A Course in Mathematical Analysis.: Volume 2 : Metric and Topological Spaces, Functions of a Vector Variable /
The second volume of three providing a full and detailed account of undergraduate mathematical analysis.
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge :
Cambridge University Press,
2013.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | The second volume of three providing a full and detailed account of undergraduate mathematical analysis. |
Beschreibung: | 1 online resource (336 pages) |
ISBN: | 9781107342057 1107342058 9781107345805 1107345804 9781107352926 1107352924 9781107032033 1107032032 9781139424509 1139424505 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn869640256 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 140201s2013 enk o 000 0 eng d | ||
040 | |a EBLCP |b eng |e pn |c EBLCP |d MHW |d N$T |d DEBSZ |d OCLCQ |d OCLCF |d UKMGB |d OCLCQ |d OCL |d OCLCQ |d LIP |d UKAHL |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCQ | ||
016 | 7 | |a 016629183 |2 Uk | |
019 | |a 870650588 |a 990720058 |a 1030104841 |a 1030137815 | ||
020 | |a 9781107342057 |q (electronic bk.) | ||
020 | |a 1107342058 |q (electronic bk.) | ||
020 | |a 9781107345805 |q (electronic bk.) | ||
020 | |a 1107345804 |q (electronic bk.) | ||
020 | |a 9781107352926 |q (PDF ebook) | ||
020 | |a 1107352924 |q (PDF ebook) | ||
020 | |a 9781107032033 |q (hbk.) | ||
020 | |a 1107032032 |q (hbk.) | ||
020 | |a 9781139424509 | ||
020 | |a 1139424505 | ||
035 | |a (OCoLC)869640256 |z (OCoLC)870650588 |z (OCoLC)990720058 |z (OCoLC)1030104841 |z (OCoLC)1030137815 | ||
050 | 4 | |a QA300 .B68 2013 | |
072 | 7 | |a MAT |x 005000 |2 bisacsh | |
072 | 7 | |a MAT |x 034000 |2 bisacsh | |
082 | 7 | |a 515 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Garling, D. J. H. |0 http://id.loc.gov/authorities/names/n85306701 | |
245 | 1 | 2 | |a A Course in Mathematical Analysis. |n Volume 2 : |p Metric and Topological Spaces, Functions of a Vector Variable / |c D.J.H. Garling. |
260 | |a Cambridge : |b Cambridge University Press, |c 2013. | ||
300 | |a 1 online resource (336 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Cover.pdf; Cover; A COURSE IN MATHEMATICAL ANALYSIS; Title; Copyright; Contents; Introduction; Part III Metric and topological spaces; 11 Metric spaces and normed spaces; 11.1 Metric spaces: examples; 11.2 Normed spaces; 11.3 Inner-product spaces; 11.4 Euclidean and unitary spaces; 11.5 Isometries; 11.6 *The Mazur-Ulam theorem*; 11.7 The orthogonal group bold0mu mumu OdOdOdOdOdOd; 12 Convergence, continuity and topology; 12.1 Convergence of sequences in a metric space; 12.2 Convergence and continuity of mappings; 12.3 The topology of a metric space. | |
505 | 8 | |a 12.4 Topological properties of metric spaces13 Topological spaces; 13.1 Topological spaces; 13.2 The product topology; 13.3 Product metrics; 13.4 Separation properties; 13.5 Countability properties; 13.6 *Examples and counterexamples*; 14 Completeness; 14.1 Completeness; 14.2 Banach spaces; 14.3 Linear operators; 14.4 *Tietze's extension theorem*; 14.5 The completion of metric and normed spaces; 14.6 The contraction mapping theorem; 14.7 *Baire's category theorem*; 15 Compactness; 15.1 Compact topological spaces; 15.2 Sequentially compact topological spaces; 15.3 Totally bounded metric spaces. | |
505 | 8 | |a 15.4 Compact metric spaces15.5 Compact subsets of C(K); 15.6 *The Hausdorff metric*; 15.7 Locally compact topological spaces; 15.8 Local uniform convergence; 15.9 Finite-dimensional normed spaces; 16 Connectedness; 16.1 Connectedness; 16.2 Paths and tracks; 16.3 Path-connectedness; 16.4 *Hilbert's path*; 16.5 *More space-filling paths*; 16.6 Rectifiable paths; Part IV Functions of a vector variable; 17 Differentiating functions of a vector variable; 17.1 Differentiating functions of a vector variable; 17.2 The mean-value inequality; 17.3 Partial and directional derivatives. | |
505 | 8 | |a 17.4 The inverse mapping theorem17.5 The implicit function theorem; 17.6 Higher derivatives; 18 Integrating functions of several variables; 18.1 Elementary vector-valued integrals; 18.2 Integrating functions of several variables; 18.3 Integrating vector-valued functions; 18.4 Repeated integration; 18.5 Jordan content; 18.6 Linear change of variables; 18.7 Integrating functions on Euclidean space; 18.8 Change of variables; 18.9 Differentiation under the integral sign; 19 Differential manifolds in Euclidean space; 19.1 Differential manifolds in Euclidean space; 19.2 Tangent vectors. | |
505 | 8 | |a 19.3 One-dimensional differential manifolds19.4 Lagrange multipliers; 19.5 Smooth partitions of unity; 19.6 Integration over hypersurfaces; 19.7 The divergence theorem; 19.8 Harmonic functions; 19.9 Curl; B Linear algebra; B.1 Finite-dimensional vector spaces; B.2 Linear mappings and matrices; B.3 Determinants; B.4 Cramer's rule; B.5 The trace; C Exterior algebras and the cross product; C.1 Exterior algebras; C.2 The cross product; D Tychonoff's theorem; Index; Contents for Volume I; Contents for Volume III. | |
520 | |a The second volume of three providing a full and detailed account of undergraduate mathematical analysis. | ||
650 | 0 | |a Mathematical analysis. |0 http://id.loc.gov/authorities/subjects/sh85082116 | |
650 | 6 | |a Analyse mathématique. | |
650 | 7 | |a MATHEMATICS |x Calculus. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Mathematical Analysis. |2 bisacsh | |
650 | 7 | |a Mathematical analysis |2 fast | |
776 | 0 | 8 | |i Print version: |a Garling, D.J.H. |t Course in Mathematical Analysis. |d Cambridge : Cambridge University Press, 2013 |z 9781107345805 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=545672 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH26050201 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL1139728 | ||
938 | |a EBSCOhost |b EBSC |n 545672 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn869640256 |
---|---|
_version_ | 1816882259776503808 |
adam_text | |
any_adam_object | |
author | Garling, D. J. H. |
author_GND | http://id.loc.gov/authorities/names/n85306701 |
author_facet | Garling, D. J. H. |
author_role | |
author_sort | Garling, D. J. H. |
author_variant | d j h g djh djhg |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA300 |
callnumber-raw | QA300 .B68 2013 |
callnumber-search | QA300 .B68 2013 |
callnumber-sort | QA 3300 B68 42013 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Cover.pdf; Cover; A COURSE IN MATHEMATICAL ANALYSIS; Title; Copyright; Contents; Introduction; Part III Metric and topological spaces; 11 Metric spaces and normed spaces; 11.1 Metric spaces: examples; 11.2 Normed spaces; 11.3 Inner-product spaces; 11.4 Euclidean and unitary spaces; 11.5 Isometries; 11.6 *The Mazur-Ulam theorem*; 11.7 The orthogonal group bold0mu mumu OdOdOdOdOdOd; 12 Convergence, continuity and topology; 12.1 Convergence of sequences in a metric space; 12.2 Convergence and continuity of mappings; 12.3 The topology of a metric space. 12.4 Topological properties of metric spaces13 Topological spaces; 13.1 Topological spaces; 13.2 The product topology; 13.3 Product metrics; 13.4 Separation properties; 13.5 Countability properties; 13.6 *Examples and counterexamples*; 14 Completeness; 14.1 Completeness; 14.2 Banach spaces; 14.3 Linear operators; 14.4 *Tietze's extension theorem*; 14.5 The completion of metric and normed spaces; 14.6 The contraction mapping theorem; 14.7 *Baire's category theorem*; 15 Compactness; 15.1 Compact topological spaces; 15.2 Sequentially compact topological spaces; 15.3 Totally bounded metric spaces. 15.4 Compact metric spaces15.5 Compact subsets of C(K); 15.6 *The Hausdorff metric*; 15.7 Locally compact topological spaces; 15.8 Local uniform convergence; 15.9 Finite-dimensional normed spaces; 16 Connectedness; 16.1 Connectedness; 16.2 Paths and tracks; 16.3 Path-connectedness; 16.4 *Hilbert's path*; 16.5 *More space-filling paths*; 16.6 Rectifiable paths; Part IV Functions of a vector variable; 17 Differentiating functions of a vector variable; 17.1 Differentiating functions of a vector variable; 17.2 The mean-value inequality; 17.3 Partial and directional derivatives. 17.4 The inverse mapping theorem17.5 The implicit function theorem; 17.6 Higher derivatives; 18 Integrating functions of several variables; 18.1 Elementary vector-valued integrals; 18.2 Integrating functions of several variables; 18.3 Integrating vector-valued functions; 18.4 Repeated integration; 18.5 Jordan content; 18.6 Linear change of variables; 18.7 Integrating functions on Euclidean space; 18.8 Change of variables; 18.9 Differentiation under the integral sign; 19 Differential manifolds in Euclidean space; 19.1 Differential manifolds in Euclidean space; 19.2 Tangent vectors. 19.3 One-dimensional differential manifolds19.4 Lagrange multipliers; 19.5 Smooth partitions of unity; 19.6 Integration over hypersurfaces; 19.7 The divergence theorem; 19.8 Harmonic functions; 19.9 Curl; B Linear algebra; B.1 Finite-dimensional vector spaces; B.2 Linear mappings and matrices; B.3 Determinants; B.4 Cramer's rule; B.5 The trace; C Exterior algebras and the cross product; C.1 Exterior algebras; C.2 The cross product; D Tychonoff's theorem; Index; Contents for Volume I; Contents for Volume III. |
ctrlnum | (OCoLC)869640256 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05353cam a2200625 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn869640256</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">140201s2013 enk o 000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">EBLCP</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">EBLCP</subfield><subfield code="d">MHW</subfield><subfield code="d">N$T</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">UKMGB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LIP</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">016629183</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">870650588</subfield><subfield code="a">990720058</subfield><subfield code="a">1030104841</subfield><subfield code="a">1030137815</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107342057</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107342058</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107345805</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107345804</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107352926</subfield><subfield code="q">(PDF ebook)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107352924</subfield><subfield code="q">(PDF ebook)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107032033</subfield><subfield code="q">(hbk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107032032</subfield><subfield code="q">(hbk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139424509</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139424505</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)869640256</subfield><subfield code="z">(OCoLC)870650588</subfield><subfield code="z">(OCoLC)990720058</subfield><subfield code="z">(OCoLC)1030104841</subfield><subfield code="z">(OCoLC)1030137815</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA300 .B68 2013</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">005000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">034000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Garling, D. J. H.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n85306701</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Course in Mathematical Analysis.</subfield><subfield code="n">Volume 2 :</subfield><subfield code="p">Metric and Topological Spaces, Functions of a Vector Variable /</subfield><subfield code="c">D.J.H. Garling.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2013.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (336 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover.pdf; Cover; A COURSE IN MATHEMATICAL ANALYSIS; Title; Copyright; Contents; Introduction; Part III Metric and topological spaces; 11 Metric spaces and normed spaces; 11.1 Metric spaces: examples; 11.2 Normed spaces; 11.3 Inner-product spaces; 11.4 Euclidean and unitary spaces; 11.5 Isometries; 11.6 *The Mazur-Ulam theorem*; 11.7 The orthogonal group bold0mu mumu OdOdOdOdOdOd; 12 Convergence, continuity and topology; 12.1 Convergence of sequences in a metric space; 12.2 Convergence and continuity of mappings; 12.3 The topology of a metric space.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">12.4 Topological properties of metric spaces13 Topological spaces; 13.1 Topological spaces; 13.2 The product topology; 13.3 Product metrics; 13.4 Separation properties; 13.5 Countability properties; 13.6 *Examples and counterexamples*; 14 Completeness; 14.1 Completeness; 14.2 Banach spaces; 14.3 Linear operators; 14.4 *Tietze's extension theorem*; 14.5 The completion of metric and normed spaces; 14.6 The contraction mapping theorem; 14.7 *Baire's category theorem*; 15 Compactness; 15.1 Compact topological spaces; 15.2 Sequentially compact topological spaces; 15.3 Totally bounded metric spaces.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">15.4 Compact metric spaces15.5 Compact subsets of C(K); 15.6 *The Hausdorff metric*; 15.7 Locally compact topological spaces; 15.8 Local uniform convergence; 15.9 Finite-dimensional normed spaces; 16 Connectedness; 16.1 Connectedness; 16.2 Paths and tracks; 16.3 Path-connectedness; 16.4 *Hilbert's path*; 16.5 *More space-filling paths*; 16.6 Rectifiable paths; Part IV Functions of a vector variable; 17 Differentiating functions of a vector variable; 17.1 Differentiating functions of a vector variable; 17.2 The mean-value inequality; 17.3 Partial and directional derivatives.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">17.4 The inverse mapping theorem17.5 The implicit function theorem; 17.6 Higher derivatives; 18 Integrating functions of several variables; 18.1 Elementary vector-valued integrals; 18.2 Integrating functions of several variables; 18.3 Integrating vector-valued functions; 18.4 Repeated integration; 18.5 Jordan content; 18.6 Linear change of variables; 18.7 Integrating functions on Euclidean space; 18.8 Change of variables; 18.9 Differentiation under the integral sign; 19 Differential manifolds in Euclidean space; 19.1 Differential manifolds in Euclidean space; 19.2 Tangent vectors.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">19.3 One-dimensional differential manifolds19.4 Lagrange multipliers; 19.5 Smooth partitions of unity; 19.6 Integration over hypersurfaces; 19.7 The divergence theorem; 19.8 Harmonic functions; 19.9 Curl; B Linear algebra; B.1 Finite-dimensional vector spaces; B.2 Linear mappings and matrices; B.3 Determinants; B.4 Cramer's rule; B.5 The trace; C Exterior algebras and the cross product; C.1 Exterior algebras; C.2 The cross product; D Tychonoff's theorem; Index; Contents for Volume I; Contents for Volume III.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The second volume of three providing a full and detailed account of undergraduate mathematical analysis.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Mathematical analysis.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85082116</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Analyse mathématique.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Calculus.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Mathematical Analysis.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematical analysis</subfield><subfield code="2">fast</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Garling, D.J.H.</subfield><subfield code="t">Course in Mathematical Analysis.</subfield><subfield code="d">Cambridge : Cambridge University Press, 2013</subfield><subfield code="z">9781107345805</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=545672</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH26050201</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL1139728</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">545672</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn869640256 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:25:46Z |
institution | BVB |
isbn | 9781107342057 1107342058 9781107345805 1107345804 9781107352926 1107352924 9781107032033 1107032032 9781139424509 1139424505 |
language | English |
oclc_num | 869640256 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (336 pages) |
psigel | ZDB-4-EBA |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Cambridge University Press, |
record_format | marc |
spelling | Garling, D. J. H. http://id.loc.gov/authorities/names/n85306701 A Course in Mathematical Analysis. Volume 2 : Metric and Topological Spaces, Functions of a Vector Variable / D.J.H. Garling. Cambridge : Cambridge University Press, 2013. 1 online resource (336 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier Print version record. Cover.pdf; Cover; A COURSE IN MATHEMATICAL ANALYSIS; Title; Copyright; Contents; Introduction; Part III Metric and topological spaces; 11 Metric spaces and normed spaces; 11.1 Metric spaces: examples; 11.2 Normed spaces; 11.3 Inner-product spaces; 11.4 Euclidean and unitary spaces; 11.5 Isometries; 11.6 *The Mazur-Ulam theorem*; 11.7 The orthogonal group bold0mu mumu OdOdOdOdOdOd; 12 Convergence, continuity and topology; 12.1 Convergence of sequences in a metric space; 12.2 Convergence and continuity of mappings; 12.3 The topology of a metric space. 12.4 Topological properties of metric spaces13 Topological spaces; 13.1 Topological spaces; 13.2 The product topology; 13.3 Product metrics; 13.4 Separation properties; 13.5 Countability properties; 13.6 *Examples and counterexamples*; 14 Completeness; 14.1 Completeness; 14.2 Banach spaces; 14.3 Linear operators; 14.4 *Tietze's extension theorem*; 14.5 The completion of metric and normed spaces; 14.6 The contraction mapping theorem; 14.7 *Baire's category theorem*; 15 Compactness; 15.1 Compact topological spaces; 15.2 Sequentially compact topological spaces; 15.3 Totally bounded metric spaces. 15.4 Compact metric spaces15.5 Compact subsets of C(K); 15.6 *The Hausdorff metric*; 15.7 Locally compact topological spaces; 15.8 Local uniform convergence; 15.9 Finite-dimensional normed spaces; 16 Connectedness; 16.1 Connectedness; 16.2 Paths and tracks; 16.3 Path-connectedness; 16.4 *Hilbert's path*; 16.5 *More space-filling paths*; 16.6 Rectifiable paths; Part IV Functions of a vector variable; 17 Differentiating functions of a vector variable; 17.1 Differentiating functions of a vector variable; 17.2 The mean-value inequality; 17.3 Partial and directional derivatives. 17.4 The inverse mapping theorem17.5 The implicit function theorem; 17.6 Higher derivatives; 18 Integrating functions of several variables; 18.1 Elementary vector-valued integrals; 18.2 Integrating functions of several variables; 18.3 Integrating vector-valued functions; 18.4 Repeated integration; 18.5 Jordan content; 18.6 Linear change of variables; 18.7 Integrating functions on Euclidean space; 18.8 Change of variables; 18.9 Differentiation under the integral sign; 19 Differential manifolds in Euclidean space; 19.1 Differential manifolds in Euclidean space; 19.2 Tangent vectors. 19.3 One-dimensional differential manifolds19.4 Lagrange multipliers; 19.5 Smooth partitions of unity; 19.6 Integration over hypersurfaces; 19.7 The divergence theorem; 19.8 Harmonic functions; 19.9 Curl; B Linear algebra; B.1 Finite-dimensional vector spaces; B.2 Linear mappings and matrices; B.3 Determinants; B.4 Cramer's rule; B.5 The trace; C Exterior algebras and the cross product; C.1 Exterior algebras; C.2 The cross product; D Tychonoff's theorem; Index; Contents for Volume I; Contents for Volume III. The second volume of three providing a full and detailed account of undergraduate mathematical analysis. Mathematical analysis. http://id.loc.gov/authorities/subjects/sh85082116 Analyse mathématique. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Mathematical analysis fast Print version: Garling, D.J.H. Course in Mathematical Analysis. Cambridge : Cambridge University Press, 2013 9781107345805 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=545672 Volltext |
spellingShingle | Garling, D. J. H. A Course in Mathematical Analysis. Cover.pdf; Cover; A COURSE IN MATHEMATICAL ANALYSIS; Title; Copyright; Contents; Introduction; Part III Metric and topological spaces; 11 Metric spaces and normed spaces; 11.1 Metric spaces: examples; 11.2 Normed spaces; 11.3 Inner-product spaces; 11.4 Euclidean and unitary spaces; 11.5 Isometries; 11.6 *The Mazur-Ulam theorem*; 11.7 The orthogonal group bold0mu mumu OdOdOdOdOdOd; 12 Convergence, continuity and topology; 12.1 Convergence of sequences in a metric space; 12.2 Convergence and continuity of mappings; 12.3 The topology of a metric space. 12.4 Topological properties of metric spaces13 Topological spaces; 13.1 Topological spaces; 13.2 The product topology; 13.3 Product metrics; 13.4 Separation properties; 13.5 Countability properties; 13.6 *Examples and counterexamples*; 14 Completeness; 14.1 Completeness; 14.2 Banach spaces; 14.3 Linear operators; 14.4 *Tietze's extension theorem*; 14.5 The completion of metric and normed spaces; 14.6 The contraction mapping theorem; 14.7 *Baire's category theorem*; 15 Compactness; 15.1 Compact topological spaces; 15.2 Sequentially compact topological spaces; 15.3 Totally bounded metric spaces. 15.4 Compact metric spaces15.5 Compact subsets of C(K); 15.6 *The Hausdorff metric*; 15.7 Locally compact topological spaces; 15.8 Local uniform convergence; 15.9 Finite-dimensional normed spaces; 16 Connectedness; 16.1 Connectedness; 16.2 Paths and tracks; 16.3 Path-connectedness; 16.4 *Hilbert's path*; 16.5 *More space-filling paths*; 16.6 Rectifiable paths; Part IV Functions of a vector variable; 17 Differentiating functions of a vector variable; 17.1 Differentiating functions of a vector variable; 17.2 The mean-value inequality; 17.3 Partial and directional derivatives. 17.4 The inverse mapping theorem17.5 The implicit function theorem; 17.6 Higher derivatives; 18 Integrating functions of several variables; 18.1 Elementary vector-valued integrals; 18.2 Integrating functions of several variables; 18.3 Integrating vector-valued functions; 18.4 Repeated integration; 18.5 Jordan content; 18.6 Linear change of variables; 18.7 Integrating functions on Euclidean space; 18.8 Change of variables; 18.9 Differentiation under the integral sign; 19 Differential manifolds in Euclidean space; 19.1 Differential manifolds in Euclidean space; 19.2 Tangent vectors. 19.3 One-dimensional differential manifolds19.4 Lagrange multipliers; 19.5 Smooth partitions of unity; 19.6 Integration over hypersurfaces; 19.7 The divergence theorem; 19.8 Harmonic functions; 19.9 Curl; B Linear algebra; B.1 Finite-dimensional vector spaces; B.2 Linear mappings and matrices; B.3 Determinants; B.4 Cramer's rule; B.5 The trace; C Exterior algebras and the cross product; C.1 Exterior algebras; C.2 The cross product; D Tychonoff's theorem; Index; Contents for Volume I; Contents for Volume III. Mathematical analysis. http://id.loc.gov/authorities/subjects/sh85082116 Analyse mathématique. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Mathematical analysis fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85082116 |
title | A Course in Mathematical Analysis. |
title_auth | A Course in Mathematical Analysis. |
title_exact_search | A Course in Mathematical Analysis. |
title_full | A Course in Mathematical Analysis. Volume 2 : Metric and Topological Spaces, Functions of a Vector Variable / D.J.H. Garling. |
title_fullStr | A Course in Mathematical Analysis. Volume 2 : Metric and Topological Spaces, Functions of a Vector Variable / D.J.H. Garling. |
title_full_unstemmed | A Course in Mathematical Analysis. Volume 2 : Metric and Topological Spaces, Functions of a Vector Variable / D.J.H. Garling. |
title_short | A Course in Mathematical Analysis. |
title_sort | course in mathematical analysis metric and topological spaces functions of a vector variable |
topic | Mathematical analysis. http://id.loc.gov/authorities/subjects/sh85082116 Analyse mathématique. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Mathematical analysis fast |
topic_facet | Mathematical analysis. Analyse mathématique. MATHEMATICS Calculus. MATHEMATICS Mathematical Analysis. Mathematical analysis |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=545672 |
work_keys_str_mv | AT garlingdjh acourseinmathematicalanalysisvolume2 AT garlingdjh courseinmathematicalanalysisvolume2 |