BVB |
isbn | 9789814452656 9814452653 |
language | English |
oclc_num | 870517099 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xii, 379 pages) |
psigel | ZDB-4-EBA |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | World Scientific, |
record_format | marc |
series | Advanced series on statistical science & applied probability ; |
series2 | Advanced series on statistical science & applied probability ; |
spelling | Wang, Feng-Yu, author. Analysis for diffusion processes on Riemannian manifolds / Feng-Yu Wang. [Hackensack], New Jersey : World Scientific, 2013. 1 online resource (xii, 379 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier Advanced series on statistical science & applied probability ; 18 Print version record. Riemannian manifolds. http://id.loc.gov/authorities/subjects/sh85114045 Diffusion processes. http://id.loc.gov/authorities/subjects/sh85037941 Variétés de Riemann. Processus de diffusion. MATHEMATICS Geometry General. bisacsh Diffusion processes fast Riemannian manifolds fast Print version: Wang, Feng-Yu. Analysis for diffusion processes on Riemannian manifolds. [Hackensack], New Jersey : World Scientific, 2013 9789814452649 Advanced series on statistical science & applied probability ; 18. http://id.loc.gov/authorities/names/n97121977 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=661911 Volltext |
spellingShingle | Wang, Feng-Yu Analysis for diffusion processes on Riemannian manifolds / Advanced series on statistical science & applied probability ; Riemannian manifolds. http://id.loc.gov/authorities/subjects/sh85114045 Diffusion processes. http://id.loc.gov/authorities/subjects/sh85037941 Variétés de Riemann. Processus de diffusion. MATHEMATICS Geometry General. bisacsh Diffusion processes fast Riemannian manifolds fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85114045 http://id.loc.gov/authorities/subjects/sh85037941 |
title | Analysis for diffusion processes on Riemannian manifolds / |
title_auth | Analysis for diffusion processes on Riemannian manifolds / |
title_exact_search | Analysis for diffusion processes on Riemannian manifolds / |
title_full | Analysis for diffusion processes on Riemannian manifolds / Feng-Yu Wang. |
title_fullStr | Analysis for diffusion processes on Riemannian manifolds / Feng-Yu Wang. |
title_full_unstemmed | Analysis for diffusion processes on Riemannian manifolds / Feng-Yu Wang. |
title_short | Analysis for diffusion processes on Riemannian manifolds / |
title_sort | analysis for diffusion processes on riemannian manifolds |
topic | Riemannian manifolds. http://id.loc.gov/authorities/subjects/sh85114045 Diffusion processes. http://id.loc.gov/authorities/subjects/sh85037941 Variétés de Riemann. Processus de diffusion. MATHEMATICS Geometry General. bisacsh Diffusion processes fast Riemannian manifolds fast |
topic_facet | Riemannian manifolds. Diffusion processes. Variétés de Riemann. Processus de diffusion. MATHEMATICS Geometry General. Diffusion processes Riemannian manifolds |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=661911 |
work_keys_str_mv | AT wangfengyu analysisfordiffusionprocessesonriemannianmanifolds |