Interacting multiagent systems :: kinetic equations and Monte Carlo methods /
The description of emerging collective phenomena and self-organization in systems composed of large numbers of individuals has gained increasing interest from various research communities in biology, ecology, robotics and control theory, as well as sociology and economics. Applied mathematics is con...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Oxford :
Oxford University Press,
2014.
|
Ausgabe: | First edition. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | The description of emerging collective phenomena and self-organization in systems composed of large numbers of individuals has gained increasing interest from various research communities in biology, ecology, robotics and control theory, as well as sociology and economics. Applied mathematics is concerned with the construction, analysis and interpretation of mathematical models that can shed light on significant problems of the natural sciences as well as our daily lives. To this set of problems belongs the description of the collective behaviours of complex systems composed by a large enough n. |
Beschreibung: | 1 online resource (xiv, 376 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 356-373) and index. |
ISBN: | 9780191627989 0191627984 0191628875 9780191628870 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn868597755 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr mn||||||||| | ||
008 | 140120t20142014enka ob 001 0 eng d | ||
010 | |z 2013937550 | ||
040 | |a N$T |b eng |e rda |e pn |c N$T |d YDXCP |d E7B |d OSU |d OCLCQ |d LIP |d OCLCF |d TKN |d UKAHL |d K6U |d VLY |d DST |d OCLCO |d YDX |d EBLCP |d OCLCQ |d INARC |d OCLCO |d OCLCQ | ||
015 | |a GBB378793 |2 bnb | ||
019 | |a 1162150796 |a 1300601205 |a 1391568988 | ||
020 | |a 9780191627989 |q (electronic bk.) | ||
020 | |a 0191627984 |q (electronic bk.) | ||
020 | |a 0191628875 | ||
020 | |a 9780191628870 | ||
020 | |z 9780199655465 | ||
020 | |z 0199655464 | ||
035 | |a (OCoLC)868597755 |z (OCoLC)1162150796 |z (OCoLC)1300601205 |z (OCoLC)1391568988 | ||
050 | 4 | |a QA298 |b .P37 2014eb | |
072 | 7 | |a MAT |x 041000 |2 bisacsh | |
082 | 7 | |a 518 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Pareschi, Lorenzo, |e author. |0 http://id.loc.gov/authorities/names/n2003013941 | |
245 | 1 | 0 | |a Interacting multiagent systems : |b kinetic equations and Monte Carlo methods / |c Lorenzo Pareschi, Giuseppe Toscani. |
250 | |a First edition. | ||
264 | 1 | |a Oxford : |b Oxford University Press, |c 2014. | |
264 | 4 | |c ©2014 | |
300 | |a 1 online resource (xiv, 376 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references (pages 356-373) and index. | ||
505 | 0 | 0 | |g Machine generated contents note: |g 1. |t A short introduction to kinetic equations -- |g 1.1. |t Boltzmann's legacy -- |g 1.2. |t Notation -- |g 1.3. |t Some linear kinetic models -- |g 1.4. |t Binary interaction models on the real line -- |g 1.5. |t Binary interaction models on the half-line -- |g 1.6. |t Some classical results -- |g 2. |t Mathematical tools -- |g 2.1. |t How to be certain of the predictions of a model? -- |g 2.2. |t Some mathematical tools -- |g 2.3. |t The drift equation and Dirac delta functions -- |g 2.4. |t Dissipative models and the drift equation -- |g 2.5. |t Growth processes -- |g 3. |t Monte Carlo strategies -- |g 3.1. |t Why Monte Carlo methods? -- |g 3.2. |t Generating random variables -- |g 3.3. |t Monte Carlo techniques -- |g 3.4. |t Applications to evolutionary PDEs -- |g 4. |t Monte Carlo methods for kinetic equations -- |g 4.1. |t The general framework. |
505 | 0 | 0 | |g 4.2. |t Relaxation problems -- |g 4.3. |t Binary interaction models -- |g 4.4. |t Asymptotic preserving Monte Carlo -- |g 4.5. |t Kinetic approximation of diffusion equations -- |g 4.6. |t Remarks on multi-dimensional problems -- |g 5. |t Models for wealth distribution -- |g 5.1. |t Wealth, trades and kinetic equations -- |g 5.2. |t Economic and kinetic dictionaries -- |g 5.3. |t Kinetic market models for conservative economies -- |g 5.4. |t Non-conservative kinetic market models -- |g 5.5. |t Exact solutions -- |g 5.6. |t Modelling heterogeneous traders -- |g 5.7. |t Individual preferences -- |g 5.8. |t Taxation and wealth redistribution -- |g 6. |t Opinion modelling and consensus formation -- |g 6.1. |t Opinion formation -- |g 6.2. |t Kinetic models of opinion formation -- |g 6.3. |t Other Fokker-Planck models of opinion formation -- |g 6.4. |t Choice formation and influence of external factors -- |g 6.5. |t Opinion formation in the presence of leaders. |
505 | 0 | 0 | |g 7. |t A further insight into economics and social sciences -- |g 7.1. |t Towards more realistic models -- |g 7.2. |t A kinetic model for trading goods -- |g 7.3. |t Modelling speculative financial markets -- |g 7.4. |t A model for different groups of traders -- |g 7.5. |t Inhomogeneous models for the evolution of wealth -- |g 8. |t Modelling in life sciences -- |g 8.1. |t The Luria-Delbrück distribution -- |g 8.2. |t The quasi-invariant limit of the growth of mutant cells -- |g 8.3. |t Self-organized systems and swarming models -- |g 8.4. |t Systems interacting with few individuals -- |g 8.5. |t Final remarks -- |g A.1. |t Definitions -- |g A.2. |t Properties of the Fourier transform -- |g B.1. |t Uniform distribution -- |g B.2. |t Beta distribution -- |g B.3. |t Normal distribution -- |g B.4. |t Exponential distribution -- |g B.5. |t Gamma distribution -- |g B.6. |t Bernoulli distribution -- |g B.7. |t Poisson distribution. |
588 | 0 | |a Print version record. | |
520 | |a The description of emerging collective phenomena and self-organization in systems composed of large numbers of individuals has gained increasing interest from various research communities in biology, ecology, robotics and control theory, as well as sociology and economics. Applied mathematics is concerned with the construction, analysis and interpretation of mathematical models that can shed light on significant problems of the natural sciences as well as our daily lives. To this set of problems belongs the description of the collective behaviours of complex systems composed by a large enough n. | ||
546 | |a English. | ||
650 | 0 | |a Monte Carlo method. |0 http://id.loc.gov/authorities/subjects/sh85087032 | |
650 | 0 | |a Equations of motion. |0 http://id.loc.gov/authorities/subjects/sh85044524 | |
650 | 0 | |a Multiagent systems |x Mathematical models. | |
650 | 2 | |a Monte Carlo Method |0 https://id.nlm.nih.gov/mesh/D009010 | |
650 | 6 | |a Méthode de Monte-Carlo. | |
650 | 6 | |a Équations du mouvement. | |
650 | 6 | |a Systèmes multiagents (Intelligence artificielle) |x Modèles mathématiques. | |
650 | 7 | |a MATHEMATICS |x Numerical Analysis. |2 bisacsh | |
650 | 7 | |a Equations of motion |2 fast | |
650 | 7 | |a Monte Carlo method |2 fast | |
700 | 1 | |a Toscani, Giuseppe, |e author. |0 http://id.loc.gov/authorities/names/n88278368 | |
776 | 0 | 8 | |i Print version: |a Pareschi, Lorenzo. |t Interacting multiagent systems. |b First edition. |d Oxford ; New York : Oxford University Press, 2014 |z 9780199655465 |w (DLC) 2013937550 |w (OCoLC)866836546 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=683933 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH25954909 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL7037154 | ||
938 | |a ebrary |b EBRY |n ebr10826237 | ||
938 | |a EBSCOhost |b EBSC |n 683933 | ||
938 | |a YBP Library Services |b YANK |n 18045612 | ||
938 | |a YBP Library Services |b YANK |n 11563585 | ||
938 | |a Internet Archive |b INAR |n interactingmulti0000pare | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn868597755 |
---|---|
_version_ | 1816882257078517761 |
adam_text | |
any_adam_object | |
author | Pareschi, Lorenzo Toscani, Giuseppe |
author_GND | http://id.loc.gov/authorities/names/n2003013941 http://id.loc.gov/authorities/names/n88278368 |
author_facet | Pareschi, Lorenzo Toscani, Giuseppe |
author_role | aut aut |
author_sort | Pareschi, Lorenzo |
author_variant | l p lp g t gt |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA298 |
callnumber-raw | QA298 .P37 2014eb |
callnumber-search | QA298 .P37 2014eb |
callnumber-sort | QA 3298 P37 42014EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | A short introduction to kinetic equations -- Boltzmann's legacy -- Notation -- Some linear kinetic models -- Binary interaction models on the real line -- Binary interaction models on the half-line -- Some classical results -- Mathematical tools -- How to be certain of the predictions of a model? -- Some mathematical tools -- The drift equation and Dirac delta functions -- Dissipative models and the drift equation -- Growth processes -- Monte Carlo strategies -- Why Monte Carlo methods? -- Generating random variables -- Monte Carlo techniques -- Applications to evolutionary PDEs -- Monte Carlo methods for kinetic equations -- The general framework. Relaxation problems -- Binary interaction models -- Asymptotic preserving Monte Carlo -- Kinetic approximation of diffusion equations -- Remarks on multi-dimensional problems -- Models for wealth distribution -- Wealth, trades and kinetic equations -- Economic and kinetic dictionaries -- Kinetic market models for conservative economies -- Non-conservative kinetic market models -- Exact solutions -- Modelling heterogeneous traders -- Individual preferences -- Taxation and wealth redistribution -- Opinion modelling and consensus formation -- Opinion formation -- Kinetic models of opinion formation -- Other Fokker-Planck models of opinion formation -- Choice formation and influence of external factors -- Opinion formation in the presence of leaders. A further insight into economics and social sciences -- Towards more realistic models -- A kinetic model for trading goods -- Modelling speculative financial markets -- A model for different groups of traders -- Inhomogeneous models for the evolution of wealth -- Modelling in life sciences -- The Luria-Delbrück distribution -- The quasi-invariant limit of the growth of mutant cells -- Self-organized systems and swarming models -- Systems interacting with few individuals -- Final remarks -- Definitions -- Properties of the Fourier transform -- Uniform distribution -- Beta distribution -- Normal distribution -- Exponential distribution -- Gamma distribution -- Bernoulli distribution -- Poisson distribution. |
ctrlnum | (OCoLC)868597755 |
dewey-full | 518 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 518 - Numerical analysis |
dewey-raw | 518 |
dewey-search | 518 |
dewey-sort | 3518 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | First edition. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06213cam a2200721 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn868597755</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr mn|||||||||</controlfield><controlfield tag="008">140120t20142014enka ob 001 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="z"> 2013937550</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">E7B</subfield><subfield code="d">OSU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LIP</subfield><subfield code="d">OCLCF</subfield><subfield code="d">TKN</subfield><subfield code="d">UKAHL</subfield><subfield code="d">K6U</subfield><subfield code="d">VLY</subfield><subfield code="d">DST</subfield><subfield code="d">OCLCO</subfield><subfield code="d">YDX</subfield><subfield code="d">EBLCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">INARC</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBB378793</subfield><subfield code="2">bnb</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1162150796</subfield><subfield code="a">1300601205</subfield><subfield code="a">1391568988</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780191627989</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0191627984</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0191628875</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780191628870</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780199655465</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0199655464</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)868597755</subfield><subfield code="z">(OCoLC)1162150796</subfield><subfield code="z">(OCoLC)1300601205</subfield><subfield code="z">(OCoLC)1391568988</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA298</subfield><subfield code="b">.P37 2014eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">041000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">518</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pareschi, Lorenzo,</subfield><subfield code="e">author.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2003013941</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Interacting multiagent systems :</subfield><subfield code="b">kinetic equations and Monte Carlo methods /</subfield><subfield code="c">Lorenzo Pareschi, Giuseppe Toscani.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First edition.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford :</subfield><subfield code="b">Oxford University Press,</subfield><subfield code="c">2014.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiv, 376 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 356-373) and index.</subfield></datafield><datafield tag="505" ind1="0" ind2="0"><subfield code="g">Machine generated contents note:</subfield><subfield code="g">1.</subfield><subfield code="t">A short introduction to kinetic equations --</subfield><subfield code="g">1.1.</subfield><subfield code="t">Boltzmann's legacy --</subfield><subfield code="g">1.2.</subfield><subfield code="t">Notation --</subfield><subfield code="g">1.3.</subfield><subfield code="t">Some linear kinetic models --</subfield><subfield code="g">1.4.</subfield><subfield code="t">Binary interaction models on the real line --</subfield><subfield code="g">1.5.</subfield><subfield code="t">Binary interaction models on the half-line --</subfield><subfield code="g">1.6.</subfield><subfield code="t">Some classical results --</subfield><subfield code="g">2.</subfield><subfield code="t">Mathematical tools --</subfield><subfield code="g">2.1.</subfield><subfield code="t">How to be certain of the predictions of a model? --</subfield><subfield code="g">2.2.</subfield><subfield code="t">Some mathematical tools --</subfield><subfield code="g">2.3.</subfield><subfield code="t">The drift equation and Dirac delta functions --</subfield><subfield code="g">2.4.</subfield><subfield code="t">Dissipative models and the drift equation --</subfield><subfield code="g">2.5.</subfield><subfield code="t">Growth processes --</subfield><subfield code="g">3.</subfield><subfield code="t">Monte Carlo strategies --</subfield><subfield code="g">3.1.</subfield><subfield code="t">Why Monte Carlo methods? --</subfield><subfield code="g">3.2.</subfield><subfield code="t">Generating random variables --</subfield><subfield code="g">3.3.</subfield><subfield code="t">Monte Carlo techniques --</subfield><subfield code="g">3.4.</subfield><subfield code="t">Applications to evolutionary PDEs --</subfield><subfield code="g">4.</subfield><subfield code="t">Monte Carlo methods for kinetic equations --</subfield><subfield code="g">4.1.</subfield><subfield code="t">The general framework.</subfield></datafield><datafield tag="505" ind1="0" ind2="0"><subfield code="g">4.2.</subfield><subfield code="t">Relaxation problems --</subfield><subfield code="g">4.3.</subfield><subfield code="t">Binary interaction models --</subfield><subfield code="g">4.4.</subfield><subfield code="t">Asymptotic preserving Monte Carlo --</subfield><subfield code="g">4.5.</subfield><subfield code="t">Kinetic approximation of diffusion equations --</subfield><subfield code="g">4.6.</subfield><subfield code="t">Remarks on multi-dimensional problems --</subfield><subfield code="g">5.</subfield><subfield code="t">Models for wealth distribution --</subfield><subfield code="g">5.1.</subfield><subfield code="t">Wealth, trades and kinetic equations --</subfield><subfield code="g">5.2.</subfield><subfield code="t">Economic and kinetic dictionaries --</subfield><subfield code="g">5.3.</subfield><subfield code="t">Kinetic market models for conservative economies --</subfield><subfield code="g">5.4.</subfield><subfield code="t">Non-conservative kinetic market models --</subfield><subfield code="g">5.5.</subfield><subfield code="t">Exact solutions --</subfield><subfield code="g">5.6.</subfield><subfield code="t">Modelling heterogeneous traders --</subfield><subfield code="g">5.7.</subfield><subfield code="t">Individual preferences --</subfield><subfield code="g">5.8.</subfield><subfield code="t">Taxation and wealth redistribution --</subfield><subfield code="g">6.</subfield><subfield code="t">Opinion modelling and consensus formation --</subfield><subfield code="g">6.1.</subfield><subfield code="t">Opinion formation --</subfield><subfield code="g">6.2.</subfield><subfield code="t">Kinetic models of opinion formation --</subfield><subfield code="g">6.3.</subfield><subfield code="t">Other Fokker-Planck models of opinion formation --</subfield><subfield code="g">6.4.</subfield><subfield code="t">Choice formation and influence of external factors --</subfield><subfield code="g">6.5.</subfield><subfield code="t">Opinion formation in the presence of leaders.</subfield></datafield><datafield tag="505" ind1="0" ind2="0"><subfield code="g">7.</subfield><subfield code="t">A further insight into economics and social sciences --</subfield><subfield code="g">7.1.</subfield><subfield code="t">Towards more realistic models --</subfield><subfield code="g">7.2.</subfield><subfield code="t">A kinetic model for trading goods --</subfield><subfield code="g">7.3.</subfield><subfield code="t">Modelling speculative financial markets --</subfield><subfield code="g">7.4.</subfield><subfield code="t">A model for different groups of traders --</subfield><subfield code="g">7.5.</subfield><subfield code="t">Inhomogeneous models for the evolution of wealth --</subfield><subfield code="g">8.</subfield><subfield code="t">Modelling in life sciences --</subfield><subfield code="g">8.1.</subfield><subfield code="t">The Luria-Delbrück distribution --</subfield><subfield code="g">8.2.</subfield><subfield code="t">The quasi-invariant limit of the growth of mutant cells --</subfield><subfield code="g">8.3.</subfield><subfield code="t">Self-organized systems and swarming models --</subfield><subfield code="g">8.4.</subfield><subfield code="t">Systems interacting with few individuals --</subfield><subfield code="g">8.5.</subfield><subfield code="t">Final remarks --</subfield><subfield code="g">A.1.</subfield><subfield code="t">Definitions --</subfield><subfield code="g">A.2.</subfield><subfield code="t">Properties of the Fourier transform --</subfield><subfield code="g">B.1.</subfield><subfield code="t">Uniform distribution --</subfield><subfield code="g">B.2.</subfield><subfield code="t">Beta distribution --</subfield><subfield code="g">B.3.</subfield><subfield code="t">Normal distribution --</subfield><subfield code="g">B.4.</subfield><subfield code="t">Exponential distribution --</subfield><subfield code="g">B.5.</subfield><subfield code="t">Gamma distribution --</subfield><subfield code="g">B.6.</subfield><subfield code="t">Bernoulli distribution --</subfield><subfield code="g">B.7.</subfield><subfield code="t">Poisson distribution.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The description of emerging collective phenomena and self-organization in systems composed of large numbers of individuals has gained increasing interest from various research communities in biology, ecology, robotics and control theory, as well as sociology and economics. Applied mathematics is concerned with the construction, analysis and interpretation of mathematical models that can shed light on significant problems of the natural sciences as well as our daily lives. To this set of problems belongs the description of the collective behaviours of complex systems composed by a large enough n.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Monte Carlo method.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85087032</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Equations of motion.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85044524</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Multiagent systems</subfield><subfield code="x">Mathematical models.</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Monte Carlo Method</subfield><subfield code="0">https://id.nlm.nih.gov/mesh/D009010</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Méthode de Monte-Carlo.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Équations du mouvement.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Systèmes multiagents (Intelligence artificielle)</subfield><subfield code="x">Modèles mathématiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Numerical Analysis.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Equations of motion</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Monte Carlo method</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Toscani, Giuseppe,</subfield><subfield code="e">author.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n88278368</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Pareschi, Lorenzo.</subfield><subfield code="t">Interacting multiagent systems.</subfield><subfield code="b">First edition.</subfield><subfield code="d">Oxford ; New York : Oxford University Press, 2014</subfield><subfield code="z">9780199655465</subfield><subfield code="w">(DLC) 2013937550</subfield><subfield code="w">(OCoLC)866836546</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=683933</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH25954909</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL7037154</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10826237</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">683933</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">18045612</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">11563585</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Internet Archive</subfield><subfield code="b">INAR</subfield><subfield code="n">interactingmulti0000pare</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn868597755 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:25:44Z |
institution | BVB |
isbn | 9780191627989 0191627984 0191628875 9780191628870 |
language | English |
oclc_num | 868597755 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xiv, 376 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | Oxford University Press, |
record_format | marc |
spelling | Pareschi, Lorenzo, author. http://id.loc.gov/authorities/names/n2003013941 Interacting multiagent systems : kinetic equations and Monte Carlo methods / Lorenzo Pareschi, Giuseppe Toscani. First edition. Oxford : Oxford University Press, 2014. ©2014 1 online resource (xiv, 376 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references (pages 356-373) and index. Machine generated contents note: 1. A short introduction to kinetic equations -- 1.1. Boltzmann's legacy -- 1.2. Notation -- 1.3. Some linear kinetic models -- 1.4. Binary interaction models on the real line -- 1.5. Binary interaction models on the half-line -- 1.6. Some classical results -- 2. Mathematical tools -- 2.1. How to be certain of the predictions of a model? -- 2.2. Some mathematical tools -- 2.3. The drift equation and Dirac delta functions -- 2.4. Dissipative models and the drift equation -- 2.5. Growth processes -- 3. Monte Carlo strategies -- 3.1. Why Monte Carlo methods? -- 3.2. Generating random variables -- 3.3. Monte Carlo techniques -- 3.4. Applications to evolutionary PDEs -- 4. Monte Carlo methods for kinetic equations -- 4.1. The general framework. 4.2. Relaxation problems -- 4.3. Binary interaction models -- 4.4. Asymptotic preserving Monte Carlo -- 4.5. Kinetic approximation of diffusion equations -- 4.6. Remarks on multi-dimensional problems -- 5. Models for wealth distribution -- 5.1. Wealth, trades and kinetic equations -- 5.2. Economic and kinetic dictionaries -- 5.3. Kinetic market models for conservative economies -- 5.4. Non-conservative kinetic market models -- 5.5. Exact solutions -- 5.6. Modelling heterogeneous traders -- 5.7. Individual preferences -- 5.8. Taxation and wealth redistribution -- 6. Opinion modelling and consensus formation -- 6.1. Opinion formation -- 6.2. Kinetic models of opinion formation -- 6.3. Other Fokker-Planck models of opinion formation -- 6.4. Choice formation and influence of external factors -- 6.5. Opinion formation in the presence of leaders. 7. A further insight into economics and social sciences -- 7.1. Towards more realistic models -- 7.2. A kinetic model for trading goods -- 7.3. Modelling speculative financial markets -- 7.4. A model for different groups of traders -- 7.5. Inhomogeneous models for the evolution of wealth -- 8. Modelling in life sciences -- 8.1. The Luria-Delbrück distribution -- 8.2. The quasi-invariant limit of the growth of mutant cells -- 8.3. Self-organized systems and swarming models -- 8.4. Systems interacting with few individuals -- 8.5. Final remarks -- A.1. Definitions -- A.2. Properties of the Fourier transform -- B.1. Uniform distribution -- B.2. Beta distribution -- B.3. Normal distribution -- B.4. Exponential distribution -- B.5. Gamma distribution -- B.6. Bernoulli distribution -- B.7. Poisson distribution. Print version record. The description of emerging collective phenomena and self-organization in systems composed of large numbers of individuals has gained increasing interest from various research communities in biology, ecology, robotics and control theory, as well as sociology and economics. Applied mathematics is concerned with the construction, analysis and interpretation of mathematical models that can shed light on significant problems of the natural sciences as well as our daily lives. To this set of problems belongs the description of the collective behaviours of complex systems composed by a large enough n. English. Monte Carlo method. http://id.loc.gov/authorities/subjects/sh85087032 Equations of motion. http://id.loc.gov/authorities/subjects/sh85044524 Multiagent systems Mathematical models. Monte Carlo Method https://id.nlm.nih.gov/mesh/D009010 Méthode de Monte-Carlo. Équations du mouvement. Systèmes multiagents (Intelligence artificielle) Modèles mathématiques. MATHEMATICS Numerical Analysis. bisacsh Equations of motion fast Monte Carlo method fast Toscani, Giuseppe, author. http://id.loc.gov/authorities/names/n88278368 Print version: Pareschi, Lorenzo. Interacting multiagent systems. First edition. Oxford ; New York : Oxford University Press, 2014 9780199655465 (DLC) 2013937550 (OCoLC)866836546 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=683933 Volltext |
spellingShingle | Pareschi, Lorenzo Toscani, Giuseppe Interacting multiagent systems : kinetic equations and Monte Carlo methods / A short introduction to kinetic equations -- Boltzmann's legacy -- Notation -- Some linear kinetic models -- Binary interaction models on the real line -- Binary interaction models on the half-line -- Some classical results -- Mathematical tools -- How to be certain of the predictions of a model? -- Some mathematical tools -- The drift equation and Dirac delta functions -- Dissipative models and the drift equation -- Growth processes -- Monte Carlo strategies -- Why Monte Carlo methods? -- Generating random variables -- Monte Carlo techniques -- Applications to evolutionary PDEs -- Monte Carlo methods for kinetic equations -- The general framework. Relaxation problems -- Binary interaction models -- Asymptotic preserving Monte Carlo -- Kinetic approximation of diffusion equations -- Remarks on multi-dimensional problems -- Models for wealth distribution -- Wealth, trades and kinetic equations -- Economic and kinetic dictionaries -- Kinetic market models for conservative economies -- Non-conservative kinetic market models -- Exact solutions -- Modelling heterogeneous traders -- Individual preferences -- Taxation and wealth redistribution -- Opinion modelling and consensus formation -- Opinion formation -- Kinetic models of opinion formation -- Other Fokker-Planck models of opinion formation -- Choice formation and influence of external factors -- Opinion formation in the presence of leaders. A further insight into economics and social sciences -- Towards more realistic models -- A kinetic model for trading goods -- Modelling speculative financial markets -- A model for different groups of traders -- Inhomogeneous models for the evolution of wealth -- Modelling in life sciences -- The Luria-Delbrück distribution -- The quasi-invariant limit of the growth of mutant cells -- Self-organized systems and swarming models -- Systems interacting with few individuals -- Final remarks -- Definitions -- Properties of the Fourier transform -- Uniform distribution -- Beta distribution -- Normal distribution -- Exponential distribution -- Gamma distribution -- Bernoulli distribution -- Poisson distribution. Monte Carlo method. http://id.loc.gov/authorities/subjects/sh85087032 Equations of motion. http://id.loc.gov/authorities/subjects/sh85044524 Multiagent systems Mathematical models. Monte Carlo Method https://id.nlm.nih.gov/mesh/D009010 Méthode de Monte-Carlo. Équations du mouvement. Systèmes multiagents (Intelligence artificielle) Modèles mathématiques. MATHEMATICS Numerical Analysis. bisacsh Equations of motion fast Monte Carlo method fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85087032 http://id.loc.gov/authorities/subjects/sh85044524 https://id.nlm.nih.gov/mesh/D009010 |
title | Interacting multiagent systems : kinetic equations and Monte Carlo methods / |
title_alt | A short introduction to kinetic equations -- Boltzmann's legacy -- Notation -- Some linear kinetic models -- Binary interaction models on the real line -- Binary interaction models on the half-line -- Some classical results -- Mathematical tools -- How to be certain of the predictions of a model? -- Some mathematical tools -- The drift equation and Dirac delta functions -- Dissipative models and the drift equation -- Growth processes -- Monte Carlo strategies -- Why Monte Carlo methods? -- Generating random variables -- Monte Carlo techniques -- Applications to evolutionary PDEs -- Monte Carlo methods for kinetic equations -- The general framework. Relaxation problems -- Binary interaction models -- Asymptotic preserving Monte Carlo -- Kinetic approximation of diffusion equations -- Remarks on multi-dimensional problems -- Models for wealth distribution -- Wealth, trades and kinetic equations -- Economic and kinetic dictionaries -- Kinetic market models for conservative economies -- Non-conservative kinetic market models -- Exact solutions -- Modelling heterogeneous traders -- Individual preferences -- Taxation and wealth redistribution -- Opinion modelling and consensus formation -- Opinion formation -- Kinetic models of opinion formation -- Other Fokker-Planck models of opinion formation -- Choice formation and influence of external factors -- Opinion formation in the presence of leaders. A further insight into economics and social sciences -- Towards more realistic models -- A kinetic model for trading goods -- Modelling speculative financial markets -- A model for different groups of traders -- Inhomogeneous models for the evolution of wealth -- Modelling in life sciences -- The Luria-Delbrück distribution -- The quasi-invariant limit of the growth of mutant cells -- Self-organized systems and swarming models -- Systems interacting with few individuals -- Final remarks -- Definitions -- Properties of the Fourier transform -- Uniform distribution -- Beta distribution -- Normal distribution -- Exponential distribution -- Gamma distribution -- Bernoulli distribution -- Poisson distribution. |
title_auth | Interacting multiagent systems : kinetic equations and Monte Carlo methods / |
title_exact_search | Interacting multiagent systems : kinetic equations and Monte Carlo methods / |
title_full | Interacting multiagent systems : kinetic equations and Monte Carlo methods / Lorenzo Pareschi, Giuseppe Toscani. |
title_fullStr | Interacting multiagent systems : kinetic equations and Monte Carlo methods / Lorenzo Pareschi, Giuseppe Toscani. |
title_full_unstemmed | Interacting multiagent systems : kinetic equations and Monte Carlo methods / Lorenzo Pareschi, Giuseppe Toscani. |
title_short | Interacting multiagent systems : |
title_sort | interacting multiagent systems kinetic equations and monte carlo methods |
title_sub | kinetic equations and Monte Carlo methods / |
topic | Monte Carlo method. http://id.loc.gov/authorities/subjects/sh85087032 Equations of motion. http://id.loc.gov/authorities/subjects/sh85044524 Multiagent systems Mathematical models. Monte Carlo Method https://id.nlm.nih.gov/mesh/D009010 Méthode de Monte-Carlo. Équations du mouvement. Systèmes multiagents (Intelligence artificielle) Modèles mathématiques. MATHEMATICS Numerical Analysis. bisacsh Equations of motion fast Monte Carlo method fast |
topic_facet | Monte Carlo method. Equations of motion. Multiagent systems Mathematical models. Monte Carlo Method Méthode de Monte-Carlo. Équations du mouvement. Systèmes multiagents (Intelligence artificielle) Modèles mathématiques. MATHEMATICS Numerical Analysis. Equations of motion Monte Carlo method |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=683933 |
work_keys_str_mv | AT pareschilorenzo interactingmultiagentsystemskineticequationsandmontecarlomethods AT toscanigiuseppe interactingmultiagentsystemskineticequationsandmontecarlomethods |