Frontiers in combinatorics and number theory.: Volume 4 /
This book contains papers on topics in combinatorics (including graph theory) or number theory. The subject areas within correspond to the MSC (Mathematics Subject Classification) codes 05, 11, 20D60, and 52. Some topics included in this compilation are pseudorandom binary functions on rooted plane...
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York :
Nova Publishers,
[2013]
|
Schriftenreihe: | Frontiers of combinatorics and number theory.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This book contains papers on topics in combinatorics (including graph theory) or number theory. The subject areas within correspond to the MSC (Mathematics Subject Classification) codes 05, 11, 20D60, and 52. Some topics included in this compilation are pseudorandom binary functions on rooted plane trees; class number one criteria for real quadratic fields with discriminant k2p2 4p; some product-to-sum identities; a zeta function for juggling sequences; divisibility properties of hypergeometric polynomials; the distance between perfect numbers; a new proof of a theorem of Hamidoune avoiding; c. |
Beschreibung: | 1 online resource (x, 209 pages) : illustrations |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9781628089585 162808958X |
ISSN: | 2324-9536 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn868975108 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr mn||||||||| | ||
008 | 111102t20132013nyua ob 001 0 eng d | ||
040 | |a E7B |b eng |e rda |e pn |c E7B |d OCLCO |d YDXCP |d N$T |d OSU |d OCLCQ |d OCLCF |d VTS |d OCLCQ |d AU@ |d OCLCQ |d STF |d OCLCQ |d K6U |d OCLCO |d OCLCQ |d OCLCO |d OCLCQ | ||
020 | |a 9781628089585 |q (electronic bk.) | ||
020 | |a 162808958X |q (electronic bk.) | ||
020 | |z 9781628089578 | ||
020 | |z 1628089571 | ||
035 | |a (OCoLC)868975108 | ||
050 | 4 | |a QA164 |b .F764 2013eb | |
072 | 7 | |a MAT |x 000000 |2 bisacsh | |
082 | 7 | |a 511.6 |2 23 | |
049 | |a MAIN | ||
245 | 0 | 0 | |a Frontiers in combinatorics and number theory. |n Volume 4 / |c Zhi-Wie Sun, editor. |
264 | 1 | |a New York : |b Nova Publishers, |c [2013] | |
264 | 4 | |c ©2013 | |
300 | |a 1 online resource (x, 209 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Frontiers of combinatorics and number theory, |x 2324-9536 | |
504 | |a Includes bibliographical references and index. | ||
588 | 0 | |a Online resource; title from PDF title page (ebrary, viewed June 16, 2014). | |
505 | 0 | |a FRONTIERS OF COMBINATORICS AND NUMBER THEORY. VOLUME 4; LIBRARY OF CONGRESS CATALOGING-IN-PUBLICATION DATA; CONTENTS; PREFACE; Chapter 1: PSEUDORANDOM BINARY FUNCTIONS ON ROOTED PLANE TREES; Abstract; 1. Introduction; 2. Notation, Terminology, Definitions; 3. The Measures of Pseudorandomness of Binary Functions on Almost Uniform Trees; 4. The Measures of Pseudorandomness of Binary Functions on General Trees; 5. Measures of Pseudorandomness for a Truly Random Binary Function Defined on a Given Tree; 6. Connection between the Measures of Pseudorandomness. | |
505 | 8 | |a 7. Finding a Binary Function with Strong Pseudorandom Properties on an Arbitrary TreeReferences; Chapter 2: CLASS NUMBER ONE CRITERIA FOR REAL QUADRATIC FIELDS WITH DISCRIMINANT k2p2 4p; Abstract; 1. Introduction; 2. Preliminaries; 3. Class Number One Criteria for = k2p2 4p; References; Chapter 3: SOME PRODUCT-TO-SUM IDENTITIES; Abstract; 1. Introduction; 2. A Product-to-Sum Identity; 3. Proof of Theorem 1.1; 4. Proof of Theorem 1.2; 5. Proof of Theorem 1.3; 6. Final Remarks; Chapter 4: A ZETA FUNCTION FOR JUGGLING SEQUENCES; Abstract; 1. Introduction. | |
505 | 8 | |a 2. Background and Notation: Juggling3. Background and Notation: Zeta Functions; 4. A Norm on Juggling Sequences; 5. Zeta Functions for Ground State Juggling Sequences; 6. A 3-Ball Juggling Zeta Function; 7. A Juggling Zeta Function on b Balls; 8. Locating the Zeroes of the Zeta Function on b Balls; 9. Conclusion; References; Chapter 5: A QUADRATIC TWIST OF THE ELLIPTIC CURVE; Abstract; 1. Introduction; 2. A Family of Twists; 3. The Rank of the Family; 4. Explicit Computation of the Rank; References; Chapter 6: DIVISIBILITY PROPERTIES OF HYPERGEOMETRIC POLYNOMIALS; Abstract. | |
505 | 8 | |a Abstract1. Introduction; 2. Proof of Theorem 1.1; Acknowledgments; References; Chapter 10: ON SOME CONJECTURES ON THE MONOTONICITY OF SOME ARITHMETICAL SEQUENCES; Abstract; 1. Introduction; 2. Bernoulli, Tangent and Euler Numbers; 3. Apéry, Delannoy and Franel Numbers; 4. Motzkin Numbers, Schr oder Numbers and Trinomial Coefficients; References; Chapter 11: COMPLEXITY OF TRAPEZOIDAL GRAPHS WITH DIFFERENT TRIANGULATIONS; Abstract; 1. Introduction; 2. Complexity of Trapeziodal Graphs; 3. Conclusion; Acknowledgments; References. | |
520 | |a This book contains papers on topics in combinatorics (including graph theory) or number theory. The subject areas within correspond to the MSC (Mathematics Subject Classification) codes 05, 11, 20D60, and 52. Some topics included in this compilation are pseudorandom binary functions on rooted plane trees; class number one criteria for real quadratic fields with discriminant k2p2 4p; some product-to-sum identities; a zeta function for juggling sequences; divisibility properties of hypergeometric polynomials; the distance between perfect numbers; a new proof of a theorem of Hamidoune avoiding; c. | ||
650 | 0 | |a Combinatorial analysis. |0 http://id.loc.gov/authorities/subjects/sh85028802 | |
650 | 0 | |a Number theory. |0 http://id.loc.gov/authorities/subjects/sh85093222 | |
650 | 6 | |a Analyse combinatoire. | |
650 | 6 | |a Théorie des nombres. | |
650 | 7 | |a MATHEMATICS |x General. |2 bisacsh | |
650 | 7 | |a Combinatorial analysis |2 fast | |
650 | 7 | |a Number theory |2 fast | |
700 | 1 | |a Sun, Zhi-Wei, |e editor. | |
830 | 0 | |a Frontiers of combinatorics and number theory. | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=662150 |3 Volltext |
938 | |a ebrary |b EBRY |n ebr10792501 | ||
938 | |a EBSCOhost |b EBSC |n 662150 | ||
938 | |a YBP Library Services |b YANK |n 11129220 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn868975108 |
---|---|
_version_ | 1816882258632507393 |
adam_text | |
any_adam_object | |
author2 | Sun, Zhi-Wei |
author2_role | edt |
author2_variant | z w s zws |
author_facet | Sun, Zhi-Wei |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA164 |
callnumber-raw | QA164 .F764 2013eb |
callnumber-search | QA164 .F764 2013eb |
callnumber-sort | QA 3164 F764 42013EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | FRONTIERS OF COMBINATORICS AND NUMBER THEORY. VOLUME 4; LIBRARY OF CONGRESS CATALOGING-IN-PUBLICATION DATA; CONTENTS; PREFACE; Chapter 1: PSEUDORANDOM BINARY FUNCTIONS ON ROOTED PLANE TREES; Abstract; 1. Introduction; 2. Notation, Terminology, Definitions; 3. The Measures of Pseudorandomness of Binary Functions on Almost Uniform Trees; 4. The Measures of Pseudorandomness of Binary Functions on General Trees; 5. Measures of Pseudorandomness for a Truly Random Binary Function Defined on a Given Tree; 6. Connection between the Measures of Pseudorandomness. 7. Finding a Binary Function with Strong Pseudorandom Properties on an Arbitrary TreeReferences; Chapter 2: CLASS NUMBER ONE CRITERIA FOR REAL QUADRATIC FIELDS WITH DISCRIMINANT k2p2 4p; Abstract; 1. Introduction; 2. Preliminaries; 3. Class Number One Criteria for = k2p2 4p; References; Chapter 3: SOME PRODUCT-TO-SUM IDENTITIES; Abstract; 1. Introduction; 2. A Product-to-Sum Identity; 3. Proof of Theorem 1.1; 4. Proof of Theorem 1.2; 5. Proof of Theorem 1.3; 6. Final Remarks; Chapter 4: A ZETA FUNCTION FOR JUGGLING SEQUENCES; Abstract; 1. Introduction. 2. Background and Notation: Juggling3. Background and Notation: Zeta Functions; 4. A Norm on Juggling Sequences; 5. Zeta Functions for Ground State Juggling Sequences; 6. A 3-Ball Juggling Zeta Function; 7. A Juggling Zeta Function on b Balls; 8. Locating the Zeroes of the Zeta Function on b Balls; 9. Conclusion; References; Chapter 5: A QUADRATIC TWIST OF THE ELLIPTIC CURVE; Abstract; 1. Introduction; 2. A Family of Twists; 3. The Rank of the Family; 4. Explicit Computation of the Rank; References; Chapter 6: DIVISIBILITY PROPERTIES OF HYPERGEOMETRIC POLYNOMIALS; Abstract. Abstract1. Introduction; 2. Proof of Theorem 1.1; Acknowledgments; References; Chapter 10: ON SOME CONJECTURES ON THE MONOTONICITY OF SOME ARITHMETICAL SEQUENCES; Abstract; 1. Introduction; 2. Bernoulli, Tangent and Euler Numbers; 3. Apéry, Delannoy and Franel Numbers; 4. Motzkin Numbers, Schr oder Numbers and Trinomial Coefficients; References; Chapter 11: COMPLEXITY OF TRAPEZOIDAL GRAPHS WITH DIFFERENT TRIANGULATIONS; Abstract; 1. Introduction; 2. Complexity of Trapeziodal Graphs; 3. Conclusion; Acknowledgments; References. |
ctrlnum | (OCoLC)868975108 |
dewey-full | 511.6 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.6 |
dewey-search | 511.6 |
dewey-sort | 3511.6 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04901cam a2200565 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn868975108</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr mn|||||||||</controlfield><controlfield tag="008">111102t20132013nyua ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">E7B</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">E7B</subfield><subfield code="d">OCLCO</subfield><subfield code="d">YDXCP</subfield><subfield code="d">N$T</subfield><subfield code="d">OSU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">VTS</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">STF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781628089585</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">162808958X</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781628089578</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1628089571</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)868975108</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA164</subfield><subfield code="b">.F764 2013eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">000000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">511.6</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Frontiers in combinatorics and number theory.</subfield><subfield code="n">Volume 4 /</subfield><subfield code="c">Zhi-Wie Sun, editor.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York :</subfield><subfield code="b">Nova Publishers,</subfield><subfield code="c">[2013]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (x, 209 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Frontiers of combinatorics and number theory,</subfield><subfield code="x">2324-9536</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Online resource; title from PDF title page (ebrary, viewed June 16, 2014).</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">FRONTIERS OF COMBINATORICS AND NUMBER THEORY. VOLUME 4; LIBRARY OF CONGRESS CATALOGING-IN-PUBLICATION DATA; CONTENTS; PREFACE; Chapter 1: PSEUDORANDOM BINARY FUNCTIONS ON ROOTED PLANE TREES; Abstract; 1. Introduction; 2. Notation, Terminology, Definitions; 3. The Measures of Pseudorandomness of Binary Functions on Almost Uniform Trees; 4. The Measures of Pseudorandomness of Binary Functions on General Trees; 5. Measures of Pseudorandomness for a Truly Random Binary Function Defined on a Given Tree; 6. Connection between the Measures of Pseudorandomness.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">7. Finding a Binary Function with Strong Pseudorandom Properties on an Arbitrary TreeReferences; Chapter 2: CLASS NUMBER ONE CRITERIA FOR REAL QUADRATIC FIELDS WITH DISCRIMINANT k2p2 4p; Abstract; 1. Introduction; 2. Preliminaries; 3. Class Number One Criteria for = k2p2 4p; References; Chapter 3: SOME PRODUCT-TO-SUM IDENTITIES; Abstract; 1. Introduction; 2. A Product-to-Sum Identity; 3. Proof of Theorem 1.1; 4. Proof of Theorem 1.2; 5. Proof of Theorem 1.3; 6. Final Remarks; Chapter 4: A ZETA FUNCTION FOR JUGGLING SEQUENCES; Abstract; 1. Introduction.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2. Background and Notation: Juggling3. Background and Notation: Zeta Functions; 4. A Norm on Juggling Sequences; 5. Zeta Functions for Ground State Juggling Sequences; 6. A 3-Ball Juggling Zeta Function; 7. A Juggling Zeta Function on b Balls; 8. Locating the Zeroes of the Zeta Function on b Balls; 9. Conclusion; References; Chapter 5: A QUADRATIC TWIST OF THE ELLIPTIC CURVE; Abstract; 1. Introduction; 2. A Family of Twists; 3. The Rank of the Family; 4. Explicit Computation of the Rank; References; Chapter 6: DIVISIBILITY PROPERTIES OF HYPERGEOMETRIC POLYNOMIALS; Abstract.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Abstract1. Introduction; 2. Proof of Theorem 1.1; Acknowledgments; References; Chapter 10: ON SOME CONJECTURES ON THE MONOTONICITY OF SOME ARITHMETICAL SEQUENCES; Abstract; 1. Introduction; 2. Bernoulli, Tangent and Euler Numbers; 3. Apéry, Delannoy and Franel Numbers; 4. Motzkin Numbers, Schr oder Numbers and Trinomial Coefficients; References; Chapter 11: COMPLEXITY OF TRAPEZOIDAL GRAPHS WITH DIFFERENT TRIANGULATIONS; Abstract; 1. Introduction; 2. Complexity of Trapeziodal Graphs; 3. Conclusion; Acknowledgments; References.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book contains papers on topics in combinatorics (including graph theory) or number theory. The subject areas within correspond to the MSC (Mathematics Subject Classification) codes 05, 11, 20D60, and 52. Some topics included in this compilation are pseudorandom binary functions on rooted plane trees; class number one criteria for real quadratic fields with discriminant k2p2 4p; some product-to-sum identities; a zeta function for juggling sequences; divisibility properties of hypergeometric polynomials; the distance between perfect numbers; a new proof of a theorem of Hamidoune avoiding; c.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Combinatorial analysis.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85028802</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Number theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85093222</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Analyse combinatoire.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie des nombres.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Combinatorial analysis</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Number theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Zhi-Wei,</subfield><subfield code="e">editor.</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Frontiers of combinatorics and number theory.</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=662150</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10792501</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">662150</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">11129220</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn868975108 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:25:45Z |
institution | BVB |
isbn | 9781628089585 162808958X |
issn | 2324-9536 |
language | English |
oclc_num | 868975108 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (x, 209 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Nova Publishers, |
record_format | marc |
series | Frontiers of combinatorics and number theory. |
series2 | Frontiers of combinatorics and number theory, |
spelling | Frontiers in combinatorics and number theory. Volume 4 / Zhi-Wie Sun, editor. New York : Nova Publishers, [2013] ©2013 1 online resource (x, 209 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Frontiers of combinatorics and number theory, 2324-9536 Includes bibliographical references and index. Online resource; title from PDF title page (ebrary, viewed June 16, 2014). FRONTIERS OF COMBINATORICS AND NUMBER THEORY. VOLUME 4; LIBRARY OF CONGRESS CATALOGING-IN-PUBLICATION DATA; CONTENTS; PREFACE; Chapter 1: PSEUDORANDOM BINARY FUNCTIONS ON ROOTED PLANE TREES; Abstract; 1. Introduction; 2. Notation, Terminology, Definitions; 3. The Measures of Pseudorandomness of Binary Functions on Almost Uniform Trees; 4. The Measures of Pseudorandomness of Binary Functions on General Trees; 5. Measures of Pseudorandomness for a Truly Random Binary Function Defined on a Given Tree; 6. Connection between the Measures of Pseudorandomness. 7. Finding a Binary Function with Strong Pseudorandom Properties on an Arbitrary TreeReferences; Chapter 2: CLASS NUMBER ONE CRITERIA FOR REAL QUADRATIC FIELDS WITH DISCRIMINANT k2p2 4p; Abstract; 1. Introduction; 2. Preliminaries; 3. Class Number One Criteria for = k2p2 4p; References; Chapter 3: SOME PRODUCT-TO-SUM IDENTITIES; Abstract; 1. Introduction; 2. A Product-to-Sum Identity; 3. Proof of Theorem 1.1; 4. Proof of Theorem 1.2; 5. Proof of Theorem 1.3; 6. Final Remarks; Chapter 4: A ZETA FUNCTION FOR JUGGLING SEQUENCES; Abstract; 1. Introduction. 2. Background and Notation: Juggling3. Background and Notation: Zeta Functions; 4. A Norm on Juggling Sequences; 5. Zeta Functions for Ground State Juggling Sequences; 6. A 3-Ball Juggling Zeta Function; 7. A Juggling Zeta Function on b Balls; 8. Locating the Zeroes of the Zeta Function on b Balls; 9. Conclusion; References; Chapter 5: A QUADRATIC TWIST OF THE ELLIPTIC CURVE; Abstract; 1. Introduction; 2. A Family of Twists; 3. The Rank of the Family; 4. Explicit Computation of the Rank; References; Chapter 6: DIVISIBILITY PROPERTIES OF HYPERGEOMETRIC POLYNOMIALS; Abstract. Abstract1. Introduction; 2. Proof of Theorem 1.1; Acknowledgments; References; Chapter 10: ON SOME CONJECTURES ON THE MONOTONICITY OF SOME ARITHMETICAL SEQUENCES; Abstract; 1. Introduction; 2. Bernoulli, Tangent and Euler Numbers; 3. Apéry, Delannoy and Franel Numbers; 4. Motzkin Numbers, Schr oder Numbers and Trinomial Coefficients; References; Chapter 11: COMPLEXITY OF TRAPEZOIDAL GRAPHS WITH DIFFERENT TRIANGULATIONS; Abstract; 1. Introduction; 2. Complexity of Trapeziodal Graphs; 3. Conclusion; Acknowledgments; References. This book contains papers on topics in combinatorics (including graph theory) or number theory. The subject areas within correspond to the MSC (Mathematics Subject Classification) codes 05, 11, 20D60, and 52. Some topics included in this compilation are pseudorandom binary functions on rooted plane trees; class number one criteria for real quadratic fields with discriminant k2p2 4p; some product-to-sum identities; a zeta function for juggling sequences; divisibility properties of hypergeometric polynomials; the distance between perfect numbers; a new proof of a theorem of Hamidoune avoiding; c. Combinatorial analysis. http://id.loc.gov/authorities/subjects/sh85028802 Number theory. http://id.loc.gov/authorities/subjects/sh85093222 Analyse combinatoire. Théorie des nombres. MATHEMATICS General. bisacsh Combinatorial analysis fast Number theory fast Sun, Zhi-Wei, editor. Frontiers of combinatorics and number theory. FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=662150 Volltext |
spellingShingle | Frontiers in combinatorics and number theory. Frontiers of combinatorics and number theory. FRONTIERS OF COMBINATORICS AND NUMBER THEORY. VOLUME 4; LIBRARY OF CONGRESS CATALOGING-IN-PUBLICATION DATA; CONTENTS; PREFACE; Chapter 1: PSEUDORANDOM BINARY FUNCTIONS ON ROOTED PLANE TREES; Abstract; 1. Introduction; 2. Notation, Terminology, Definitions; 3. The Measures of Pseudorandomness of Binary Functions on Almost Uniform Trees; 4. The Measures of Pseudorandomness of Binary Functions on General Trees; 5. Measures of Pseudorandomness for a Truly Random Binary Function Defined on a Given Tree; 6. Connection between the Measures of Pseudorandomness. 7. Finding a Binary Function with Strong Pseudorandom Properties on an Arbitrary TreeReferences; Chapter 2: CLASS NUMBER ONE CRITERIA FOR REAL QUADRATIC FIELDS WITH DISCRIMINANT k2p2 4p; Abstract; 1. Introduction; 2. Preliminaries; 3. Class Number One Criteria for = k2p2 4p; References; Chapter 3: SOME PRODUCT-TO-SUM IDENTITIES; Abstract; 1. Introduction; 2. A Product-to-Sum Identity; 3. Proof of Theorem 1.1; 4. Proof of Theorem 1.2; 5. Proof of Theorem 1.3; 6. Final Remarks; Chapter 4: A ZETA FUNCTION FOR JUGGLING SEQUENCES; Abstract; 1. Introduction. 2. Background and Notation: Juggling3. Background and Notation: Zeta Functions; 4. A Norm on Juggling Sequences; 5. Zeta Functions for Ground State Juggling Sequences; 6. A 3-Ball Juggling Zeta Function; 7. A Juggling Zeta Function on b Balls; 8. Locating the Zeroes of the Zeta Function on b Balls; 9. Conclusion; References; Chapter 5: A QUADRATIC TWIST OF THE ELLIPTIC CURVE; Abstract; 1. Introduction; 2. A Family of Twists; 3. The Rank of the Family; 4. Explicit Computation of the Rank; References; Chapter 6: DIVISIBILITY PROPERTIES OF HYPERGEOMETRIC POLYNOMIALS; Abstract. Abstract1. Introduction; 2. Proof of Theorem 1.1; Acknowledgments; References; Chapter 10: ON SOME CONJECTURES ON THE MONOTONICITY OF SOME ARITHMETICAL SEQUENCES; Abstract; 1. Introduction; 2. Bernoulli, Tangent and Euler Numbers; 3. Apéry, Delannoy and Franel Numbers; 4. Motzkin Numbers, Schr oder Numbers and Trinomial Coefficients; References; Chapter 11: COMPLEXITY OF TRAPEZOIDAL GRAPHS WITH DIFFERENT TRIANGULATIONS; Abstract; 1. Introduction; 2. Complexity of Trapeziodal Graphs; 3. Conclusion; Acknowledgments; References. Combinatorial analysis. http://id.loc.gov/authorities/subjects/sh85028802 Number theory. http://id.loc.gov/authorities/subjects/sh85093222 Analyse combinatoire. Théorie des nombres. MATHEMATICS General. bisacsh Combinatorial analysis fast Number theory fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85028802 http://id.loc.gov/authorities/subjects/sh85093222 |
title | Frontiers in combinatorics and number theory. |
title_auth | Frontiers in combinatorics and number theory. |
title_exact_search | Frontiers in combinatorics and number theory. |
title_full | Frontiers in combinatorics and number theory. Volume 4 / Zhi-Wie Sun, editor. |
title_fullStr | Frontiers in combinatorics and number theory. Volume 4 / Zhi-Wie Sun, editor. |
title_full_unstemmed | Frontiers in combinatorics and number theory. Volume 4 / Zhi-Wie Sun, editor. |
title_short | Frontiers in combinatorics and number theory. |
title_sort | frontiers in combinatorics and number theory |
topic | Combinatorial analysis. http://id.loc.gov/authorities/subjects/sh85028802 Number theory. http://id.loc.gov/authorities/subjects/sh85093222 Analyse combinatoire. Théorie des nombres. MATHEMATICS General. bisacsh Combinatorial analysis fast Number theory fast |
topic_facet | Combinatorial analysis. Number theory. Analyse combinatoire. Théorie des nombres. MATHEMATICS General. Combinatorial analysis Number theory |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=662150 |
work_keys_str_mv | AT sunzhiwei frontiersincombinatoricsandnumbertheoryvolume4 |