Matrix spaces and Schur multipliers :: matriceal harmonic analysis /
This book gives a unified approach to the theory concerning a new matrix version of classical harmonic analysis. Most results in the book have their analogues as classical or newer results in harmonic analysis. It can be used as a source for further research in many areas related to infinite matrice...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
[Hackensack] New Jersey :
World Scientific,
2014.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This book gives a unified approach to the theory concerning a new matrix version of classical harmonic analysis. Most results in the book have their analogues as classical or newer results in harmonic analysis. It can be used as a source for further research in many areas related to infinite matrices. In particular, it could be a perfect starting point for students looking for new directions to write their PhD thesis as well as for experienced researchers in analysis looking for new problems with great potential to be very useful both in pure and applied mathematics where classical analysis has been used, for example, in signal processing and image analysis. |
Beschreibung: | 1 online resource |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9789814546782 981454678X |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn869281809 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 140128s2014 nju ob 001 0 eng d | ||
040 | |a N$T |b eng |e rda |e pn |c N$T |d YDXCP |d IDEBK |d CDX |d E7B |d ZCU |d OCLCF |d OTZ |d GGVRL |d OCLCQ |d COCUF |d AGLDB |d OCLCQ |d JBG |d MOR |d PIFAG |d OCLCQ |d VTS |d NRAMU |d CRU |d OCLCQ |d STF |d M8D |d UKAHL |d OCLCQ |d OCLCO |d QGK |d OCLCQ |d OCLCO |d OCLCL | ||
019 | |a 961668085 |a 962727437 |a 1259093315 | ||
020 | |a 9789814546782 |q (electronic bk.) | ||
020 | |a 981454678X |q (electronic bk.) | ||
020 | |z 9789814546775 | ||
020 | |z 9814546771 | ||
035 | |a (OCoLC)869281809 |z (OCoLC)961668085 |z (OCoLC)962727437 |z (OCoLC)1259093315 | ||
050 | 4 | |a QA188 |b .P43 2014eb | |
072 | 7 | |a MAT |x 002040 |2 bisacsh | |
082 | 7 | |a 512.9/434 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Persson, Lars-Erik, |d 1944- |e author. |1 https://id.oclc.org/worldcat/entity/E39PBJmDhPthpBrt3xcx9WkdQq |0 http://id.loc.gov/authorities/names/n94004880 | |
245 | 1 | 0 | |a Matrix spaces and Schur multipliers : |b matriceal harmonic analysis / |c by Lars-Erik Persson (Luleå University of Technology, Sweden & Narvik University College, Norway) & Nicolae Popa ("Simion Stoilov" Institute of Mathematics, Romanian Academy, Romania & Technical University "Petrol si Gaze", Romania). |
264 | 1 | |a [Hackensack] New Jersey : |b World Scientific, |c 2014. | |
264 | 4 | |c ©2014 | |
300 | |a 1 online resource | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a 1. Introduction. 1.1. Preliminary notions and notations -- 2. Integral operators in infinite matrix theory. 2.1. Periodical integral operators. 2.2. Nonperiodical integral operators. 2.3. Some applications of integral operators in the classical theory of infinite matrices -- 3. Matrix versions of spaces of periodical functions. 3.1. Preliminaries. 3.2. Some properties of the space C[symbol]. 3.3. Another characterization of the space C[symbol] and related results. 3.4. A matrix version for functions of bounded variation. 3.5. Approximation of infinite matrices by matriceal Haar polynomials. 3.6. Lipschitz spaces of matrices; a characterization -- 4. Matrix versions of Hardy spaces. 4.1. First properties of matriceal Hardy space. 4.2. Hardy-Schatten spaces. 4.3. An analogue of the Hardy inequality in T[symbol]. 4.4. The Hardy inequality for matrix-valued analytic functions. 4.5. A characterization of the space T[symbol]. 4.6. An extension of Shields's inequality -- 5. The matrix version of BMOA. 5.1. First properties of BMOA[symbol] space. 5.2. Another matrix version of BMO and matriceal Hankel operators. 5.3. Nuclear Hankel operators and the space M[symbol] -- 6. Matrix version of Bergman spaces. 6.1. Schatten class version of Bergman spaces. 6.2. Some inequalities in Bergman-Schatten classes. 6.3. A characterization of the Bergman-Schatten space. 6.4. Usual multipliers in Bergman-Schatten spaces -- 7. A matrix version of Bloch spaces. 7.1. Elementary properties of Bloch matrices. 7.2. Matrix version of little Bloch space -- 8. Schur multipliers on analytic matrix spaces. | |
520 | |a This book gives a unified approach to the theory concerning a new matrix version of classical harmonic analysis. Most results in the book have their analogues as classical or newer results in harmonic analysis. It can be used as a source for further research in many areas related to infinite matrices. In particular, it could be a perfect starting point for students looking for new directions to write their PhD thesis as well as for experienced researchers in analysis looking for new problems with great potential to be very useful both in pure and applied mathematics where classical analysis has been used, for example, in signal processing and image analysis. | ||
546 | |a English. | ||
650 | 0 | |a Matrices. |0 http://id.loc.gov/authorities/subjects/sh85082210 | |
650 | 0 | |a Algebraic spaces. |0 http://id.loc.gov/authorities/subjects/sh85003437 | |
650 | 0 | |a Schur multiplier. |0 http://id.loc.gov/authorities/subjects/sh86003987 | |
650 | 6 | |a Matrices. | |
650 | 6 | |a Espaces algébriques. | |
650 | 6 | |a Multiplicateur de Schur. | |
650 | 7 | |a MATHEMATICS |x Algebra |x Intermediate. |2 bisacsh | |
650 | 7 | |a Algebraic spaces |2 fast | |
650 | 7 | |a Matrices |2 fast | |
650 | 7 | |a Schur multiplier |2 fast | |
700 | 1 | |a Popa, Nicolae, |e author. | |
758 | |i has work: |a Matrix spaces and Schur multipliers (Text) |1 https://id.oclc.org/worldcat/entity/E39PCH3B8vwqtDppRKdJWrgqcP |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Persson, Lars-Erik, 1944- |t Matrix spaces and Schur multipliers |z 9789814546775 |w (DLC) 2013037182 |w (OCoLC)858778264 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=689755 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH26152626 | ||
938 | |a Coutts Information Services |b COUT |n 27396128 | ||
938 | |a ebrary |b EBRY |n ebr10832724 | ||
938 | |a EBSCOhost |b EBSC |n 689755 | ||
938 | |a Cengage Learning |b GVRL |n GVRL8RJA | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis27396128 | ||
938 | |a YBP Library Services |b YANK |n 11593482 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn869281809 |
---|---|
_version_ | 1816882259030966272 |
adam_text | |
any_adam_object | |
author | Persson, Lars-Erik, 1944- Popa, Nicolae |
author_GND | http://id.loc.gov/authorities/names/n94004880 |
author_facet | Persson, Lars-Erik, 1944- Popa, Nicolae |
author_role | aut aut |
author_sort | Persson, Lars-Erik, 1944- |
author_variant | l e p lep n p np |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA188 |
callnumber-raw | QA188 .P43 2014eb |
callnumber-search | QA188 .P43 2014eb |
callnumber-sort | QA 3188 P43 42014EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | 1. Introduction. 1.1. Preliminary notions and notations -- 2. Integral operators in infinite matrix theory. 2.1. Periodical integral operators. 2.2. Nonperiodical integral operators. 2.3. Some applications of integral operators in the classical theory of infinite matrices -- 3. Matrix versions of spaces of periodical functions. 3.1. Preliminaries. 3.2. Some properties of the space C[symbol]. 3.3. Another characterization of the space C[symbol] and related results. 3.4. A matrix version for functions of bounded variation. 3.5. Approximation of infinite matrices by matriceal Haar polynomials. 3.6. Lipschitz spaces of matrices; a characterization -- 4. Matrix versions of Hardy spaces. 4.1. First properties of matriceal Hardy space. 4.2. Hardy-Schatten spaces. 4.3. An analogue of the Hardy inequality in T[symbol]. 4.4. The Hardy inequality for matrix-valued analytic functions. 4.5. A characterization of the space T[symbol]. 4.6. An extension of Shields's inequality -- 5. The matrix version of BMOA. 5.1. First properties of BMOA[symbol] space. 5.2. Another matrix version of BMO and matriceal Hankel operators. 5.3. Nuclear Hankel operators and the space M[symbol] -- 6. Matrix version of Bergman spaces. 6.1. Schatten class version of Bergman spaces. 6.2. Some inequalities in Bergman-Schatten classes. 6.3. A characterization of the Bergman-Schatten space. 6.4. Usual multipliers in Bergman-Schatten spaces -- 7. A matrix version of Bloch spaces. 7.1. Elementary properties of Bloch matrices. 7.2. Matrix version of little Bloch space -- 8. Schur multipliers on analytic matrix spaces. |
ctrlnum | (OCoLC)869281809 |
dewey-full | 512.9/434 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.9/434 |
dewey-search | 512.9/434 |
dewey-sort | 3512.9 3434 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05404cam a2200649 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn869281809</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">140128s2014 nju ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">IDEBK</subfield><subfield code="d">CDX</subfield><subfield code="d">E7B</subfield><subfield code="d">ZCU</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OTZ</subfield><subfield code="d">GGVRL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COCUF</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">JBG</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFAG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">NRAMU</subfield><subfield code="d">CRU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">STF</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">QGK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">961668085</subfield><subfield code="a">962727437</subfield><subfield code="a">1259093315</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814546782</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">981454678X</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789814546775</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9814546771</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)869281809</subfield><subfield code="z">(OCoLC)961668085</subfield><subfield code="z">(OCoLC)962727437</subfield><subfield code="z">(OCoLC)1259093315</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA188</subfield><subfield code="b">.P43 2014eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">002040</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512.9/434</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Persson, Lars-Erik,</subfield><subfield code="d">1944-</subfield><subfield code="e">author.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJmDhPthpBrt3xcx9WkdQq</subfield><subfield code="0">http://id.loc.gov/authorities/names/n94004880</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Matrix spaces and Schur multipliers :</subfield><subfield code="b">matriceal harmonic analysis /</subfield><subfield code="c">by Lars-Erik Persson (Luleå University of Technology, Sweden & Narvik University College, Norway) & Nicolae Popa ("Simion Stoilov" Institute of Mathematics, Romanian Academy, Romania & Technical University "Petrol si Gaze", Romania).</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Hackensack] New Jersey :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">2014.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">1. Introduction. 1.1. Preliminary notions and notations -- 2. Integral operators in infinite matrix theory. 2.1. Periodical integral operators. 2.2. Nonperiodical integral operators. 2.3. Some applications of integral operators in the classical theory of infinite matrices -- 3. Matrix versions of spaces of periodical functions. 3.1. Preliminaries. 3.2. Some properties of the space C[symbol]. 3.3. Another characterization of the space C[symbol] and related results. 3.4. A matrix version for functions of bounded variation. 3.5. Approximation of infinite matrices by matriceal Haar polynomials. 3.6. Lipschitz spaces of matrices; a characterization -- 4. Matrix versions of Hardy spaces. 4.1. First properties of matriceal Hardy space. 4.2. Hardy-Schatten spaces. 4.3. An analogue of the Hardy inequality in T[symbol]. 4.4. The Hardy inequality for matrix-valued analytic functions. 4.5. A characterization of the space T[symbol]. 4.6. An extension of Shields's inequality -- 5. The matrix version of BMOA. 5.1. First properties of BMOA[symbol] space. 5.2. Another matrix version of BMO and matriceal Hankel operators. 5.3. Nuclear Hankel operators and the space M[symbol] -- 6. Matrix version of Bergman spaces. 6.1. Schatten class version of Bergman spaces. 6.2. Some inequalities in Bergman-Schatten classes. 6.3. A characterization of the Bergman-Schatten space. 6.4. Usual multipliers in Bergman-Schatten spaces -- 7. A matrix version of Bloch spaces. 7.1. Elementary properties of Bloch matrices. 7.2. Matrix version of little Bloch space -- 8. Schur multipliers on analytic matrix spaces.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book gives a unified approach to the theory concerning a new matrix version of classical harmonic analysis. Most results in the book have their analogues as classical or newer results in harmonic analysis. It can be used as a source for further research in many areas related to infinite matrices. In particular, it could be a perfect starting point for students looking for new directions to write their PhD thesis as well as for experienced researchers in analysis looking for new problems with great potential to be very useful both in pure and applied mathematics where classical analysis has been used, for example, in signal processing and image analysis.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Matrices.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85082210</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Algebraic spaces.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85003437</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Schur multiplier.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh86003987</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Matrices.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Espaces algébriques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Multiplicateur de Schur.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Algebra</subfield><subfield code="x">Intermediate.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algebraic spaces</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Matrices</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Schur multiplier</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Popa, Nicolae,</subfield><subfield code="e">author.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Matrix spaces and Schur multipliers (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCH3B8vwqtDppRKdJWrgqcP</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Persson, Lars-Erik, 1944-</subfield><subfield code="t">Matrix spaces and Schur multipliers</subfield><subfield code="z">9789814546775</subfield><subfield code="w">(DLC) 2013037182</subfield><subfield code="w">(OCoLC)858778264</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=689755</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH26152626</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">27396128</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10832724</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">689755</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Cengage Learning</subfield><subfield code="b">GVRL</subfield><subfield code="n">GVRL8RJA</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis27396128</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">11593482</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn869281809 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:25:46Z |
institution | BVB |
isbn | 9789814546782 981454678X |
language | English |
oclc_num | 869281809 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource |
psigel | ZDB-4-EBA |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | World Scientific, |
record_format | marc |
spelling | Persson, Lars-Erik, 1944- author. https://id.oclc.org/worldcat/entity/E39PBJmDhPthpBrt3xcx9WkdQq http://id.loc.gov/authorities/names/n94004880 Matrix spaces and Schur multipliers : matriceal harmonic analysis / by Lars-Erik Persson (Luleå University of Technology, Sweden & Narvik University College, Norway) & Nicolae Popa ("Simion Stoilov" Institute of Mathematics, Romanian Academy, Romania & Technical University "Petrol si Gaze", Romania). [Hackensack] New Jersey : World Scientific, 2014. ©2014 1 online resource text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references and index. Print version record. 1. Introduction. 1.1. Preliminary notions and notations -- 2. Integral operators in infinite matrix theory. 2.1. Periodical integral operators. 2.2. Nonperiodical integral operators. 2.3. Some applications of integral operators in the classical theory of infinite matrices -- 3. Matrix versions of spaces of periodical functions. 3.1. Preliminaries. 3.2. Some properties of the space C[symbol]. 3.3. Another characterization of the space C[symbol] and related results. 3.4. A matrix version for functions of bounded variation. 3.5. Approximation of infinite matrices by matriceal Haar polynomials. 3.6. Lipschitz spaces of matrices; a characterization -- 4. Matrix versions of Hardy spaces. 4.1. First properties of matriceal Hardy space. 4.2. Hardy-Schatten spaces. 4.3. An analogue of the Hardy inequality in T[symbol]. 4.4. The Hardy inequality for matrix-valued analytic functions. 4.5. A characterization of the space T[symbol]. 4.6. An extension of Shields's inequality -- 5. The matrix version of BMOA. 5.1. First properties of BMOA[symbol] space. 5.2. Another matrix version of BMO and matriceal Hankel operators. 5.3. Nuclear Hankel operators and the space M[symbol] -- 6. Matrix version of Bergman spaces. 6.1. Schatten class version of Bergman spaces. 6.2. Some inequalities in Bergman-Schatten classes. 6.3. A characterization of the Bergman-Schatten space. 6.4. Usual multipliers in Bergman-Schatten spaces -- 7. A matrix version of Bloch spaces. 7.1. Elementary properties of Bloch matrices. 7.2. Matrix version of little Bloch space -- 8. Schur multipliers on analytic matrix spaces. This book gives a unified approach to the theory concerning a new matrix version of classical harmonic analysis. Most results in the book have their analogues as classical or newer results in harmonic analysis. It can be used as a source for further research in many areas related to infinite matrices. In particular, it could be a perfect starting point for students looking for new directions to write their PhD thesis as well as for experienced researchers in analysis looking for new problems with great potential to be very useful both in pure and applied mathematics where classical analysis has been used, for example, in signal processing and image analysis. English. Matrices. http://id.loc.gov/authorities/subjects/sh85082210 Algebraic spaces. http://id.loc.gov/authorities/subjects/sh85003437 Schur multiplier. http://id.loc.gov/authorities/subjects/sh86003987 Matrices. Espaces algébriques. Multiplicateur de Schur. MATHEMATICS Algebra Intermediate. bisacsh Algebraic spaces fast Matrices fast Schur multiplier fast Popa, Nicolae, author. has work: Matrix spaces and Schur multipliers (Text) https://id.oclc.org/worldcat/entity/E39PCH3B8vwqtDppRKdJWrgqcP https://id.oclc.org/worldcat/ontology/hasWork Print version: Persson, Lars-Erik, 1944- Matrix spaces and Schur multipliers 9789814546775 (DLC) 2013037182 (OCoLC)858778264 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=689755 Volltext |
spellingShingle | Persson, Lars-Erik, 1944- Popa, Nicolae Matrix spaces and Schur multipliers : matriceal harmonic analysis / 1. Introduction. 1.1. Preliminary notions and notations -- 2. Integral operators in infinite matrix theory. 2.1. Periodical integral operators. 2.2. Nonperiodical integral operators. 2.3. Some applications of integral operators in the classical theory of infinite matrices -- 3. Matrix versions of spaces of periodical functions. 3.1. Preliminaries. 3.2. Some properties of the space C[symbol]. 3.3. Another characterization of the space C[symbol] and related results. 3.4. A matrix version for functions of bounded variation. 3.5. Approximation of infinite matrices by matriceal Haar polynomials. 3.6. Lipschitz spaces of matrices; a characterization -- 4. Matrix versions of Hardy spaces. 4.1. First properties of matriceal Hardy space. 4.2. Hardy-Schatten spaces. 4.3. An analogue of the Hardy inequality in T[symbol]. 4.4. The Hardy inequality for matrix-valued analytic functions. 4.5. A characterization of the space T[symbol]. 4.6. An extension of Shields's inequality -- 5. The matrix version of BMOA. 5.1. First properties of BMOA[symbol] space. 5.2. Another matrix version of BMO and matriceal Hankel operators. 5.3. Nuclear Hankel operators and the space M[symbol] -- 6. Matrix version of Bergman spaces. 6.1. Schatten class version of Bergman spaces. 6.2. Some inequalities in Bergman-Schatten classes. 6.3. A characterization of the Bergman-Schatten space. 6.4. Usual multipliers in Bergman-Schatten spaces -- 7. A matrix version of Bloch spaces. 7.1. Elementary properties of Bloch matrices. 7.2. Matrix version of little Bloch space -- 8. Schur multipliers on analytic matrix spaces. Matrices. http://id.loc.gov/authorities/subjects/sh85082210 Algebraic spaces. http://id.loc.gov/authorities/subjects/sh85003437 Schur multiplier. http://id.loc.gov/authorities/subjects/sh86003987 Matrices. Espaces algébriques. Multiplicateur de Schur. MATHEMATICS Algebra Intermediate. bisacsh Algebraic spaces fast Matrices fast Schur multiplier fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85082210 http://id.loc.gov/authorities/subjects/sh85003437 http://id.loc.gov/authorities/subjects/sh86003987 |
title | Matrix spaces and Schur multipliers : matriceal harmonic analysis / |
title_auth | Matrix spaces and Schur multipliers : matriceal harmonic analysis / |
title_exact_search | Matrix spaces and Schur multipliers : matriceal harmonic analysis / |
title_full | Matrix spaces and Schur multipliers : matriceal harmonic analysis / by Lars-Erik Persson (Luleå University of Technology, Sweden & Narvik University College, Norway) & Nicolae Popa ("Simion Stoilov" Institute of Mathematics, Romanian Academy, Romania & Technical University "Petrol si Gaze", Romania). |
title_fullStr | Matrix spaces and Schur multipliers : matriceal harmonic analysis / by Lars-Erik Persson (Luleå University of Technology, Sweden & Narvik University College, Norway) & Nicolae Popa ("Simion Stoilov" Institute of Mathematics, Romanian Academy, Romania & Technical University "Petrol si Gaze", Romania). |
title_full_unstemmed | Matrix spaces and Schur multipliers : matriceal harmonic analysis / by Lars-Erik Persson (Luleå University of Technology, Sweden & Narvik University College, Norway) & Nicolae Popa ("Simion Stoilov" Institute of Mathematics, Romanian Academy, Romania & Technical University "Petrol si Gaze", Romania). |
title_short | Matrix spaces and Schur multipliers : |
title_sort | matrix spaces and schur multipliers matriceal harmonic analysis |
title_sub | matriceal harmonic analysis / |
topic | Matrices. http://id.loc.gov/authorities/subjects/sh85082210 Algebraic spaces. http://id.loc.gov/authorities/subjects/sh85003437 Schur multiplier. http://id.loc.gov/authorities/subjects/sh86003987 Matrices. Espaces algébriques. Multiplicateur de Schur. MATHEMATICS Algebra Intermediate. bisacsh Algebraic spaces fast Matrices fast Schur multiplier fast |
topic_facet | Matrices. Algebraic spaces. Schur multiplier. Espaces algébriques. Multiplicateur de Schur. MATHEMATICS Algebra Intermediate. Algebraic spaces Matrices Schur multiplier |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=689755 |
work_keys_str_mv | AT perssonlarserik matrixspacesandschurmultipliersmatricealharmonicanalysis AT popanicolae matrixspacesandschurmultipliersmatricealharmonicanalysis |