Combustion :: types of reactions, fundamental processes and advanced technologies /
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York :
Nova Publishers, Incorporated,
[2014]
|
Schriftenreihe: | Chemistry research and applications
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | 1 online resource |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9781629489698 1629489697 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn870272735 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr ||||||||||| | ||
008 | 131205s2014 nyu ob 001 0 eng | ||
010 | |a 2020676662 | ||
040 | |a DLC |b eng |e rda |e pn |c DLC |d E7B |d YDXCP |d OCLCF |d EBLCP |d AGLDB |d VTS |d AU@ |d STF |d M8D |d N$T |d OCLCO |d AJS |d OCLCO |d OCLCQ |d OCLCO | ||
020 | |a 9781629489698 |q (ebook) | ||
020 | |a 1629489697 | ||
020 | |z 9781629489674 |q (hardcover) | ||
020 | |z 1629489670 | ||
035 | |a (OCoLC)870272735 | ||
042 | |a pcc | ||
050 | 0 | 0 | |a QD516 |
072 | 7 | |a SCI |x 013050 |2 bisacsh | |
082 | 7 | |a 541/.361 |2 23 | |
049 | |a MAIN | ||
245 | 0 | 0 | |a Combustion : |b types of reactions, fundamental processes and advanced technologies / |c Joseph M. Grier, editor. |
264 | 1 | |a New York : |b Nova Publishers, Incorporated, |c [2014] | |
300 | |a 1 online resource | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 0 | |a Chemistry research and applications | |
504 | |a Includes bibliographical references and index. | ||
588 | 0 | |a Print version record and cip data provided by publisher. | |
505 | 0 | |a COMBUSTION: TYPES OF REACTIONS, FUNDAMENTAL PROCESSES AND ADVANCED TECHNOLOGIES; Library of Congress Cataloging-in-Publication Data; Contents; Preface; Chapter 1: Lagrangian Formulation to Treating the Turbulent Reacting Flows; Abstract; 1. Introduction; 2. The Advection-Reaction Equation; 3. Lagrangian Frame; 3.1. Instantaneous Lagrangian Equations; 3.2. Expected Lagrangian and Mixed Lagrangian-; Eulerian Quantities; 4. Eulerian Frame; 4.1. Instantaneous Eulerian Quantities; 4.2. Expected Eulerian Quantities; 5. Governing Equations for Mean Mixed Lagrangian-Eulerian Quantities. | |
505 | 8 | |a 6. Application of Taylor Theory of the Turbulent Diffusion7. The Turbulent Premixed Flame in BML Approximation; 7.1 Equations for Mean Lagrangian, Eulerian and Mixed Lagrangian-Ealerian Quantities; 7.2. Derivation of the Equation for the Hitting Time Probability Function from G-Equation; 8. Approximate Expression and Equation for the Mean Progress Variable; 8.1. Approximate Expression for the Mean Progress Variable; 8.2. Approximate Equation for the Expected Progress Variable; 9. Discussion and the Relation to What Was Previously Published; Conclusion; Acknowledgments. | |
505 | 8 | |a Annex A. The Case of StochasticAnnex B. The Source Does Not Depend on the Reactive Scalar; Annex C. Diffusion of the Products After the Flame Extinction; Annex D. Derivation of Eq. (191); References; Chapter 2: G-Equation in White Noise in a Time Turbulent Velocity Field: The Derivation of the Probability Density Function Equation; Abstract; 1. Introduction; 2. Derivation of the Equation for the Extended Indicator Function; 3. Derivation of the Equation for the Probability Density Function in White-noise Velocity Field; 4. Special Case: Random Shear flow; Conclusion; Acknowledgments. | |
505 | 8 | |a Annex A. Derivation of Equation for the Probability Density function of the ScalarAnnex B. Derivation of the Equation for the Probability Density Function; References; Chapter 3: Deposition of Thin Functional Coatings at Atmospheric Pressure Using Combustion Chemical Vapour Deposition; Abstract; 1. Introduction; 2. The CCVD Process; 2.1. Fundamentals of the Combustion; 2.2. Technical Implementation; 2.3. Coating Morphology in CCVD; 3. Selected Examples; 3.1. Transmission Enhancement (On Glass, Plastics); 3.2. Activation of Plastics; 3.3. Adhesion Promoter; 3.4. Matrix Films. | |
505 | 8 | |a 3.5. Barrier Films on Float Glass3.6. Photocatalytic Films; 3.7. Electrically Conductive Films; 3.7.1. Zinc Oxide; 3.7.2. Tungsten Oxide; 3.7.3. Silver Films; Conclusion and Outlook; References; Chapter 4: Fundamentals of Oxy-Fuel Carbon Capture Technology for Pulverized fuel Boilers; Abstract; 1. Introduction; 1.1. Carbon capture Technologies for Coal-fired Power Plants; 1.2. Historical Development of Oxy-fuel Combustion; 2. Oxy-fuel Combustion Fundamental Research; 2.1. Heat Transfer; 2.1.1. Radiative Heat Transfer; 2.1.2. Convective Heat Transfer; 2.1.3. Matching Temperature of Combustion. | |
650 | 0 | |a Combustion. |0 http://id.loc.gov/authorities/subjects/sh85028831 | |
650 | 6 | |a Combustion. | |
650 | 7 | |a combustion. |2 aat | |
650 | 7 | |a SCIENCE |x Chemistry |x Physical & Theoretical. |2 bisacsh | |
650 | 7 | |a Combustion |2 fast | |
700 | 1 | |a Grier, Joseph M., |e editor. | |
776 | 0 | 8 | |i Print version: |t Combustion. |d New York : Nova Publishers, Inc., [2014] |z 9781629489674 |w (DLC) 2013048325 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=696612 |3 Volltext |
938 | |a ProQuest Ebook Central |b EBLB |n EBL3023831 | ||
938 | |a ebrary |b EBRY |n ebr10835710 | ||
938 | |a EBSCOhost |b EBSC |n 696612 | ||
938 | |a YBP Library Services |b YANK |n 11440292 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn870272735 |
---|---|
_version_ | 1816882260441300992 |
adam_text | |
any_adam_object | |
author2 | Grier, Joseph M. |
author2_role | edt |
author2_variant | j m g jm jmg |
author_facet | Grier, Joseph M. |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QD516 |
callnumber-raw | QD516 |
callnumber-search | QD516 |
callnumber-sort | QD 3516 |
callnumber-subject | QD - Chemistry |
collection | ZDB-4-EBA |
contents | COMBUSTION: TYPES OF REACTIONS, FUNDAMENTAL PROCESSES AND ADVANCED TECHNOLOGIES; Library of Congress Cataloging-in-Publication Data; Contents; Preface; Chapter 1: Lagrangian Formulation to Treating the Turbulent Reacting Flows; Abstract; 1. Introduction; 2. The Advection-Reaction Equation; 3. Lagrangian Frame; 3.1. Instantaneous Lagrangian Equations; 3.2. Expected Lagrangian and Mixed Lagrangian-; Eulerian Quantities; 4. Eulerian Frame; 4.1. Instantaneous Eulerian Quantities; 4.2. Expected Eulerian Quantities; 5. Governing Equations for Mean Mixed Lagrangian-Eulerian Quantities. 6. Application of Taylor Theory of the Turbulent Diffusion7. The Turbulent Premixed Flame in BML Approximation; 7.1 Equations for Mean Lagrangian, Eulerian and Mixed Lagrangian-Ealerian Quantities; 7.2. Derivation of the Equation for the Hitting Time Probability Function from G-Equation; 8. Approximate Expression and Equation for the Mean Progress Variable; 8.1. Approximate Expression for the Mean Progress Variable; 8.2. Approximate Equation for the Expected Progress Variable; 9. Discussion and the Relation to What Was Previously Published; Conclusion; Acknowledgments. Annex A. The Case of StochasticAnnex B. The Source Does Not Depend on the Reactive Scalar; Annex C. Diffusion of the Products After the Flame Extinction; Annex D. Derivation of Eq. (191); References; Chapter 2: G-Equation in White Noise in a Time Turbulent Velocity Field: The Derivation of the Probability Density Function Equation; Abstract; 1. Introduction; 2. Derivation of the Equation for the Extended Indicator Function; 3. Derivation of the Equation for the Probability Density Function in White-noise Velocity Field; 4. Special Case: Random Shear flow; Conclusion; Acknowledgments. Annex A. Derivation of Equation for the Probability Density function of the ScalarAnnex B. Derivation of the Equation for the Probability Density Function; References; Chapter 3: Deposition of Thin Functional Coatings at Atmospheric Pressure Using Combustion Chemical Vapour Deposition; Abstract; 1. Introduction; 2. The CCVD Process; 2.1. Fundamentals of the Combustion; 2.2. Technical Implementation; 2.3. Coating Morphology in CCVD; 3. Selected Examples; 3.1. Transmission Enhancement (On Glass, Plastics); 3.2. Activation of Plastics; 3.3. Adhesion Promoter; 3.4. Matrix Films. 3.5. Barrier Films on Float Glass3.6. Photocatalytic Films; 3.7. Electrically Conductive Films; 3.7.1. Zinc Oxide; 3.7.2. Tungsten Oxide; 3.7.3. Silver Films; Conclusion and Outlook; References; Chapter 4: Fundamentals of Oxy-Fuel Carbon Capture Technology for Pulverized fuel Boilers; Abstract; 1. Introduction; 1.1. Carbon capture Technologies for Coal-fired Power Plants; 1.2. Historical Development of Oxy-fuel Combustion; 2. Oxy-fuel Combustion Fundamental Research; 2.1. Heat Transfer; 2.1.1. Radiative Heat Transfer; 2.1.2. Convective Heat Transfer; 2.1.3. Matching Temperature of Combustion. |
ctrlnum | (OCoLC)870272735 |
dewey-full | 541/.361 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 541 - Physical chemistry |
dewey-raw | 541/.361 |
dewey-search | 541/.361 |
dewey-sort | 3541 3361 |
dewey-tens | 540 - Chemistry and allied sciences |
discipline | Chemie / Pharmazie |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04941cam a2200565 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn870272735</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |||||||||||</controlfield><controlfield tag="008">131205s2014 nyu ob 001 0 eng </controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a"> 2020676662</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DLC</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">DLC</subfield><subfield code="d">E7B</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCF</subfield><subfield code="d">EBLCP</subfield><subfield code="d">AGLDB</subfield><subfield code="d">VTS</subfield><subfield code="d">AU@</subfield><subfield code="d">STF</subfield><subfield code="d">M8D</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCO</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781629489698</subfield><subfield code="q">(ebook)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1629489697</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781629489674</subfield><subfield code="q">(hardcover)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1629489670</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)870272735</subfield></datafield><datafield tag="042" ind1=" " ind2=" "><subfield code="a">pcc</subfield></datafield><datafield tag="050" ind1="0" ind2="0"><subfield code="a">QD516</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">013050</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">541/.361</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Combustion :</subfield><subfield code="b">types of reactions, fundamental processes and advanced technologies /</subfield><subfield code="c">Joseph M. Grier, editor.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York :</subfield><subfield code="b">Nova Publishers, Incorporated,</subfield><subfield code="c">[2014]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Chemistry research and applications</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record and cip data provided by publisher.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">COMBUSTION: TYPES OF REACTIONS, FUNDAMENTAL PROCESSES AND ADVANCED TECHNOLOGIES; Library of Congress Cataloging-in-Publication Data; Contents; Preface; Chapter 1: Lagrangian Formulation to Treating the Turbulent Reacting Flows; Abstract; 1. Introduction; 2. The Advection-Reaction Equation; 3. Lagrangian Frame; 3.1. Instantaneous Lagrangian Equations; 3.2. Expected Lagrangian and Mixed Lagrangian-; Eulerian Quantities; 4. Eulerian Frame; 4.1. Instantaneous Eulerian Quantities; 4.2. Expected Eulerian Quantities; 5. Governing Equations for Mean Mixed Lagrangian-Eulerian Quantities.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6. Application of Taylor Theory of the Turbulent Diffusion7. The Turbulent Premixed Flame in BML Approximation; 7.1 Equations for Mean Lagrangian, Eulerian and Mixed Lagrangian-Ealerian Quantities; 7.2. Derivation of the Equation for the Hitting Time Probability Function from G-Equation; 8. Approximate Expression and Equation for the Mean Progress Variable; 8.1. Approximate Expression for the Mean Progress Variable; 8.2. Approximate Equation for the Expected Progress Variable; 9. Discussion and the Relation to What Was Previously Published; Conclusion; Acknowledgments.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Annex A. The Case of StochasticAnnex B. The Source Does Not Depend on the Reactive Scalar; Annex C. Diffusion of the Products After the Flame Extinction; Annex D. Derivation of Eq. (191); References; Chapter 2: G-Equation in White Noise in a Time Turbulent Velocity Field: The Derivation of the Probability Density Function Equation; Abstract; 1. Introduction; 2. Derivation of the Equation for the Extended Indicator Function; 3. Derivation of the Equation for the Probability Density Function in White-noise Velocity Field; 4. Special Case: Random Shear flow; Conclusion; Acknowledgments.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Annex A. Derivation of Equation for the Probability Density function of the ScalarAnnex B. Derivation of the Equation for the Probability Density Function; References; Chapter 3: Deposition of Thin Functional Coatings at Atmospheric Pressure Using Combustion Chemical Vapour Deposition; Abstract; 1. Introduction; 2. The CCVD Process; 2.1. Fundamentals of the Combustion; 2.2. Technical Implementation; 2.3. Coating Morphology in CCVD; 3. Selected Examples; 3.1. Transmission Enhancement (On Glass, Plastics); 3.2. Activation of Plastics; 3.3. Adhesion Promoter; 3.4. Matrix Films.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.5. Barrier Films on Float Glass3.6. Photocatalytic Films; 3.7. Electrically Conductive Films; 3.7.1. Zinc Oxide; 3.7.2. Tungsten Oxide; 3.7.3. Silver Films; Conclusion and Outlook; References; Chapter 4: Fundamentals of Oxy-Fuel Carbon Capture Technology for Pulverized fuel Boilers; Abstract; 1. Introduction; 1.1. Carbon capture Technologies for Coal-fired Power Plants; 1.2. Historical Development of Oxy-fuel Combustion; 2. Oxy-fuel Combustion Fundamental Research; 2.1. Heat Transfer; 2.1.1. Radiative Heat Transfer; 2.1.2. Convective Heat Transfer; 2.1.3. Matching Temperature of Combustion.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Combustion.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85028831</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Combustion.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">combustion.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Chemistry</subfield><subfield code="x">Physical & Theoretical.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Combustion</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Grier, Joseph M.,</subfield><subfield code="e">editor.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="t">Combustion.</subfield><subfield code="d">New York : Nova Publishers, Inc., [2014]</subfield><subfield code="z">9781629489674</subfield><subfield code="w">(DLC) 2013048325</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=696612</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL3023831</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10835710</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">696612</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">11440292</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn870272735 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:25:47Z |
institution | BVB |
isbn | 9781629489698 1629489697 |
language | English |
lccn | 2020676662 |
oclc_num | 870272735 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource |
psigel | ZDB-4-EBA |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | Nova Publishers, Incorporated, |
record_format | marc |
series2 | Chemistry research and applications |
spelling | Combustion : types of reactions, fundamental processes and advanced technologies / Joseph M. Grier, editor. New York : Nova Publishers, Incorporated, [2014] 1 online resource text txt rdacontent computer c rdamedia online resource cr rdacarrier Chemistry research and applications Includes bibliographical references and index. Print version record and cip data provided by publisher. COMBUSTION: TYPES OF REACTIONS, FUNDAMENTAL PROCESSES AND ADVANCED TECHNOLOGIES; Library of Congress Cataloging-in-Publication Data; Contents; Preface; Chapter 1: Lagrangian Formulation to Treating the Turbulent Reacting Flows; Abstract; 1. Introduction; 2. The Advection-Reaction Equation; 3. Lagrangian Frame; 3.1. Instantaneous Lagrangian Equations; 3.2. Expected Lagrangian and Mixed Lagrangian-; Eulerian Quantities; 4. Eulerian Frame; 4.1. Instantaneous Eulerian Quantities; 4.2. Expected Eulerian Quantities; 5. Governing Equations for Mean Mixed Lagrangian-Eulerian Quantities. 6. Application of Taylor Theory of the Turbulent Diffusion7. The Turbulent Premixed Flame in BML Approximation; 7.1 Equations for Mean Lagrangian, Eulerian and Mixed Lagrangian-Ealerian Quantities; 7.2. Derivation of the Equation for the Hitting Time Probability Function from G-Equation; 8. Approximate Expression and Equation for the Mean Progress Variable; 8.1. Approximate Expression for the Mean Progress Variable; 8.2. Approximate Equation for the Expected Progress Variable; 9. Discussion and the Relation to What Was Previously Published; Conclusion; Acknowledgments. Annex A. The Case of StochasticAnnex B. The Source Does Not Depend on the Reactive Scalar; Annex C. Diffusion of the Products After the Flame Extinction; Annex D. Derivation of Eq. (191); References; Chapter 2: G-Equation in White Noise in a Time Turbulent Velocity Field: The Derivation of the Probability Density Function Equation; Abstract; 1. Introduction; 2. Derivation of the Equation for the Extended Indicator Function; 3. Derivation of the Equation for the Probability Density Function in White-noise Velocity Field; 4. Special Case: Random Shear flow; Conclusion; Acknowledgments. Annex A. Derivation of Equation for the Probability Density function of the ScalarAnnex B. Derivation of the Equation for the Probability Density Function; References; Chapter 3: Deposition of Thin Functional Coatings at Atmospheric Pressure Using Combustion Chemical Vapour Deposition; Abstract; 1. Introduction; 2. The CCVD Process; 2.1. Fundamentals of the Combustion; 2.2. Technical Implementation; 2.3. Coating Morphology in CCVD; 3. Selected Examples; 3.1. Transmission Enhancement (On Glass, Plastics); 3.2. Activation of Plastics; 3.3. Adhesion Promoter; 3.4. Matrix Films. 3.5. Barrier Films on Float Glass3.6. Photocatalytic Films; 3.7. Electrically Conductive Films; 3.7.1. Zinc Oxide; 3.7.2. Tungsten Oxide; 3.7.3. Silver Films; Conclusion and Outlook; References; Chapter 4: Fundamentals of Oxy-Fuel Carbon Capture Technology for Pulverized fuel Boilers; Abstract; 1. Introduction; 1.1. Carbon capture Technologies for Coal-fired Power Plants; 1.2. Historical Development of Oxy-fuel Combustion; 2. Oxy-fuel Combustion Fundamental Research; 2.1. Heat Transfer; 2.1.1. Radiative Heat Transfer; 2.1.2. Convective Heat Transfer; 2.1.3. Matching Temperature of Combustion. Combustion. http://id.loc.gov/authorities/subjects/sh85028831 Combustion. combustion. aat SCIENCE Chemistry Physical & Theoretical. bisacsh Combustion fast Grier, Joseph M., editor. Print version: Combustion. New York : Nova Publishers, Inc., [2014] 9781629489674 (DLC) 2013048325 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=696612 Volltext |
spellingShingle | Combustion : types of reactions, fundamental processes and advanced technologies / COMBUSTION: TYPES OF REACTIONS, FUNDAMENTAL PROCESSES AND ADVANCED TECHNOLOGIES; Library of Congress Cataloging-in-Publication Data; Contents; Preface; Chapter 1: Lagrangian Formulation to Treating the Turbulent Reacting Flows; Abstract; 1. Introduction; 2. The Advection-Reaction Equation; 3. Lagrangian Frame; 3.1. Instantaneous Lagrangian Equations; 3.2. Expected Lagrangian and Mixed Lagrangian-; Eulerian Quantities; 4. Eulerian Frame; 4.1. Instantaneous Eulerian Quantities; 4.2. Expected Eulerian Quantities; 5. Governing Equations for Mean Mixed Lagrangian-Eulerian Quantities. 6. Application of Taylor Theory of the Turbulent Diffusion7. The Turbulent Premixed Flame in BML Approximation; 7.1 Equations for Mean Lagrangian, Eulerian and Mixed Lagrangian-Ealerian Quantities; 7.2. Derivation of the Equation for the Hitting Time Probability Function from G-Equation; 8. Approximate Expression and Equation for the Mean Progress Variable; 8.1. Approximate Expression for the Mean Progress Variable; 8.2. Approximate Equation for the Expected Progress Variable; 9. Discussion and the Relation to What Was Previously Published; Conclusion; Acknowledgments. Annex A. The Case of StochasticAnnex B. The Source Does Not Depend on the Reactive Scalar; Annex C. Diffusion of the Products After the Flame Extinction; Annex D. Derivation of Eq. (191); References; Chapter 2: G-Equation in White Noise in a Time Turbulent Velocity Field: The Derivation of the Probability Density Function Equation; Abstract; 1. Introduction; 2. Derivation of the Equation for the Extended Indicator Function; 3. Derivation of the Equation for the Probability Density Function in White-noise Velocity Field; 4. Special Case: Random Shear flow; Conclusion; Acknowledgments. Annex A. Derivation of Equation for the Probability Density function of the ScalarAnnex B. Derivation of the Equation for the Probability Density Function; References; Chapter 3: Deposition of Thin Functional Coatings at Atmospheric Pressure Using Combustion Chemical Vapour Deposition; Abstract; 1. Introduction; 2. The CCVD Process; 2.1. Fundamentals of the Combustion; 2.2. Technical Implementation; 2.3. Coating Morphology in CCVD; 3. Selected Examples; 3.1. Transmission Enhancement (On Glass, Plastics); 3.2. Activation of Plastics; 3.3. Adhesion Promoter; 3.4. Matrix Films. 3.5. Barrier Films on Float Glass3.6. Photocatalytic Films; 3.7. Electrically Conductive Films; 3.7.1. Zinc Oxide; 3.7.2. Tungsten Oxide; 3.7.3. Silver Films; Conclusion and Outlook; References; Chapter 4: Fundamentals of Oxy-Fuel Carbon Capture Technology for Pulverized fuel Boilers; Abstract; 1. Introduction; 1.1. Carbon capture Technologies for Coal-fired Power Plants; 1.2. Historical Development of Oxy-fuel Combustion; 2. Oxy-fuel Combustion Fundamental Research; 2.1. Heat Transfer; 2.1.1. Radiative Heat Transfer; 2.1.2. Convective Heat Transfer; 2.1.3. Matching Temperature of Combustion. Combustion. http://id.loc.gov/authorities/subjects/sh85028831 Combustion. combustion. aat SCIENCE Chemistry Physical & Theoretical. bisacsh Combustion fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85028831 |
title | Combustion : types of reactions, fundamental processes and advanced technologies / |
title_auth | Combustion : types of reactions, fundamental processes and advanced technologies / |
title_exact_search | Combustion : types of reactions, fundamental processes and advanced technologies / |
title_full | Combustion : types of reactions, fundamental processes and advanced technologies / Joseph M. Grier, editor. |
title_fullStr | Combustion : types of reactions, fundamental processes and advanced technologies / Joseph M. Grier, editor. |
title_full_unstemmed | Combustion : types of reactions, fundamental processes and advanced technologies / Joseph M. Grier, editor. |
title_short | Combustion : |
title_sort | combustion types of reactions fundamental processes and advanced technologies |
title_sub | types of reactions, fundamental processes and advanced technologies / |
topic | Combustion. http://id.loc.gov/authorities/subjects/sh85028831 Combustion. combustion. aat SCIENCE Chemistry Physical & Theoretical. bisacsh Combustion fast |
topic_facet | Combustion. combustion. SCIENCE Chemistry Physical & Theoretical. Combustion |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=696612 |
work_keys_str_mv | AT grierjosephm combustiontypesofreactionsfundamentalprocessesandadvancedtechnologies |