Biological data mining and its applications in healthcare /:
Biologists are stepping up their efforts in understanding the biological processes that underlie disease pathways in the clinical contexts. This has resulted in a flood of biological and clinical data from genomic and protein sequences, DNA microarrays, protein interactions, biomedical images, to di...
Gespeichert in:
Weitere Verfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New Jersey :
World Scientific,
2013.
|
Schriftenreihe: | Science, engineering, and biology informatics ;
v. 8. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Biologists are stepping up their efforts in understanding the biological processes that underlie disease pathways in the clinical contexts. This has resulted in a flood of biological and clinical data from genomic and protein sequences, DNA microarrays, protein interactions, biomedical images, to disease pathways and electronic health records. To exploit these data for discovering new knowledge that can be translated into clinical applications, there are fundamental data analysis difficulties that have to be overcome. Practical issues such as handling noisy and incomplete data, processing compute-intensive tasks, and integrating various data sources, are new challenges faced by biologists in the post-genome era. This book will cover the fundamentals of state-of-the-art data mining techniques which have been designed to handle such challenging data analysis problems, and demonstrate with real applications how biologists and clinical scientists can employ data mining to enable them to make meaningful observations and discoveries from a wide array of heterogeneous data from molecular biology to pharmaceutical and clinical domains. |
Beschreibung: | 1 online resource |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9789814551014 9814551015 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn869281569 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 140128s2013 nju ob 001 0 eng d | ||
040 | |a N$T |b eng |e rda |e pn |c N$T |d IDEBK |d CDX |d YDXCP |d OCLCF |d OCLCQ |d OCLCO |d EBLCP |d OCLCQ |d YDX |d AGLDB |d ZCU |d MERUC |d OCLCQ |d OCLCO |d VTS |d ICG |d OCLCQ |d STF |d DKC |d OCLCO |d JBG |d OCLCO |d OCLCQ |d M8D |d OCLCQ |d OCLCA |d AJS |d OCLCQ |d OCLCO |d SGP |d OCL |d OCLCQ |d OCLCO |d OCLCL |d UEJ |d OCLCQ | ||
019 | |a 922951932 |a 957953897 | ||
020 | |a 9789814551014 |q (electronic bk.) | ||
020 | |a 9814551015 |q (electronic bk.) | ||
020 | |z 9789814551007 | ||
020 | |z 9814551007 | ||
035 | |a (OCoLC)869281569 |z (OCoLC)922951932 |z (OCoLC)957953897 | ||
050 | 4 | |a R859.7.D35 |b B56 2013eb | |
060 | 4 | |a 2014 D-526 | |
060 | 4 | |a QU 26.5 | |
072 | 7 | |a HEA |x 012000 |2 bisacsh | |
072 | 7 | |a HEA |x 020000 |2 bisacsh | |
072 | 7 | |a MED |x 004000 |2 bisacsh | |
072 | 7 | |a MED |x 101000 |2 bisacsh | |
072 | 7 | |a MED |x 109000 |2 bisacsh | |
072 | 7 | |a MED |x 029000 |2 bisacsh | |
072 | 7 | |a MED |x 040000 |2 bisacsh | |
072 | 7 | |a MED |x 092000 |2 bisacsh | |
082 | 7 | |a 610.285 |2 23 | |
049 | |a MAIN | ||
245 | 0 | 0 | |a Biological data mining and its applications in healthcare / |c [edited by] Xiaoli Li (A*STAR, Singapore & Nanyang Technological University, Singapore), See-Kiong Ng (A*STAR, Singapore), & Jason T.L. Wang (New Jersey Institute of Technology, USA). |
264 | 1 | |a New Jersey : |b World Scientific, |c 2013. | |
300 | |a 1 online resource | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Science, engineering, and biology informatics ; |v volume 8 | |
504 | |a Includes bibliographical references and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Contents -- Preface -- Part I: Sequence Analysis -- Mining the Sequence Databases for Homology Detection: Application to Recognition of Functions of Trypanosoma brucei brucei Proteins and Drug Targets -- 1. Introduction -- 2. Remote homology driven approaches for protein function annotation -- 2.1. Sequence-based approaches for remote homology detection -- 2.1.1. Iterated searches using PSI-BLAST -- 2.1.2. Multi-profiles approach to improve sensitivity -- 2.1.3. Cascade PSI-BLAST -- 2.1.4. Hidden Markov Models -- 2.1.5. Profile-profile matching algorithms | |
505 | 8 | |a 2.2. Assessment of significant sequence alignments3. Trypanosoma brucei: A case study -- 3.1. Overview on structural and functional domain assignments in T. brucei proteome -- 3.2. Fold assignments -- 3.3. Metabolic proteins in Trypanosoma brucei -- 3.3.1. Domain composition of metabolic proteins -- 3.3.2. Predicting drug targets based on remote homology approaches -- 4. Conclusions -- Acknowledgments -- References -- Identification of Genes and their Regulatory Regions Based on Multiple Physical and Structural Properties of a DNA Sequence -- 1. Introduction | |
505 | 8 | |a 2. Gene prediction methods2.1. Background -- 2.2. Exon prediction based on the AR model and multifeature spectral analysis -- 3. Regulatory region (promoter) prediction methods -- 3.1. Background -- 3.2. Cascade AdaBoost algorithm -- 3.3. Hierarchical promoter prediction system based on signal, context and structural properties -- 3.4. Prediction of eukaryotic core promoters based on Isomap and support vector machine -- 3.5. Computational identification of disease-related genes and regulatory regions -- 4. Summary -- Acknowledgement -- References | |
505 | 8 | |a Mining Genomic Sequence Data for Related Sequences Using Pairwise Statistical Significance1. Introduction -- 1.1. Biological sequence -- 1.2. Homology and similarity -- 1.3. Sequence alignment -- 2. Statistical significance -- 2.1. Why statistical significance? -- 2.2. P-value in statistical significance -- 2.3. Modeling statistical for local sequence alignment -- 2.3.1. Coin-Toss model -- 2.3.2. Assessing the statistical significance using alignment scores -- 2.4. Gumbel extreme value distribution -- 3. Pairwise statistical significance | |
505 | 8 | |a 3.1. The definition of pairwise statistical significance3.2. Parameters fitting of pairwise statistical significance -- 3.3. Evaluation of pairwise statistical significance -- 4. HPC solutions for accelerating pairwise statistical significance estimation -- 4.1. Parallel paradigms of HPC techniques -- 4.2. Implementations -- 4.3. Summary -- Acknowledgement -- References -- Part II: Biological Network Mining -- Indexing for Similarity Queries on Biological Networks -- 1. Introduction -- 2. Preliminaries -- 2.1. Definitions -- 2.2. Problem Formulation | |
520 | |a Biologists are stepping up their efforts in understanding the biological processes that underlie disease pathways in the clinical contexts. This has resulted in a flood of biological and clinical data from genomic and protein sequences, DNA microarrays, protein interactions, biomedical images, to disease pathways and electronic health records. To exploit these data for discovering new knowledge that can be translated into clinical applications, there are fundamental data analysis difficulties that have to be overcome. Practical issues such as handling noisy and incomplete data, processing compute-intensive tasks, and integrating various data sources, are new challenges faced by biologists in the post-genome era. This book will cover the fundamentals of state-of-the-art data mining techniques which have been designed to handle such challenging data analysis problems, and demonstrate with real applications how biologists and clinical scientists can employ data mining to enable them to make meaningful observations and discoveries from a wide array of heterogeneous data from molecular biology to pharmaceutical and clinical domains. | ||
650 | 0 | |a Medical informatics. |0 http://id.loc.gov/authorities/subjects/sh89005069 | |
650 | 0 | |a Bioinformatics. |0 http://id.loc.gov/authorities/subjects/sh00003585 | |
650 | 0 | |a Data mining. |0 http://id.loc.gov/authorities/subjects/sh97002073 | |
650 | 0 | |a Natural language processing (Computer science) |0 http://id.loc.gov/authorities/subjects/sh88002425 | |
650 | 1 | 2 | |a Computational Biology |x methods |
650 | 2 | 2 | |a Data Mining |x methods |
650 | 2 | 2 | |a Genomics |x methods |
650 | 2 | 2 | |a Natural Language Processing |
650 | 2 | 2 | |a Imaging, Three-Dimensional |x methods |
650 | 2 | |a Computational Biology |0 https://id.nlm.nih.gov/mesh/D019295 | |
650 | 2 | |a Data Mining |0 https://id.nlm.nih.gov/mesh/D057225 | |
650 | 6 | |a Médecine |x Informatique. | |
650 | 6 | |a Bio-informatique. | |
650 | 6 | |a Exploration de données (Informatique) | |
650 | 6 | |a Traitement automatique des langues naturelles. | |
650 | 7 | |a HEALTH & FITNESS |x Holism. |2 bisacsh | |
650 | 7 | |a HEALTH & FITNESS |x Reference. |2 bisacsh | |
650 | 7 | |a MEDICAL |x Alternative Medicine. |2 bisacsh | |
650 | 7 | |a MEDICAL |x Atlases. |2 bisacsh | |
650 | 7 | |a MEDICAL |x Essays. |2 bisacsh | |
650 | 7 | |a MEDICAL |x Family & General Practice. |2 bisacsh | |
650 | 7 | |a MEDICAL |x Holistic Medicine. |2 bisacsh | |
650 | 7 | |a MEDICAL |x Osteopathy. |2 bisacsh | |
650 | 7 | |a Natural language processing (Computer science) |2 fast | |
650 | 7 | |a Bioinformatics |2 fast | |
650 | 7 | |a Data mining |2 fast | |
650 | 7 | |a Medical informatics |2 fast | |
700 | 1 | |a Li, Xiao-Li, |d 1969- |e editor. |1 https://id.oclc.org/worldcat/entity/E39PCjHmXKCFJJh8xWh4pHdwQ3 |0 http://id.loc.gov/authorities/names/n2008184082 | |
700 | 1 | |a Ng, See-Kiong, |e editor. | |
700 | 1 | |a Wang, Jason T. L., |e editor. | |
776 | 0 | 8 | |i Print version: |t Biological data mining and its applications in healthcare |z 9789814551007 |w (DLC) 2013037382 |w (OCoLC)855583066 |
830 | 0 | |a Science, engineering, and biology informatics ; |v v. 8. |0 http://id.loc.gov/authorities/names/no2007052160 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=689749 |3 Volltext |
938 | |a Coutts Information Services |b COUT |n 27394974 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL3051317 | ||
938 | |a EBSCOhost |b EBSC |n 689749 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis27394974 | ||
938 | |a YBP Library Services |b YANK |n 11593483 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn869281569 |
---|---|
_version_ | 1816882258987974658 |
adam_text | |
any_adam_object | |
author2 | Li, Xiao-Li, 1969- Ng, See-Kiong Wang, Jason T. L. |
author2_role | edt edt edt |
author2_variant | x l l xll s k n skn j t l w jtl jtlw |
author_GND | http://id.loc.gov/authorities/names/n2008184082 |
author_facet | Li, Xiao-Li, 1969- Ng, See-Kiong Wang, Jason T. L. |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | R - Medicine |
callnumber-label | R859 |
callnumber-raw | R859.7.D35 B56 2013eb |
callnumber-search | R859.7.D35 B56 2013eb |
callnumber-sort | R 3859.7 D35 B56 42013EB |
callnumber-subject | R - General Medicine |
collection | ZDB-4-EBA |
contents | Contents -- Preface -- Part I: Sequence Analysis -- Mining the Sequence Databases for Homology Detection: Application to Recognition of Functions of Trypanosoma brucei brucei Proteins and Drug Targets -- 1. Introduction -- 2. Remote homology driven approaches for protein function annotation -- 2.1. Sequence-based approaches for remote homology detection -- 2.1.1. Iterated searches using PSI-BLAST -- 2.1.2. Multi-profiles approach to improve sensitivity -- 2.1.3. Cascade PSI-BLAST -- 2.1.4. Hidden Markov Models -- 2.1.5. Profile-profile matching algorithms 2.2. Assessment of significant sequence alignments3. Trypanosoma brucei: A case study -- 3.1. Overview on structural and functional domain assignments in T. brucei proteome -- 3.2. Fold assignments -- 3.3. Metabolic proteins in Trypanosoma brucei -- 3.3.1. Domain composition of metabolic proteins -- 3.3.2. Predicting drug targets based on remote homology approaches -- 4. Conclusions -- Acknowledgments -- References -- Identification of Genes and their Regulatory Regions Based on Multiple Physical and Structural Properties of a DNA Sequence -- 1. Introduction 2. Gene prediction methods2.1. Background -- 2.2. Exon prediction based on the AR model and multifeature spectral analysis -- 3. Regulatory region (promoter) prediction methods -- 3.1. Background -- 3.2. Cascade AdaBoost algorithm -- 3.3. Hierarchical promoter prediction system based on signal, context and structural properties -- 3.4. Prediction of eukaryotic core promoters based on Isomap and support vector machine -- 3.5. Computational identification of disease-related genes and regulatory regions -- 4. Summary -- Acknowledgement -- References Mining Genomic Sequence Data for Related Sequences Using Pairwise Statistical Significance1. Introduction -- 1.1. Biological sequence -- 1.2. Homology and similarity -- 1.3. Sequence alignment -- 2. Statistical significance -- 2.1. Why statistical significance? -- 2.2. P-value in statistical significance -- 2.3. Modeling statistical for local sequence alignment -- 2.3.1. Coin-Toss model -- 2.3.2. Assessing the statistical significance using alignment scores -- 2.4. Gumbel extreme value distribution -- 3. Pairwise statistical significance 3.1. The definition of pairwise statistical significance3.2. Parameters fitting of pairwise statistical significance -- 3.3. Evaluation of pairwise statistical significance -- 4. HPC solutions for accelerating pairwise statistical significance estimation -- 4.1. Parallel paradigms of HPC techniques -- 4.2. Implementations -- 4.3. Summary -- Acknowledgement -- References -- Part II: Biological Network Mining -- Indexing for Similarity Queries on Biological Networks -- 1. Introduction -- 2. Preliminaries -- 2.1. Definitions -- 2.2. Problem Formulation |
ctrlnum | (OCoLC)869281569 |
dewey-full | 610.285 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 610 - Medicine and health |
dewey-raw | 610.285 |
dewey-search | 610.285 |
dewey-sort | 3610.285 |
dewey-tens | 610 - Medicine and health |
discipline | Medizin |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>08254cam a2200985 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn869281569</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">140128s2013 nju ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">IDEBK</subfield><subfield code="d">CDX</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">EBLCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDX</subfield><subfield code="d">AGLDB</subfield><subfield code="d">ZCU</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">VTS</subfield><subfield code="d">ICG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">STF</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCO</subfield><subfield code="d">JBG</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCA</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">SGP</subfield><subfield code="d">OCL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">UEJ</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">922951932</subfield><subfield code="a">957953897</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814551014</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814551015</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789814551007</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9814551007</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)869281569</subfield><subfield code="z">(OCoLC)922951932</subfield><subfield code="z">(OCoLC)957953897</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">R859.7.D35</subfield><subfield code="b">B56 2013eb</subfield></datafield><datafield tag="060" ind1=" " ind2="4"><subfield code="a">2014 D-526</subfield></datafield><datafield tag="060" ind1=" " ind2="4"><subfield code="a">QU 26.5</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">HEA</subfield><subfield code="x">012000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">HEA</subfield><subfield code="x">020000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MED</subfield><subfield code="x">004000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MED</subfield><subfield code="x">101000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MED</subfield><subfield code="x">109000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MED</subfield><subfield code="x">029000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MED</subfield><subfield code="x">040000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MED</subfield><subfield code="x">092000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">610.285</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Biological data mining and its applications in healthcare /</subfield><subfield code="c">[edited by] Xiaoli Li (A*STAR, Singapore & Nanyang Technological University, Singapore), See-Kiong Ng (A*STAR, Singapore), & Jason T.L. Wang (New Jersey Institute of Technology, USA).</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New Jersey :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">2013.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Science, engineering, and biology informatics ;</subfield><subfield code="v">volume 8</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Contents -- Preface -- Part I: Sequence Analysis -- Mining the Sequence Databases for Homology Detection: Application to Recognition of Functions of Trypanosoma brucei brucei Proteins and Drug Targets -- 1. Introduction -- 2. Remote homology driven approaches for protein function annotation -- 2.1. Sequence-based approaches for remote homology detection -- 2.1.1. Iterated searches using PSI-BLAST -- 2.1.2. Multi-profiles approach to improve sensitivity -- 2.1.3. Cascade PSI-BLAST -- 2.1.4. Hidden Markov Models -- 2.1.5. Profile-profile matching algorithms</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.2. Assessment of significant sequence alignments3. Trypanosoma brucei: A case study -- 3.1. Overview on structural and functional domain assignments in T. brucei proteome -- 3.2. Fold assignments -- 3.3. Metabolic proteins in Trypanosoma brucei -- 3.3.1. Domain composition of metabolic proteins -- 3.3.2. Predicting drug targets based on remote homology approaches -- 4. Conclusions -- Acknowledgments -- References -- Identification of Genes and their Regulatory Regions Based on Multiple Physical and Structural Properties of a DNA Sequence -- 1. Introduction</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2. Gene prediction methods2.1. Background -- 2.2. Exon prediction based on the AR model and multifeature spectral analysis -- 3. Regulatory region (promoter) prediction methods -- 3.1. Background -- 3.2. Cascade AdaBoost algorithm -- 3.3. Hierarchical promoter prediction system based on signal, context and structural properties -- 3.4. Prediction of eukaryotic core promoters based on Isomap and support vector machine -- 3.5. Computational identification of disease-related genes and regulatory regions -- 4. Summary -- Acknowledgement -- References</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Mining Genomic Sequence Data for Related Sequences Using Pairwise Statistical Significance1. Introduction -- 1.1. Biological sequence -- 1.2. Homology and similarity -- 1.3. Sequence alignment -- 2. Statistical significance -- 2.1. Why statistical significance? -- 2.2. P-value in statistical significance -- 2.3. Modeling statistical for local sequence alignment -- 2.3.1. Coin-Toss model -- 2.3.2. Assessing the statistical significance using alignment scores -- 2.4. Gumbel extreme value distribution -- 3. Pairwise statistical significance</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.1. The definition of pairwise statistical significance3.2. Parameters fitting of pairwise statistical significance -- 3.3. Evaluation of pairwise statistical significance -- 4. HPC solutions for accelerating pairwise statistical significance estimation -- 4.1. Parallel paradigms of HPC techniques -- 4.2. Implementations -- 4.3. Summary -- Acknowledgement -- References -- Part II: Biological Network Mining -- Indexing for Similarity Queries on Biological Networks -- 1. Introduction -- 2. Preliminaries -- 2.1. Definitions -- 2.2. Problem Formulation</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Biologists are stepping up their efforts in understanding the biological processes that underlie disease pathways in the clinical contexts. This has resulted in a flood of biological and clinical data from genomic and protein sequences, DNA microarrays, protein interactions, biomedical images, to disease pathways and electronic health records. To exploit these data for discovering new knowledge that can be translated into clinical applications, there are fundamental data analysis difficulties that have to be overcome. Practical issues such as handling noisy and incomplete data, processing compute-intensive tasks, and integrating various data sources, are new challenges faced by biologists in the post-genome era. This book will cover the fundamentals of state-of-the-art data mining techniques which have been designed to handle such challenging data analysis problems, and demonstrate with real applications how biologists and clinical scientists can employ data mining to enable them to make meaningful observations and discoveries from a wide array of heterogeneous data from molecular biology to pharmaceutical and clinical domains.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Medical informatics.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh89005069</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Bioinformatics.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh00003585</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Data mining.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh97002073</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Natural language processing (Computer science)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh88002425</subfield></datafield><datafield tag="650" ind1="1" ind2="2"><subfield code="a">Computational Biology</subfield><subfield code="x">methods</subfield></datafield><datafield tag="650" ind1="2" ind2="2"><subfield code="a">Data Mining</subfield><subfield code="x">methods</subfield></datafield><datafield tag="650" ind1="2" ind2="2"><subfield code="a">Genomics</subfield><subfield code="x">methods</subfield></datafield><datafield tag="650" ind1="2" ind2="2"><subfield code="a">Natural Language Processing</subfield></datafield><datafield tag="650" ind1="2" ind2="2"><subfield code="a">Imaging, Three-Dimensional</subfield><subfield code="x">methods</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Computational Biology</subfield><subfield code="0">https://id.nlm.nih.gov/mesh/D019295</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Data Mining</subfield><subfield code="0">https://id.nlm.nih.gov/mesh/D057225</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Médecine</subfield><subfield code="x">Informatique.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Bio-informatique.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Exploration de données (Informatique)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Traitement automatique des langues naturelles.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">HEALTH & FITNESS</subfield><subfield code="x">Holism.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">HEALTH & FITNESS</subfield><subfield code="x">Reference.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MEDICAL</subfield><subfield code="x">Alternative Medicine.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MEDICAL</subfield><subfield code="x">Atlases.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MEDICAL</subfield><subfield code="x">Essays.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MEDICAL</subfield><subfield code="x">Family & General Practice.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MEDICAL</subfield><subfield code="x">Holistic Medicine.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MEDICAL</subfield><subfield code="x">Osteopathy.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Natural language processing (Computer science)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bioinformatics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Data mining</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Medical informatics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Xiao-Li,</subfield><subfield code="d">1969-</subfield><subfield code="e">editor.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjHmXKCFJJh8xWh4pHdwQ3</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2008184082</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ng, See-Kiong,</subfield><subfield code="e">editor.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Jason T. L.,</subfield><subfield code="e">editor.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="t">Biological data mining and its applications in healthcare</subfield><subfield code="z">9789814551007</subfield><subfield code="w">(DLC) 2013037382</subfield><subfield code="w">(OCoLC)855583066</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Science, engineering, and biology informatics ;</subfield><subfield code="v">v. 8.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2007052160</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=689749</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">27394974</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL3051317</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">689749</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis27394974</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">11593483</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn869281569 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:25:46Z |
institution | BVB |
isbn | 9789814551014 9814551015 |
language | English |
oclc_num | 869281569 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource |
psigel | ZDB-4-EBA |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | World Scientific, |
record_format | marc |
series | Science, engineering, and biology informatics ; |
series2 | Science, engineering, and biology informatics ; |
spelling | Biological data mining and its applications in healthcare / [edited by] Xiaoli Li (A*STAR, Singapore & Nanyang Technological University, Singapore), See-Kiong Ng (A*STAR, Singapore), & Jason T.L. Wang (New Jersey Institute of Technology, USA). New Jersey : World Scientific, 2013. 1 online resource text txt rdacontent computer c rdamedia online resource cr rdacarrier Science, engineering, and biology informatics ; volume 8 Includes bibliographical references and index. Print version record. Contents -- Preface -- Part I: Sequence Analysis -- Mining the Sequence Databases for Homology Detection: Application to Recognition of Functions of Trypanosoma brucei brucei Proteins and Drug Targets -- 1. Introduction -- 2. Remote homology driven approaches for protein function annotation -- 2.1. Sequence-based approaches for remote homology detection -- 2.1.1. Iterated searches using PSI-BLAST -- 2.1.2. Multi-profiles approach to improve sensitivity -- 2.1.3. Cascade PSI-BLAST -- 2.1.4. Hidden Markov Models -- 2.1.5. Profile-profile matching algorithms 2.2. Assessment of significant sequence alignments3. Trypanosoma brucei: A case study -- 3.1. Overview on structural and functional domain assignments in T. brucei proteome -- 3.2. Fold assignments -- 3.3. Metabolic proteins in Trypanosoma brucei -- 3.3.1. Domain composition of metabolic proteins -- 3.3.2. Predicting drug targets based on remote homology approaches -- 4. Conclusions -- Acknowledgments -- References -- Identification of Genes and their Regulatory Regions Based on Multiple Physical and Structural Properties of a DNA Sequence -- 1. Introduction 2. Gene prediction methods2.1. Background -- 2.2. Exon prediction based on the AR model and multifeature spectral analysis -- 3. Regulatory region (promoter) prediction methods -- 3.1. Background -- 3.2. Cascade AdaBoost algorithm -- 3.3. Hierarchical promoter prediction system based on signal, context and structural properties -- 3.4. Prediction of eukaryotic core promoters based on Isomap and support vector machine -- 3.5. Computational identification of disease-related genes and regulatory regions -- 4. Summary -- Acknowledgement -- References Mining Genomic Sequence Data for Related Sequences Using Pairwise Statistical Significance1. Introduction -- 1.1. Biological sequence -- 1.2. Homology and similarity -- 1.3. Sequence alignment -- 2. Statistical significance -- 2.1. Why statistical significance? -- 2.2. P-value in statistical significance -- 2.3. Modeling statistical for local sequence alignment -- 2.3.1. Coin-Toss model -- 2.3.2. Assessing the statistical significance using alignment scores -- 2.4. Gumbel extreme value distribution -- 3. Pairwise statistical significance 3.1. The definition of pairwise statistical significance3.2. Parameters fitting of pairwise statistical significance -- 3.3. Evaluation of pairwise statistical significance -- 4. HPC solutions for accelerating pairwise statistical significance estimation -- 4.1. Parallel paradigms of HPC techniques -- 4.2. Implementations -- 4.3. Summary -- Acknowledgement -- References -- Part II: Biological Network Mining -- Indexing for Similarity Queries on Biological Networks -- 1. Introduction -- 2. Preliminaries -- 2.1. Definitions -- 2.2. Problem Formulation Biologists are stepping up their efforts in understanding the biological processes that underlie disease pathways in the clinical contexts. This has resulted in a flood of biological and clinical data from genomic and protein sequences, DNA microarrays, protein interactions, biomedical images, to disease pathways and electronic health records. To exploit these data for discovering new knowledge that can be translated into clinical applications, there are fundamental data analysis difficulties that have to be overcome. Practical issues such as handling noisy and incomplete data, processing compute-intensive tasks, and integrating various data sources, are new challenges faced by biologists in the post-genome era. This book will cover the fundamentals of state-of-the-art data mining techniques which have been designed to handle such challenging data analysis problems, and demonstrate with real applications how biologists and clinical scientists can employ data mining to enable them to make meaningful observations and discoveries from a wide array of heterogeneous data from molecular biology to pharmaceutical and clinical domains. Medical informatics. http://id.loc.gov/authorities/subjects/sh89005069 Bioinformatics. http://id.loc.gov/authorities/subjects/sh00003585 Data mining. http://id.loc.gov/authorities/subjects/sh97002073 Natural language processing (Computer science) http://id.loc.gov/authorities/subjects/sh88002425 Computational Biology methods Data Mining methods Genomics methods Natural Language Processing Imaging, Three-Dimensional methods Computational Biology https://id.nlm.nih.gov/mesh/D019295 Data Mining https://id.nlm.nih.gov/mesh/D057225 Médecine Informatique. Bio-informatique. Exploration de données (Informatique) Traitement automatique des langues naturelles. HEALTH & FITNESS Holism. bisacsh HEALTH & FITNESS Reference. bisacsh MEDICAL Alternative Medicine. bisacsh MEDICAL Atlases. bisacsh MEDICAL Essays. bisacsh MEDICAL Family & General Practice. bisacsh MEDICAL Holistic Medicine. bisacsh MEDICAL Osteopathy. bisacsh Natural language processing (Computer science) fast Bioinformatics fast Data mining fast Medical informatics fast Li, Xiao-Li, 1969- editor. https://id.oclc.org/worldcat/entity/E39PCjHmXKCFJJh8xWh4pHdwQ3 http://id.loc.gov/authorities/names/n2008184082 Ng, See-Kiong, editor. Wang, Jason T. L., editor. Print version: Biological data mining and its applications in healthcare 9789814551007 (DLC) 2013037382 (OCoLC)855583066 Science, engineering, and biology informatics ; v. 8. http://id.loc.gov/authorities/names/no2007052160 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=689749 Volltext |
spellingShingle | Biological data mining and its applications in healthcare / Science, engineering, and biology informatics ; Contents -- Preface -- Part I: Sequence Analysis -- Mining the Sequence Databases for Homology Detection: Application to Recognition of Functions of Trypanosoma brucei brucei Proteins and Drug Targets -- 1. Introduction -- 2. Remote homology driven approaches for protein function annotation -- 2.1. Sequence-based approaches for remote homology detection -- 2.1.1. Iterated searches using PSI-BLAST -- 2.1.2. Multi-profiles approach to improve sensitivity -- 2.1.3. Cascade PSI-BLAST -- 2.1.4. Hidden Markov Models -- 2.1.5. Profile-profile matching algorithms 2.2. Assessment of significant sequence alignments3. Trypanosoma brucei: A case study -- 3.1. Overview on structural and functional domain assignments in T. brucei proteome -- 3.2. Fold assignments -- 3.3. Metabolic proteins in Trypanosoma brucei -- 3.3.1. Domain composition of metabolic proteins -- 3.3.2. Predicting drug targets based on remote homology approaches -- 4. Conclusions -- Acknowledgments -- References -- Identification of Genes and their Regulatory Regions Based on Multiple Physical and Structural Properties of a DNA Sequence -- 1. Introduction 2. Gene prediction methods2.1. Background -- 2.2. Exon prediction based on the AR model and multifeature spectral analysis -- 3. Regulatory region (promoter) prediction methods -- 3.1. Background -- 3.2. Cascade AdaBoost algorithm -- 3.3. Hierarchical promoter prediction system based on signal, context and structural properties -- 3.4. Prediction of eukaryotic core promoters based on Isomap and support vector machine -- 3.5. Computational identification of disease-related genes and regulatory regions -- 4. Summary -- Acknowledgement -- References Mining Genomic Sequence Data for Related Sequences Using Pairwise Statistical Significance1. Introduction -- 1.1. Biological sequence -- 1.2. Homology and similarity -- 1.3. Sequence alignment -- 2. Statistical significance -- 2.1. Why statistical significance? -- 2.2. P-value in statistical significance -- 2.3. Modeling statistical for local sequence alignment -- 2.3.1. Coin-Toss model -- 2.3.2. Assessing the statistical significance using alignment scores -- 2.4. Gumbel extreme value distribution -- 3. Pairwise statistical significance 3.1. The definition of pairwise statistical significance3.2. Parameters fitting of pairwise statistical significance -- 3.3. Evaluation of pairwise statistical significance -- 4. HPC solutions for accelerating pairwise statistical significance estimation -- 4.1. Parallel paradigms of HPC techniques -- 4.2. Implementations -- 4.3. Summary -- Acknowledgement -- References -- Part II: Biological Network Mining -- Indexing for Similarity Queries on Biological Networks -- 1. Introduction -- 2. Preliminaries -- 2.1. Definitions -- 2.2. Problem Formulation Medical informatics. http://id.loc.gov/authorities/subjects/sh89005069 Bioinformatics. http://id.loc.gov/authorities/subjects/sh00003585 Data mining. http://id.loc.gov/authorities/subjects/sh97002073 Natural language processing (Computer science) http://id.loc.gov/authorities/subjects/sh88002425 Computational Biology methods Data Mining methods Genomics methods Natural Language Processing Imaging, Three-Dimensional methods Computational Biology https://id.nlm.nih.gov/mesh/D019295 Data Mining https://id.nlm.nih.gov/mesh/D057225 Médecine Informatique. Bio-informatique. Exploration de données (Informatique) Traitement automatique des langues naturelles. HEALTH & FITNESS Holism. bisacsh HEALTH & FITNESS Reference. bisacsh MEDICAL Alternative Medicine. bisacsh MEDICAL Atlases. bisacsh MEDICAL Essays. bisacsh MEDICAL Family & General Practice. bisacsh MEDICAL Holistic Medicine. bisacsh MEDICAL Osteopathy. bisacsh Natural language processing (Computer science) fast Bioinformatics fast Data mining fast Medical informatics fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh89005069 http://id.loc.gov/authorities/subjects/sh00003585 http://id.loc.gov/authorities/subjects/sh97002073 http://id.loc.gov/authorities/subjects/sh88002425 https://id.nlm.nih.gov/mesh/D019295 https://id.nlm.nih.gov/mesh/D057225 |
title | Biological data mining and its applications in healthcare / |
title_auth | Biological data mining and its applications in healthcare / |
title_exact_search | Biological data mining and its applications in healthcare / |
title_full | Biological data mining and its applications in healthcare / [edited by] Xiaoli Li (A*STAR, Singapore & Nanyang Technological University, Singapore), See-Kiong Ng (A*STAR, Singapore), & Jason T.L. Wang (New Jersey Institute of Technology, USA). |
title_fullStr | Biological data mining and its applications in healthcare / [edited by] Xiaoli Li (A*STAR, Singapore & Nanyang Technological University, Singapore), See-Kiong Ng (A*STAR, Singapore), & Jason T.L. Wang (New Jersey Institute of Technology, USA). |
title_full_unstemmed | Biological data mining and its applications in healthcare / [edited by] Xiaoli Li (A*STAR, Singapore & Nanyang Technological University, Singapore), See-Kiong Ng (A*STAR, Singapore), & Jason T.L. Wang (New Jersey Institute of Technology, USA). |
title_short | Biological data mining and its applications in healthcare / |
title_sort | biological data mining and its applications in healthcare |
topic | Medical informatics. http://id.loc.gov/authorities/subjects/sh89005069 Bioinformatics. http://id.loc.gov/authorities/subjects/sh00003585 Data mining. http://id.loc.gov/authorities/subjects/sh97002073 Natural language processing (Computer science) http://id.loc.gov/authorities/subjects/sh88002425 Computational Biology methods Data Mining methods Genomics methods Natural Language Processing Imaging, Three-Dimensional methods Computational Biology https://id.nlm.nih.gov/mesh/D019295 Data Mining https://id.nlm.nih.gov/mesh/D057225 Médecine Informatique. Bio-informatique. Exploration de données (Informatique) Traitement automatique des langues naturelles. HEALTH & FITNESS Holism. bisacsh HEALTH & FITNESS Reference. bisacsh MEDICAL Alternative Medicine. bisacsh MEDICAL Atlases. bisacsh MEDICAL Essays. bisacsh MEDICAL Family & General Practice. bisacsh MEDICAL Holistic Medicine. bisacsh MEDICAL Osteopathy. bisacsh Natural language processing (Computer science) fast Bioinformatics fast Data mining fast Medical informatics fast |
topic_facet | Medical informatics. Bioinformatics. Data mining. Natural language processing (Computer science) Computational Biology methods Data Mining methods Genomics methods Natural Language Processing Imaging, Three-Dimensional methods Computational Biology Data Mining Médecine Informatique. Bio-informatique. Exploration de données (Informatique) Traitement automatique des langues naturelles. HEALTH & FITNESS Holism. HEALTH & FITNESS Reference. MEDICAL Alternative Medicine. MEDICAL Atlases. MEDICAL Essays. MEDICAL Family & General Practice. MEDICAL Holistic Medicine. MEDICAL Osteopathy. Bioinformatics Data mining Medical informatics |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=689749 |
work_keys_str_mv | AT lixiaoli biologicaldatamininganditsapplicationsinhealthcare AT ngseekiong biologicaldatamininganditsapplicationsinhealthcare AT wangjasontl biologicaldatamininganditsapplicationsinhealthcare |