The structure of compact groups :: a primer for students, a handbook for the expert /
Dealing with subject matter of compact groups that is frequently cited in fields like algebra, topology, functional analysis, and theoretical physics, this book - now in its third revised and augmented edition - has been conceived with the dual purpose of providing a text book for upper level gradua...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin ; Boston :
Walter de Gruyter,
[2013]
|
Ausgabe: | Third edition. |
Schriftenreihe: | De Gruyter studies in mathematics ;
25. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Dealing with subject matter of compact groups that is frequently cited in fields like algebra, topology, functional analysis, and theoretical physics, this book - now in its third revised and augmented edition - has been conceived with the dual purpose of providing a text book for upper level graduate courses or seminars, and of serving as a source book for research specialists who need to apply the structure and representation theory of compact groups. After a gentle introduction to compact groups and their representation theory, the book presents self-contained courses on linear Lie groups, |
Beschreibung: | 1 online resource (946 pages) : illustrations |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9783110296792 3110296799 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn865846715 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 130523t20132013gw a ob 001 0 eng d | ||
040 | |a E7B |b eng |e rda |e pn |c E7B |d YDXCP |d N$T |d OCLCF |d AU@ |d OCLCQ |d UIU |d AGLDB |d COCUF |d LOA |d MERUC |d K6U |d ICG |d PIFAG |d FVL |d YDX |d OCLCQ |d U3W |d STF |d WRM |d OCLCQ |d VTS |d INT |d OCLCQ |d WYU |d TKN |d OCLCQ |d M8D |d OCLCQ |d HS0 |d UKCRE |d AJS |d OCLCO |d SFB |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ | ||
019 | |a 868015803 |a 1153477986 | ||
020 | |a 9783110296792 |q (electronic bk.) | ||
020 | |a 3110296799 |q (electronic bk.) | ||
020 | |z 9783110296556 | ||
020 | |z 3110296551 |q (hdbk. ; |q acidfree paper) | ||
024 | 8 | |a 99956530490 | |
035 | |a (OCoLC)865846715 |z (OCoLC)868015803 |z (OCoLC)1153477986 | ||
050 | 4 | |a QA387 |b .H636 2013eb | |
072 | 7 | |a MAT |x 002040 |2 bisacsh | |
082 | 7 | |a 512/.55 |2 23 | |
084 | |a SK 340 |2 rvk |0 (DE-625)rvk/143232 | ||
049 | |a MAIN | ||
100 | 1 | |a Hofmann, Karl Heinrich. | |
245 | 1 | 4 | |a The structure of compact groups : |b a primer for students, a handbook for the expert / |c by Karl H. Hofmann, Sidney A. Morris. |
250 | |a Third edition. | ||
264 | 1 | |a Berlin ; |a Boston : |b Walter de Gruyter, |c [2013] | |
264 | 4 | |c ©2013 | |
300 | |a 1 online resource (946 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a De Gruyter studies in mathematics ; |v 25 | |
504 | |a Includes bibliographical references and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Chapter 1. Basic Topics and Examples; Definitions and Elementary Examples; Actions, Subgroups, Quotient Spaces; Products of Compact Groups; Applications to Abelian Groups; Projective Limits; Totally Disconnected Compact Groups; Some Duality Theory; Postscript; References for this Chapter-Additional Reading; Chapter 2. The Basic Representation Theory of Compact Groups; Some Basic Representation Theory for Compact Groups; The Haar Integral; Consequences of Haar Measure; The Main Theorem on Hilbert Modules for Compact Groups; Postscript; References for this Chapter-Additional Reading | |
505 | 8 | |a Part 2: The Structure Theorem of EfinCyclic Modules; Postscript; References for this Chapter-Additional Reading; Chapter 5. Linear Lie Groups; Preliminaries; The Exponential Function and the Logarithm; Differentiating the Exponential Function in a Banach Algebra; Local Groups for the Campbell-Hausdorff Multiplication; Subgroups of A-1 and Linear Lie Groups; Analytic Groups; The Intrinsic Exponential Function of a Linear Lie Group; The Adjoint Representation of a Linear Lie Group; Subalgebras, Ideals, Lie Subgroups, Normal Lie Subgroups; Normalizers, Centralizers, Centers | |
505 | 8 | |a The Commutator SubgroupForced Continuity of Morphisms between Lie Groups; Quotients of Linear Lie Groups; The Topological Splitting Theorem for Normal Vector Subgroups; Postscript; References for this Chapter-Additional Reading; Chapter 6. Compact Lie Groups; Compact Lie algebras; The Commutator Subgroup of a Compact Lie Group; The Structure Theorem for Compact Lie Groups; Maximal Tori; The Second Structure Theorem for Connected Compact Lie Groups; Compact Abelian Lie Groups and their Linear Actions; Action of a Maximal Torus on the Lie Algebra; The Weyl Group Revisited | |
505 | 8 | |a The Commutator Subgroup of Connected Compact Lie GroupsOn the Automorphism Group of a Compact Lie Group; Covering Groups of Disconnected Compact Lie Groups; Auerbach's Generation Theorem; The Topology of Connected Compact Lie Groups; Postscript; References for this Chapter-Additional Reading; Chapter 7. Duality of Abelian Topological Groups; The Compact Open Topology and Hom-Groups; Local Compactness and Duality of Abelian Topological Groups; Basic Functorial Aspects of Duality; The Annihilator Mechanism; Character Groups of Topological Vector Spaces; The Exponential Function | |
520 | |a Dealing with subject matter of compact groups that is frequently cited in fields like algebra, topology, functional analysis, and theoretical physics, this book - now in its third revised and augmented edition - has been conceived with the dual purpose of providing a text book for upper level graduate courses or seminars, and of serving as a source book for research specialists who need to apply the structure and representation theory of compact groups. After a gentle introduction to compact groups and their representation theory, the book presents self-contained courses on linear Lie groups, | ||
650 | 0 | |a Compact groups. |0 http://id.loc.gov/authorities/subjects/sh85029280 | |
650 | 0 | |a Lie groups. |0 http://id.loc.gov/authorities/subjects/sh85076786 | |
650 | 6 | |a Groupes compacts. | |
650 | 6 | |a Groupes de Lie. | |
650 | 7 | |a MATHEMATICS |x Algebra |x Intermediate. |2 bisacsh | |
650 | 7 | |a Compact groups |2 fast | |
650 | 7 | |a Lie groups |2 fast | |
653 | |a Australian | ||
700 | 1 | |a Morris, Sidney A., |d 1947- |1 https://id.oclc.org/worldcat/entity/E39PCjrHHXg8Wy3j3Kw8vY7Dtq |0 http://id.loc.gov/authorities/names/n98061088 | |
776 | 0 | 8 | |i Print version: |a Hofmann, Karl Heinrich. |t Structure of compact groups : a primer for students, a handbook for the expert. |d Berlin : Walter de Gruyter, ©2013 |h xxi, 560 pages : illustrations |k De Gruyter studies in mathematics ; 25 |z 9783110296556 |w (DLC) 2013020147 |
830 | 0 | |a De Gruyter studies in mathematics ; |v 25. |0 http://id.loc.gov/authorities/names/n83742913 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=641781 |3 Volltext |
936 | |a BATCHLOAD | ||
938 | |a ebrary |b EBRY |n ebr10786129 | ||
938 | |a EBSCOhost |b EBSC |n 641781 | ||
938 | |a YBP Library Services |b YANK |n 10817907 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn865846715 |
---|---|
_version_ | 1816882254267285504 |
adam_text | |
any_adam_object | |
author | Hofmann, Karl Heinrich |
author2 | Morris, Sidney A., 1947- |
author2_role | |
author2_variant | s a m sa sam |
author_GND | http://id.loc.gov/authorities/names/n98061088 |
author_facet | Hofmann, Karl Heinrich Morris, Sidney A., 1947- |
author_role | |
author_sort | Hofmann, Karl Heinrich |
author_variant | k h h kh khh |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA387 |
callnumber-raw | QA387 .H636 2013eb |
callnumber-search | QA387 .H636 2013eb |
callnumber-sort | QA 3387 H636 42013EB |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 340 |
collection | ZDB-4-EBA |
contents | Chapter 1. Basic Topics and Examples; Definitions and Elementary Examples; Actions, Subgroups, Quotient Spaces; Products of Compact Groups; Applications to Abelian Groups; Projective Limits; Totally Disconnected Compact Groups; Some Duality Theory; Postscript; References for this Chapter-Additional Reading; Chapter 2. The Basic Representation Theory of Compact Groups; Some Basic Representation Theory for Compact Groups; The Haar Integral; Consequences of Haar Measure; The Main Theorem on Hilbert Modules for Compact Groups; Postscript; References for this Chapter-Additional Reading Part 2: The Structure Theorem of EfinCyclic Modules; Postscript; References for this Chapter-Additional Reading; Chapter 5. Linear Lie Groups; Preliminaries; The Exponential Function and the Logarithm; Differentiating the Exponential Function in a Banach Algebra; Local Groups for the Campbell-Hausdorff Multiplication; Subgroups of A-1 and Linear Lie Groups; Analytic Groups; The Intrinsic Exponential Function of a Linear Lie Group; The Adjoint Representation of a Linear Lie Group; Subalgebras, Ideals, Lie Subgroups, Normal Lie Subgroups; Normalizers, Centralizers, Centers The Commutator SubgroupForced Continuity of Morphisms between Lie Groups; Quotients of Linear Lie Groups; The Topological Splitting Theorem for Normal Vector Subgroups; Postscript; References for this Chapter-Additional Reading; Chapter 6. Compact Lie Groups; Compact Lie algebras; The Commutator Subgroup of a Compact Lie Group; The Structure Theorem for Compact Lie Groups; Maximal Tori; The Second Structure Theorem for Connected Compact Lie Groups; Compact Abelian Lie Groups and their Linear Actions; Action of a Maximal Torus on the Lie Algebra; The Weyl Group Revisited The Commutator Subgroup of Connected Compact Lie GroupsOn the Automorphism Group of a Compact Lie Group; Covering Groups of Disconnected Compact Lie Groups; Auerbach's Generation Theorem; The Topology of Connected Compact Lie Groups; Postscript; References for this Chapter-Additional Reading; Chapter 7. Duality of Abelian Topological Groups; The Compact Open Topology and Hom-Groups; Local Compactness and Duality of Abelian Topological Groups; Basic Functorial Aspects of Duality; The Annihilator Mechanism; Character Groups of Topological Vector Spaces; The Exponential Function |
ctrlnum | (OCoLC)865846715 |
dewey-full | 512/.55 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.55 |
dewey-search | 512/.55 |
dewey-sort | 3512 255 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | Third edition. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05807cam a2200661 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn865846715</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cn|||||||||</controlfield><controlfield tag="008">130523t20132013gw a ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">E7B</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">E7B</subfield><subfield code="d">YDXCP</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCF</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UIU</subfield><subfield code="d">AGLDB</subfield><subfield code="d">COCUF</subfield><subfield code="d">LOA</subfield><subfield code="d">MERUC</subfield><subfield code="d">K6U</subfield><subfield code="d">ICG</subfield><subfield code="d">PIFAG</subfield><subfield code="d">FVL</subfield><subfield code="d">YDX</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">INT</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">TKN</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">HS0</subfield><subfield code="d">UKCRE</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">868015803</subfield><subfield code="a">1153477986</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110296792</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110296799</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783110296556</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">3110296551</subfield><subfield code="q">(hdbk. ;</subfield><subfield code="q">acidfree paper)</subfield></datafield><datafield tag="024" ind1="8" ind2=" "><subfield code="a">99956530490</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)865846715</subfield><subfield code="z">(OCoLC)868015803</subfield><subfield code="z">(OCoLC)1153477986</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA387</subfield><subfield code="b">.H636 2013eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">002040</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512/.55</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="2">rvk</subfield><subfield code="0">(DE-625)rvk/143232</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hofmann, Karl Heinrich.</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The structure of compact groups :</subfield><subfield code="b">a primer for students, a handbook for the expert /</subfield><subfield code="c">by Karl H. Hofmann, Sidney A. Morris.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Third edition.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ;</subfield><subfield code="a">Boston :</subfield><subfield code="b">Walter de Gruyter,</subfield><subfield code="c">[2013]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (946 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">De Gruyter studies in mathematics ;</subfield><subfield code="v">25</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Chapter 1. Basic Topics and Examples; Definitions and Elementary Examples; Actions, Subgroups, Quotient Spaces; Products of Compact Groups; Applications to Abelian Groups; Projective Limits; Totally Disconnected Compact Groups; Some Duality Theory; Postscript; References for this Chapter-Additional Reading; Chapter 2. The Basic Representation Theory of Compact Groups; Some Basic Representation Theory for Compact Groups; The Haar Integral; Consequences of Haar Measure; The Main Theorem on Hilbert Modules for Compact Groups; Postscript; References for this Chapter-Additional Reading</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Part 2: The Structure Theorem of EfinCyclic Modules; Postscript; References for this Chapter-Additional Reading; Chapter 5. Linear Lie Groups; Preliminaries; The Exponential Function and the Logarithm; Differentiating the Exponential Function in a Banach Algebra; Local Groups for the Campbell-Hausdorff Multiplication; Subgroups of A-1 and Linear Lie Groups; Analytic Groups; The Intrinsic Exponential Function of a Linear Lie Group; The Adjoint Representation of a Linear Lie Group; Subalgebras, Ideals, Lie Subgroups, Normal Lie Subgroups; Normalizers, Centralizers, Centers</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">The Commutator SubgroupForced Continuity of Morphisms between Lie Groups; Quotients of Linear Lie Groups; The Topological Splitting Theorem for Normal Vector Subgroups; Postscript; References for this Chapter-Additional Reading; Chapter 6. Compact Lie Groups; Compact Lie algebras; The Commutator Subgroup of a Compact Lie Group; The Structure Theorem for Compact Lie Groups; Maximal Tori; The Second Structure Theorem for Connected Compact Lie Groups; Compact Abelian Lie Groups and their Linear Actions; Action of a Maximal Torus on the Lie Algebra; The Weyl Group Revisited</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">The Commutator Subgroup of Connected Compact Lie GroupsOn the Automorphism Group of a Compact Lie Group; Covering Groups of Disconnected Compact Lie Groups; Auerbach's Generation Theorem; The Topology of Connected Compact Lie Groups; Postscript; References for this Chapter-Additional Reading; Chapter 7. Duality of Abelian Topological Groups; The Compact Open Topology and Hom-Groups; Local Compactness and Duality of Abelian Topological Groups; Basic Functorial Aspects of Duality; The Annihilator Mechanism; Character Groups of Topological Vector Spaces; The Exponential Function</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Dealing with subject matter of compact groups that is frequently cited in fields like algebra, topology, functional analysis, and theoretical physics, this book - now in its third revised and augmented edition - has been conceived with the dual purpose of providing a text book for upper level graduate courses or seminars, and of serving as a source book for research specialists who need to apply the structure and representation theory of compact groups. After a gentle introduction to compact groups and their representation theory, the book presents self-contained courses on linear Lie groups,</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Compact groups.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85029280</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Lie groups.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85076786</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Groupes compacts.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Groupes de Lie.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Algebra</subfield><subfield code="x">Intermediate.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Compact groups</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lie groups</subfield><subfield code="2">fast</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Australian</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Morris, Sidney A.,</subfield><subfield code="d">1947-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjrHHXg8Wy3j3Kw8vY7Dtq</subfield><subfield code="0">http://id.loc.gov/authorities/names/n98061088</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Hofmann, Karl Heinrich.</subfield><subfield code="t">Structure of compact groups : a primer for students, a handbook for the expert.</subfield><subfield code="d">Berlin : Walter de Gruyter, ©2013</subfield><subfield code="h">xxi, 560 pages : illustrations</subfield><subfield code="k">De Gruyter studies in mathematics ; 25</subfield><subfield code="z">9783110296556</subfield><subfield code="w">(DLC) 2013020147</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">De Gruyter studies in mathematics ;</subfield><subfield code="v">25.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n83742913</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=641781</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="936" ind1=" " ind2=" "><subfield code="a">BATCHLOAD</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10786129</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">641781</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10817907</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn865846715 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:25:41Z |
institution | BVB |
isbn | 9783110296792 3110296799 |
language | English |
oclc_num | 865846715 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (946 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Walter de Gruyter, |
record_format | marc |
series | De Gruyter studies in mathematics ; |
series2 | De Gruyter studies in mathematics ; |
spelling | Hofmann, Karl Heinrich. The structure of compact groups : a primer for students, a handbook for the expert / by Karl H. Hofmann, Sidney A. Morris. Third edition. Berlin ; Boston : Walter de Gruyter, [2013] ©2013 1 online resource (946 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier De Gruyter studies in mathematics ; 25 Includes bibliographical references and index. Print version record. Chapter 1. Basic Topics and Examples; Definitions and Elementary Examples; Actions, Subgroups, Quotient Spaces; Products of Compact Groups; Applications to Abelian Groups; Projective Limits; Totally Disconnected Compact Groups; Some Duality Theory; Postscript; References for this Chapter-Additional Reading; Chapter 2. The Basic Representation Theory of Compact Groups; Some Basic Representation Theory for Compact Groups; The Haar Integral; Consequences of Haar Measure; The Main Theorem on Hilbert Modules for Compact Groups; Postscript; References for this Chapter-Additional Reading Part 2: The Structure Theorem of EfinCyclic Modules; Postscript; References for this Chapter-Additional Reading; Chapter 5. Linear Lie Groups; Preliminaries; The Exponential Function and the Logarithm; Differentiating the Exponential Function in a Banach Algebra; Local Groups for the Campbell-Hausdorff Multiplication; Subgroups of A-1 and Linear Lie Groups; Analytic Groups; The Intrinsic Exponential Function of a Linear Lie Group; The Adjoint Representation of a Linear Lie Group; Subalgebras, Ideals, Lie Subgroups, Normal Lie Subgroups; Normalizers, Centralizers, Centers The Commutator SubgroupForced Continuity of Morphisms between Lie Groups; Quotients of Linear Lie Groups; The Topological Splitting Theorem for Normal Vector Subgroups; Postscript; References for this Chapter-Additional Reading; Chapter 6. Compact Lie Groups; Compact Lie algebras; The Commutator Subgroup of a Compact Lie Group; The Structure Theorem for Compact Lie Groups; Maximal Tori; The Second Structure Theorem for Connected Compact Lie Groups; Compact Abelian Lie Groups and their Linear Actions; Action of a Maximal Torus on the Lie Algebra; The Weyl Group Revisited The Commutator Subgroup of Connected Compact Lie GroupsOn the Automorphism Group of a Compact Lie Group; Covering Groups of Disconnected Compact Lie Groups; Auerbach's Generation Theorem; The Topology of Connected Compact Lie Groups; Postscript; References for this Chapter-Additional Reading; Chapter 7. Duality of Abelian Topological Groups; The Compact Open Topology and Hom-Groups; Local Compactness and Duality of Abelian Topological Groups; Basic Functorial Aspects of Duality; The Annihilator Mechanism; Character Groups of Topological Vector Spaces; The Exponential Function Dealing with subject matter of compact groups that is frequently cited in fields like algebra, topology, functional analysis, and theoretical physics, this book - now in its third revised and augmented edition - has been conceived with the dual purpose of providing a text book for upper level graduate courses or seminars, and of serving as a source book for research specialists who need to apply the structure and representation theory of compact groups. After a gentle introduction to compact groups and their representation theory, the book presents self-contained courses on linear Lie groups, Compact groups. http://id.loc.gov/authorities/subjects/sh85029280 Lie groups. http://id.loc.gov/authorities/subjects/sh85076786 Groupes compacts. Groupes de Lie. MATHEMATICS Algebra Intermediate. bisacsh Compact groups fast Lie groups fast Australian Morris, Sidney A., 1947- https://id.oclc.org/worldcat/entity/E39PCjrHHXg8Wy3j3Kw8vY7Dtq http://id.loc.gov/authorities/names/n98061088 Print version: Hofmann, Karl Heinrich. Structure of compact groups : a primer for students, a handbook for the expert. Berlin : Walter de Gruyter, ©2013 xxi, 560 pages : illustrations De Gruyter studies in mathematics ; 25 9783110296556 (DLC) 2013020147 De Gruyter studies in mathematics ; 25. http://id.loc.gov/authorities/names/n83742913 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=641781 Volltext |
spellingShingle | Hofmann, Karl Heinrich The structure of compact groups : a primer for students, a handbook for the expert / De Gruyter studies in mathematics ; Chapter 1. Basic Topics and Examples; Definitions and Elementary Examples; Actions, Subgroups, Quotient Spaces; Products of Compact Groups; Applications to Abelian Groups; Projective Limits; Totally Disconnected Compact Groups; Some Duality Theory; Postscript; References for this Chapter-Additional Reading; Chapter 2. The Basic Representation Theory of Compact Groups; Some Basic Representation Theory for Compact Groups; The Haar Integral; Consequences of Haar Measure; The Main Theorem on Hilbert Modules for Compact Groups; Postscript; References for this Chapter-Additional Reading Part 2: The Structure Theorem of EfinCyclic Modules; Postscript; References for this Chapter-Additional Reading; Chapter 5. Linear Lie Groups; Preliminaries; The Exponential Function and the Logarithm; Differentiating the Exponential Function in a Banach Algebra; Local Groups for the Campbell-Hausdorff Multiplication; Subgroups of A-1 and Linear Lie Groups; Analytic Groups; The Intrinsic Exponential Function of a Linear Lie Group; The Adjoint Representation of a Linear Lie Group; Subalgebras, Ideals, Lie Subgroups, Normal Lie Subgroups; Normalizers, Centralizers, Centers The Commutator SubgroupForced Continuity of Morphisms between Lie Groups; Quotients of Linear Lie Groups; The Topological Splitting Theorem for Normal Vector Subgroups; Postscript; References for this Chapter-Additional Reading; Chapter 6. Compact Lie Groups; Compact Lie algebras; The Commutator Subgroup of a Compact Lie Group; The Structure Theorem for Compact Lie Groups; Maximal Tori; The Second Structure Theorem for Connected Compact Lie Groups; Compact Abelian Lie Groups and their Linear Actions; Action of a Maximal Torus on the Lie Algebra; The Weyl Group Revisited The Commutator Subgroup of Connected Compact Lie GroupsOn the Automorphism Group of a Compact Lie Group; Covering Groups of Disconnected Compact Lie Groups; Auerbach's Generation Theorem; The Topology of Connected Compact Lie Groups; Postscript; References for this Chapter-Additional Reading; Chapter 7. Duality of Abelian Topological Groups; The Compact Open Topology and Hom-Groups; Local Compactness and Duality of Abelian Topological Groups; Basic Functorial Aspects of Duality; The Annihilator Mechanism; Character Groups of Topological Vector Spaces; The Exponential Function Compact groups. http://id.loc.gov/authorities/subjects/sh85029280 Lie groups. http://id.loc.gov/authorities/subjects/sh85076786 Groupes compacts. Groupes de Lie. MATHEMATICS Algebra Intermediate. bisacsh Compact groups fast Lie groups fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85029280 http://id.loc.gov/authorities/subjects/sh85076786 |
title | The structure of compact groups : a primer for students, a handbook for the expert / |
title_auth | The structure of compact groups : a primer for students, a handbook for the expert / |
title_exact_search | The structure of compact groups : a primer for students, a handbook for the expert / |
title_full | The structure of compact groups : a primer for students, a handbook for the expert / by Karl H. Hofmann, Sidney A. Morris. |
title_fullStr | The structure of compact groups : a primer for students, a handbook for the expert / by Karl H. Hofmann, Sidney A. Morris. |
title_full_unstemmed | The structure of compact groups : a primer for students, a handbook for the expert / by Karl H. Hofmann, Sidney A. Morris. |
title_short | The structure of compact groups : |
title_sort | structure of compact groups a primer for students a handbook for the expert |
title_sub | a primer for students, a handbook for the expert / |
topic | Compact groups. http://id.loc.gov/authorities/subjects/sh85029280 Lie groups. http://id.loc.gov/authorities/subjects/sh85076786 Groupes compacts. Groupes de Lie. MATHEMATICS Algebra Intermediate. bisacsh Compact groups fast Lie groups fast |
topic_facet | Compact groups. Lie groups. Groupes compacts. Groupes de Lie. MATHEMATICS Algebra Intermediate. Compact groups Lie groups |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=641781 |
work_keys_str_mv | AT hofmannkarlheinrich thestructureofcompactgroupsaprimerforstudentsahandbookfortheexpert AT morrissidneya thestructureofcompactgroupsaprimerforstudentsahandbookfortheexpert AT hofmannkarlheinrich structureofcompactgroupsaprimerforstudentsahandbookfortheexpert AT morrissidneya structureofcompactgroupsaprimerforstudentsahandbookfortheexpert |