Scattering of acoustic and electromagnetic waves by small impedance bodies of arbitrary shapes :: applications to creating new engineered materials /
In this book, mathematicians, engineers, physicists, and materials scientists will learn how to create material with a desired refraction coefficient. For example, how to create material with negative refraction or with desired wave-focusing properties. The methods for creating these materials are b...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York [New York] (222 East 46th Street, New York, NY 10017) :
Momentum Press,
2013.
|
Schlagworte: | |
Online-Zugang: | DE-862 DE-863 |
Zusammenfassung: | In this book, mathematicians, engineers, physicists, and materials scientists will learn how to create material with a desired refraction coefficient. For example, how to create material with negative refraction or with desired wave-focusing properties. The methods for creating these materials are based on the many-body wave scattering theory developed by the author. The book offers new analytical formulas that allow one to calculate acoustic and electromagnetic waves, scattered by one and many small impedance bodies of an arbitrary shape under various boundary conditions. Equations for the effective (self-consistent) field in media consisting of many small impedance particles are derived. Numerical methods for solving many-body wave scattering problems are developed for small impedance scatterers. |
Beschreibung: | Title from PDF title page (viewed December 18, 2013). |
Beschreibung: | 1 online resource (1 PDF (xiii, 240 pages)) : illustrations |
Bibliographie: | Includes bibliographical references (pages 229-238) and index. |
ISBN: | 9781606506226 1606506226 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn865580197 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m eo d | ||
007 | cr cn||||m|||a | ||
008 | 131218s2013 nyua foab 001 0 eng d | ||
040 | |a NYMPP |b eng |e pn |c NYMPP |d N$T |d E7B |d UMI |d OCLCQ |d DEBBG |d DEBSZ |d OCLCF |d EBLCP |d IDEBK |d MHW |d YDXCP |d OCLCQ |d AGLDB |d OCLCQ |d MERUC |d OCLCQ |d UPM |d MERER |d OCLCQ |d STF |d VTS |d LOA |d CUY |d ZCU |d OCLCQ |d ICG |d K6U |d VT2 |d U3W |d CNCEN |d OCLCQ |d WYU |d G3B |d LVT |d S8J |d S9I |d TKN |d D6H |d DKC |d AU@ |d OCLCQ |d M8D |d OCLCQ |d AJS |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d UEJ |d OCLCO |d OCLCQ | ||
019 | |a 861559782 |a 868236415 | ||
020 | |a 9781606506226 |q (electronic bk.) | ||
020 | |a 1606506226 |q (electronic bk.) | ||
020 | |z 9781606506219 |q (print) | ||
020 | |z 1606506218 |q (print) | ||
024 | 7 | |a 10.5643/9781606506226 |2 doi | |
035 | |a (OCoLC)865580197 |z (OCoLC)861559782 |z (OCoLC)868236415 | ||
037 | |a CL0500000358 |b Safari Books Online | ||
050 | 4 | |a QC243.3.S3 |b R257 2013 | |
072 | 7 | |a SCI |x 001000 |2 bisacsh | |
082 | 7 | |a 534.2 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Ramm, A. G. |q (Alexander G.), |e author. |1 https://id.oclc.org/worldcat/entity/E39PBJht6c7MRHvFtQDQJ4MVmd |0 http://id.loc.gov/authorities/names/n80129782 | |
245 | 1 | 0 | |a Scattering of acoustic and electromagnetic waves by small impedance bodies of arbitrary shapes : |b applications to creating new engineered materials / |c Alexander G. Ramm. |
264 | 1 | |a New York [New York] (222 East 46th Street, New York, NY 10017) : |b Momentum Press, |c 2013. | |
300 | |a 1 online resource (1 PDF (xiii, 240 pages)) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
500 | |a Title from PDF title page (viewed December 18, 2013). | ||
504 | |a Includes bibliographical references (pages 229-238) and index. | ||
505 | 0 | |a Preface -- Introduction. | |
505 | 8 | |a 1. Scalar wave scattering by one small body of an arbitrary shape -- 1.1 Impedance bodies -- 1.2 Acoustically soft bodies (the Dirichlet boundary condition) -- 1.3 Acoustically hard bodies (the Neumann boundary condition) -- 1.4 The interface (transmission) boundary condition -- 1.5 Summary of the results. | |
505 | 8 | |a 2. Scalar wave scattering by many small bodies of an arbitrary shape -- 2.1 Impedance bodies -- 2.2 The Dirichlet boundary condition -- 2.3 The Neumann boundary condition -- 2.4 The transmission boundary condition -- 2.5 Wave scattering in an inhomogeneous medium -- 2.6 Summary of the results. | |
505 | 8 | |a 3. Creating materials with a desired refraction coefficient -- 3.1 Scalar wave scattering. Formula for the refraction coefficient -- 3.2 A recipe for creating materials with a desired refraction coefficient -- 3.3 A discussion of the practical implementation of the recipe -- 3.4 Summary of the results. | |
505 | 8 | |a 4. Wave-focusing materials -- 4.1 What is a wave-focusing material? -- 4.2 Creating wave-focusing materials -- 4.3 Computational aspects of the problem -- 4.4 Open problems -- 4.5 Summary of the results. | |
505 | 8 | |a 5. Electromagnetic wave scattering by a single small body of an arbitrary shape -- 5.1 The impedance boundary condition -- 5.2 Perfectly conducting bodies -- 5.3 Formulas for the scattered field in the case of EM wave scattering by one impedance small body of an arbitrary shape -- 5.4 Summary of the results. | |
505 | 8 | |a 6. Many-body scattering problem in the case of small scatterers -- 6.1 Reduction of the problem to linear algebraic system -- 6.2 Derivation of the integral equation for the effective field -- 6.3 Summary of the results. | |
505 | 8 | |a 7. Creating materials with a desired refraction coefficient -- 7.1 A formula for the refraction coefficient -- 7.2 Formula for the magnetic permeability -- 7.3 Summary of the results. | |
505 | 8 | |a 8. Electromagnetic wave scattering by many nanowires -- 8.1 Statement of the problem -- 8.2 Asymptotic solution of the problem -- 8.3 Many-body scattering problem equation for the effective field -- 8.4 Physical properties of the limiting medium -- 8.5 Summary of the results. | |
505 | 8 | |a 9. Heat transfer in a medium in which many small bodies are embedded -- 9.1 Introduction -- 9.2 Derivation of the equation for the limiting temperature -- 9.3 Various results -- 9.4 Summary of the results. | |
505 | 8 | |a 10. Quantum-mechanical wave scattering by many potentials with small support -- 10.1 Problem formulation -- 10.2 Proofs -- 10.3 Summary of the results. | |
505 | 8 | |a 11. Some results from the potential theory -- 11.1 Potentials of the simple and double layers -- 11.2 Replacement of the surface potentials -- 11.3 Asymptotic behavior of the solution to the Helmholtz equation under the impedance boundary condition -- 11.4 Some properties of the electrical capacitance -- 11.5 Summary of the results. | |
505 | 8 | |a 12. Collocation method -- 12.1 Convergence of the collocation method -- 12.2 Collocation method and homogenization -- 12.3 Summary of the results. | |
505 | 8 | |a 13. Some inverse problems related to small scatterers -- 13.1 Finding the position and size of a small body from the scattering data -- 13.2 Finding small subsurface inhomogeneities -- 13.3 Inverse radio measurements problem -- 13.4 Summary of the results. | |
505 | 8 | |a Appendix -- A1. Banach and Hilbert spaces -- A2. A result from perturbation theory -- A3. The Fredholm alternative -- Bibliographical notes -- Bibliography -- Index. | |
520 | 3 | |a In this book, mathematicians, engineers, physicists, and materials scientists will learn how to create material with a desired refraction coefficient. For example, how to create material with negative refraction or with desired wave-focusing properties. The methods for creating these materials are based on the many-body wave scattering theory developed by the author. The book offers new analytical formulas that allow one to calculate acoustic and electromagnetic waves, scattered by one and many small impedance bodies of an arbitrary shape under various boundary conditions. Equations for the effective (self-consistent) field in media consisting of many small impedance particles are derived. Numerical methods for solving many-body wave scattering problems are developed for small impedance scatterers. | |
650 | 0 | |a Sound-waves |x Scattering. |0 http://id.loc.gov/authorities/subjects/sh85125408 | |
650 | 0 | |a Electromagnetic waves |x Scattering. |0 http://id.loc.gov/authorities/subjects/sh85042182 | |
650 | 0 | |a Scattering (Physics) |0 http://id.loc.gov/authorities/subjects/sh85118047 | |
650 | 0 | |a Acoustic impedance. |0 http://id.loc.gov/authorities/subjects/sh85000579 | |
650 | 6 | |a Ondes sonores |x Diffusion. | |
650 | 6 | |a Ondes électromagnétiques |x Diffusion. | |
650 | 6 | |a Diffusion (Physique nucléaire) | |
650 | 6 | |a Impédance acoustique. | |
650 | 7 | |a SCIENCE |x Acoustics & Sound. |2 bisacsh | |
650 | 7 | |a Acoustic impedance |2 fast | |
650 | 7 | |a Electromagnetic waves |x Scattering |2 fast | |
650 | 7 | |a Scattering (Physics) |2 fast | |
650 | 7 | |a Sound-waves |x Scattering |2 fast | |
653 | |a Acoustic waves | ||
653 | |a electromagnetic eaves | ||
653 | |a eave scattering | ||
653 | |a small impedance bodies of an arbitrary shape | ||
653 | |a wave scattering by small impedance bodies of arbitrary shapes | ||
653 | |a creating materials with a desired refraction coefficient | ||
653 | |a meta-materials | ||
653 | |a nanowires | ||
653 | |a radio measurements | ||
653 | |a inverse problems | ||
776 | 0 | 8 | |i Print version: |z 1606506218 |z 9781606506219 |
966 | 4 | 0 | |l DE-862 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=655414 |3 Volltext |
966 | 4 | 0 | |l DE-863 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=655414 |3 Volltext |
936 | |a BATCHLOAD | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL1495935 | ||
938 | |a ebrary |b EBRY |n ebr10810845 | ||
938 | |a EBSCOhost |b EBSC |n 655414 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis26534967 | ||
938 | |a Momentum Press |b NYMP |n 9781606506226 | ||
938 | |a YBP Library Services |b YANK |n 11311894 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-862 | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn865580197 |
---|---|
_version_ | 1826942029926498304 |
adam_text | |
any_adam_object | |
author | Ramm, A. G. (Alexander G.) |
author_GND | http://id.loc.gov/authorities/names/n80129782 |
author_facet | Ramm, A. G. (Alexander G.) |
author_role | aut |
author_sort | Ramm, A. G. |
author_variant | a g r ag agr |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QC243 |
callnumber-raw | QC243.3.S3 R257 2013 |
callnumber-search | QC243.3.S3 R257 2013 |
callnumber-sort | QC 3243.3 S3 R257 42013 |
callnumber-subject | QC - Physics |
collection | ZDB-4-EBA |
contents | Preface -- Introduction. 1. Scalar wave scattering by one small body of an arbitrary shape -- 1.1 Impedance bodies -- 1.2 Acoustically soft bodies (the Dirichlet boundary condition) -- 1.3 Acoustically hard bodies (the Neumann boundary condition) -- 1.4 The interface (transmission) boundary condition -- 1.5 Summary of the results. 2. Scalar wave scattering by many small bodies of an arbitrary shape -- 2.1 Impedance bodies -- 2.2 The Dirichlet boundary condition -- 2.3 The Neumann boundary condition -- 2.4 The transmission boundary condition -- 2.5 Wave scattering in an inhomogeneous medium -- 2.6 Summary of the results. 3. Creating materials with a desired refraction coefficient -- 3.1 Scalar wave scattering. Formula for the refraction coefficient -- 3.2 A recipe for creating materials with a desired refraction coefficient -- 3.3 A discussion of the practical implementation of the recipe -- 3.4 Summary of the results. 4. Wave-focusing materials -- 4.1 What is a wave-focusing material? -- 4.2 Creating wave-focusing materials -- 4.3 Computational aspects of the problem -- 4.4 Open problems -- 4.5 Summary of the results. 5. Electromagnetic wave scattering by a single small body of an arbitrary shape -- 5.1 The impedance boundary condition -- 5.2 Perfectly conducting bodies -- 5.3 Formulas for the scattered field in the case of EM wave scattering by one impedance small body of an arbitrary shape -- 5.4 Summary of the results. 6. Many-body scattering problem in the case of small scatterers -- 6.1 Reduction of the problem to linear algebraic system -- 6.2 Derivation of the integral equation for the effective field -- 6.3 Summary of the results. 7. Creating materials with a desired refraction coefficient -- 7.1 A formula for the refraction coefficient -- 7.2 Formula for the magnetic permeability -- 7.3 Summary of the results. 8. Electromagnetic wave scattering by many nanowires -- 8.1 Statement of the problem -- 8.2 Asymptotic solution of the problem -- 8.3 Many-body scattering problem equation for the effective field -- 8.4 Physical properties of the limiting medium -- 8.5 Summary of the results. 9. Heat transfer in a medium in which many small bodies are embedded -- 9.1 Introduction -- 9.2 Derivation of the equation for the limiting temperature -- 9.3 Various results -- 9.4 Summary of the results. 10. Quantum-mechanical wave scattering by many potentials with small support -- 10.1 Problem formulation -- 10.2 Proofs -- 10.3 Summary of the results. 11. Some results from the potential theory -- 11.1 Potentials of the simple and double layers -- 11.2 Replacement of the surface potentials -- 11.3 Asymptotic behavior of the solution to the Helmholtz equation under the impedance boundary condition -- 11.4 Some properties of the electrical capacitance -- 11.5 Summary of the results. 12. Collocation method -- 12.1 Convergence of the collocation method -- 12.2 Collocation method and homogenization -- 12.3 Summary of the results. 13. Some inverse problems related to small scatterers -- 13.1 Finding the position and size of a small body from the scattering data -- 13.2 Finding small subsurface inhomogeneities -- 13.3 Inverse radio measurements problem -- 13.4 Summary of the results. Appendix -- A1. Banach and Hilbert spaces -- A2. A result from perturbation theory -- A3. The Fredholm alternative -- Bibliographical notes -- Bibliography -- Index. |
ctrlnum | (OCoLC)865580197 |
dewey-full | 534.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 534 - Sound and related vibrations |
dewey-raw | 534.2 |
dewey-search | 534.2 |
dewey-sort | 3534.2 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>08070cam a2200949 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn865580197</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m eo d </controlfield><controlfield tag="007">cr cn||||m|||a</controlfield><controlfield tag="008">131218s2013 nyua foab 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">NYMPP</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">NYMPP</subfield><subfield code="d">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">UMI</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBBG</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">EBLCP</subfield><subfield code="d">IDEBK</subfield><subfield code="d">MHW</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UPM</subfield><subfield code="d">MERER</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">STF</subfield><subfield code="d">VTS</subfield><subfield code="d">LOA</subfield><subfield code="d">CUY</subfield><subfield code="d">ZCU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">ICG</subfield><subfield code="d">K6U</subfield><subfield code="d">VT2</subfield><subfield code="d">U3W</subfield><subfield code="d">CNCEN</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">G3B</subfield><subfield code="d">LVT</subfield><subfield code="d">S8J</subfield><subfield code="d">S9I</subfield><subfield code="d">TKN</subfield><subfield code="d">D6H</subfield><subfield code="d">DKC</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">UEJ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">861559782</subfield><subfield code="a">868236415</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781606506226</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1606506226</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781606506219</subfield><subfield code="q">(print)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1606506218</subfield><subfield code="q">(print)</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.5643/9781606506226</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)865580197</subfield><subfield code="z">(OCoLC)861559782</subfield><subfield code="z">(OCoLC)868236415</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">CL0500000358</subfield><subfield code="b">Safari Books Online</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QC243.3.S3</subfield><subfield code="b">R257 2013</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">001000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">534.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ramm, A. G.</subfield><subfield code="q">(Alexander G.),</subfield><subfield code="e">author.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJht6c7MRHvFtQDQJ4MVmd</subfield><subfield code="0">http://id.loc.gov/authorities/names/n80129782</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Scattering of acoustic and electromagnetic waves by small impedance bodies of arbitrary shapes :</subfield><subfield code="b">applications to creating new engineered materials /</subfield><subfield code="c">Alexander G. Ramm.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York [New York] (222 East 46th Street, New York, NY 10017) :</subfield><subfield code="b">Momentum Press,</subfield><subfield code="c">2013.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (1 PDF (xiii, 240 pages)) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from PDF title page (viewed December 18, 2013).</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 229-238) and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Preface -- Introduction.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1. Scalar wave scattering by one small body of an arbitrary shape -- 1.1 Impedance bodies -- 1.2 Acoustically soft bodies (the Dirichlet boundary condition) -- 1.3 Acoustically hard bodies (the Neumann boundary condition) -- 1.4 The interface (transmission) boundary condition -- 1.5 Summary of the results.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2. Scalar wave scattering by many small bodies of an arbitrary shape -- 2.1 Impedance bodies -- 2.2 The Dirichlet boundary condition -- 2.3 The Neumann boundary condition -- 2.4 The transmission boundary condition -- 2.5 Wave scattering in an inhomogeneous medium -- 2.6 Summary of the results.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3. Creating materials with a desired refraction coefficient -- 3.1 Scalar wave scattering. Formula for the refraction coefficient -- 3.2 A recipe for creating materials with a desired refraction coefficient -- 3.3 A discussion of the practical implementation of the recipe -- 3.4 Summary of the results.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4. Wave-focusing materials -- 4.1 What is a wave-focusing material? -- 4.2 Creating wave-focusing materials -- 4.3 Computational aspects of the problem -- 4.4 Open problems -- 4.5 Summary of the results.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5. Electromagnetic wave scattering by a single small body of an arbitrary shape -- 5.1 The impedance boundary condition -- 5.2 Perfectly conducting bodies -- 5.3 Formulas for the scattered field in the case of EM wave scattering by one impedance small body of an arbitrary shape -- 5.4 Summary of the results.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6. Many-body scattering problem in the case of small scatterers -- 6.1 Reduction of the problem to linear algebraic system -- 6.2 Derivation of the integral equation for the effective field -- 6.3 Summary of the results.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">7. Creating materials with a desired refraction coefficient -- 7.1 A formula for the refraction coefficient -- 7.2 Formula for the magnetic permeability -- 7.3 Summary of the results.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">8. Electromagnetic wave scattering by many nanowires -- 8.1 Statement of the problem -- 8.2 Asymptotic solution of the problem -- 8.3 Many-body scattering problem equation for the effective field -- 8.4 Physical properties of the limiting medium -- 8.5 Summary of the results.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">9. Heat transfer in a medium in which many small bodies are embedded -- 9.1 Introduction -- 9.2 Derivation of the equation for the limiting temperature -- 9.3 Various results -- 9.4 Summary of the results.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">10. Quantum-mechanical wave scattering by many potentials with small support -- 10.1 Problem formulation -- 10.2 Proofs -- 10.3 Summary of the results.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">11. Some results from the potential theory -- 11.1 Potentials of the simple and double layers -- 11.2 Replacement of the surface potentials -- 11.3 Asymptotic behavior of the solution to the Helmholtz equation under the impedance boundary condition -- 11.4 Some properties of the electrical capacitance -- 11.5 Summary of the results.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">12. Collocation method -- 12.1 Convergence of the collocation method -- 12.2 Collocation method and homogenization -- 12.3 Summary of the results.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">13. Some inverse problems related to small scatterers -- 13.1 Finding the position and size of a small body from the scattering data -- 13.2 Finding small subsurface inhomogeneities -- 13.3 Inverse radio measurements problem -- 13.4 Summary of the results.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Appendix -- A1. Banach and Hilbert spaces -- A2. A result from perturbation theory -- A3. The Fredholm alternative -- Bibliographical notes -- Bibliography -- Index.</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">In this book, mathematicians, engineers, physicists, and materials scientists will learn how to create material with a desired refraction coefficient. For example, how to create material with negative refraction or with desired wave-focusing properties. The methods for creating these materials are based on the many-body wave scattering theory developed by the author. The book offers new analytical formulas that allow one to calculate acoustic and electromagnetic waves, scattered by one and many small impedance bodies of an arbitrary shape under various boundary conditions. Equations for the effective (self-consistent) field in media consisting of many small impedance particles are derived. Numerical methods for solving many-body wave scattering problems are developed for small impedance scatterers.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Sound-waves</subfield><subfield code="x">Scattering.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85125408</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Electromagnetic waves</subfield><subfield code="x">Scattering.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85042182</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Scattering (Physics)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85118047</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Acoustic impedance.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85000579</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Ondes sonores</subfield><subfield code="x">Diffusion.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Ondes électromagnétiques</subfield><subfield code="x">Diffusion.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Diffusion (Physique nucléaire)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Impédance acoustique.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Acoustics & Sound.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Acoustic impedance</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Electromagnetic waves</subfield><subfield code="x">Scattering</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Scattering (Physics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Sound-waves</subfield><subfield code="x">Scattering</subfield><subfield code="2">fast</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Acoustic waves</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">electromagnetic eaves</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">eave scattering</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">small impedance bodies of an arbitrary shape</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">wave scattering by small impedance bodies of arbitrary shapes</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">creating materials with a desired refraction coefficient</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">meta-materials</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">nanowires</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">radio measurements</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">inverse problems</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="z">1606506218</subfield><subfield code="z">9781606506219</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-862</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=655414</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-863</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=655414</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="936" ind1=" " ind2=" "><subfield code="a">BATCHLOAD</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL1495935</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10810845</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">655414</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis26534967</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Momentum Press</subfield><subfield code="b">NYMP</subfield><subfield code="n">9781606506226</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">11311894</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-862</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn865580197 |
illustrated | Illustrated |
indexdate | 2025-03-18T14:21:31Z |
institution | BVB |
isbn | 9781606506226 1606506226 |
language | English |
oclc_num | 865580197 |
open_access_boolean | |
owner | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
owner_facet | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
physical | 1 online resource (1 PDF (xiii, 240 pages)) : illustrations |
psigel | ZDB-4-EBA FWS_PDA_EBA ZDB-4-EBA |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Momentum Press, |
record_format | marc |
spelling | Ramm, A. G. (Alexander G.), author. https://id.oclc.org/worldcat/entity/E39PBJht6c7MRHvFtQDQJ4MVmd http://id.loc.gov/authorities/names/n80129782 Scattering of acoustic and electromagnetic waves by small impedance bodies of arbitrary shapes : applications to creating new engineered materials / Alexander G. Ramm. New York [New York] (222 East 46th Street, New York, NY 10017) : Momentum Press, 2013. 1 online resource (1 PDF (xiii, 240 pages)) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Title from PDF title page (viewed December 18, 2013). Includes bibliographical references (pages 229-238) and index. Preface -- Introduction. 1. Scalar wave scattering by one small body of an arbitrary shape -- 1.1 Impedance bodies -- 1.2 Acoustically soft bodies (the Dirichlet boundary condition) -- 1.3 Acoustically hard bodies (the Neumann boundary condition) -- 1.4 The interface (transmission) boundary condition -- 1.5 Summary of the results. 2. Scalar wave scattering by many small bodies of an arbitrary shape -- 2.1 Impedance bodies -- 2.2 The Dirichlet boundary condition -- 2.3 The Neumann boundary condition -- 2.4 The transmission boundary condition -- 2.5 Wave scattering in an inhomogeneous medium -- 2.6 Summary of the results. 3. Creating materials with a desired refraction coefficient -- 3.1 Scalar wave scattering. Formula for the refraction coefficient -- 3.2 A recipe for creating materials with a desired refraction coefficient -- 3.3 A discussion of the practical implementation of the recipe -- 3.4 Summary of the results. 4. Wave-focusing materials -- 4.1 What is a wave-focusing material? -- 4.2 Creating wave-focusing materials -- 4.3 Computational aspects of the problem -- 4.4 Open problems -- 4.5 Summary of the results. 5. Electromagnetic wave scattering by a single small body of an arbitrary shape -- 5.1 The impedance boundary condition -- 5.2 Perfectly conducting bodies -- 5.3 Formulas for the scattered field in the case of EM wave scattering by one impedance small body of an arbitrary shape -- 5.4 Summary of the results. 6. Many-body scattering problem in the case of small scatterers -- 6.1 Reduction of the problem to linear algebraic system -- 6.2 Derivation of the integral equation for the effective field -- 6.3 Summary of the results. 7. Creating materials with a desired refraction coefficient -- 7.1 A formula for the refraction coefficient -- 7.2 Formula for the magnetic permeability -- 7.3 Summary of the results. 8. Electromagnetic wave scattering by many nanowires -- 8.1 Statement of the problem -- 8.2 Asymptotic solution of the problem -- 8.3 Many-body scattering problem equation for the effective field -- 8.4 Physical properties of the limiting medium -- 8.5 Summary of the results. 9. Heat transfer in a medium in which many small bodies are embedded -- 9.1 Introduction -- 9.2 Derivation of the equation for the limiting temperature -- 9.3 Various results -- 9.4 Summary of the results. 10. Quantum-mechanical wave scattering by many potentials with small support -- 10.1 Problem formulation -- 10.2 Proofs -- 10.3 Summary of the results. 11. Some results from the potential theory -- 11.1 Potentials of the simple and double layers -- 11.2 Replacement of the surface potentials -- 11.3 Asymptotic behavior of the solution to the Helmholtz equation under the impedance boundary condition -- 11.4 Some properties of the electrical capacitance -- 11.5 Summary of the results. 12. Collocation method -- 12.1 Convergence of the collocation method -- 12.2 Collocation method and homogenization -- 12.3 Summary of the results. 13. Some inverse problems related to small scatterers -- 13.1 Finding the position and size of a small body from the scattering data -- 13.2 Finding small subsurface inhomogeneities -- 13.3 Inverse radio measurements problem -- 13.4 Summary of the results. Appendix -- A1. Banach and Hilbert spaces -- A2. A result from perturbation theory -- A3. The Fredholm alternative -- Bibliographical notes -- Bibliography -- Index. In this book, mathematicians, engineers, physicists, and materials scientists will learn how to create material with a desired refraction coefficient. For example, how to create material with negative refraction or with desired wave-focusing properties. The methods for creating these materials are based on the many-body wave scattering theory developed by the author. The book offers new analytical formulas that allow one to calculate acoustic and electromagnetic waves, scattered by one and many small impedance bodies of an arbitrary shape under various boundary conditions. Equations for the effective (self-consistent) field in media consisting of many small impedance particles are derived. Numerical methods for solving many-body wave scattering problems are developed for small impedance scatterers. Sound-waves Scattering. http://id.loc.gov/authorities/subjects/sh85125408 Electromagnetic waves Scattering. http://id.loc.gov/authorities/subjects/sh85042182 Scattering (Physics) http://id.loc.gov/authorities/subjects/sh85118047 Acoustic impedance. http://id.loc.gov/authorities/subjects/sh85000579 Ondes sonores Diffusion. Ondes électromagnétiques Diffusion. Diffusion (Physique nucléaire) Impédance acoustique. SCIENCE Acoustics & Sound. bisacsh Acoustic impedance fast Electromagnetic waves Scattering fast Scattering (Physics) fast Sound-waves Scattering fast Acoustic waves electromagnetic eaves eave scattering small impedance bodies of an arbitrary shape wave scattering by small impedance bodies of arbitrary shapes creating materials with a desired refraction coefficient meta-materials nanowires radio measurements inverse problems Print version: 1606506218 9781606506219 |
spellingShingle | Ramm, A. G. (Alexander G.) Scattering of acoustic and electromagnetic waves by small impedance bodies of arbitrary shapes : applications to creating new engineered materials / Preface -- Introduction. 1. Scalar wave scattering by one small body of an arbitrary shape -- 1.1 Impedance bodies -- 1.2 Acoustically soft bodies (the Dirichlet boundary condition) -- 1.3 Acoustically hard bodies (the Neumann boundary condition) -- 1.4 The interface (transmission) boundary condition -- 1.5 Summary of the results. 2. Scalar wave scattering by many small bodies of an arbitrary shape -- 2.1 Impedance bodies -- 2.2 The Dirichlet boundary condition -- 2.3 The Neumann boundary condition -- 2.4 The transmission boundary condition -- 2.5 Wave scattering in an inhomogeneous medium -- 2.6 Summary of the results. 3. Creating materials with a desired refraction coefficient -- 3.1 Scalar wave scattering. Formula for the refraction coefficient -- 3.2 A recipe for creating materials with a desired refraction coefficient -- 3.3 A discussion of the practical implementation of the recipe -- 3.4 Summary of the results. 4. Wave-focusing materials -- 4.1 What is a wave-focusing material? -- 4.2 Creating wave-focusing materials -- 4.3 Computational aspects of the problem -- 4.4 Open problems -- 4.5 Summary of the results. 5. Electromagnetic wave scattering by a single small body of an arbitrary shape -- 5.1 The impedance boundary condition -- 5.2 Perfectly conducting bodies -- 5.3 Formulas for the scattered field in the case of EM wave scattering by one impedance small body of an arbitrary shape -- 5.4 Summary of the results. 6. Many-body scattering problem in the case of small scatterers -- 6.1 Reduction of the problem to linear algebraic system -- 6.2 Derivation of the integral equation for the effective field -- 6.3 Summary of the results. 7. Creating materials with a desired refraction coefficient -- 7.1 A formula for the refraction coefficient -- 7.2 Formula for the magnetic permeability -- 7.3 Summary of the results. 8. Electromagnetic wave scattering by many nanowires -- 8.1 Statement of the problem -- 8.2 Asymptotic solution of the problem -- 8.3 Many-body scattering problem equation for the effective field -- 8.4 Physical properties of the limiting medium -- 8.5 Summary of the results. 9. Heat transfer in a medium in which many small bodies are embedded -- 9.1 Introduction -- 9.2 Derivation of the equation for the limiting temperature -- 9.3 Various results -- 9.4 Summary of the results. 10. Quantum-mechanical wave scattering by many potentials with small support -- 10.1 Problem formulation -- 10.2 Proofs -- 10.3 Summary of the results. 11. Some results from the potential theory -- 11.1 Potentials of the simple and double layers -- 11.2 Replacement of the surface potentials -- 11.3 Asymptotic behavior of the solution to the Helmholtz equation under the impedance boundary condition -- 11.4 Some properties of the electrical capacitance -- 11.5 Summary of the results. 12. Collocation method -- 12.1 Convergence of the collocation method -- 12.2 Collocation method and homogenization -- 12.3 Summary of the results. 13. Some inverse problems related to small scatterers -- 13.1 Finding the position and size of a small body from the scattering data -- 13.2 Finding small subsurface inhomogeneities -- 13.3 Inverse radio measurements problem -- 13.4 Summary of the results. Appendix -- A1. Banach and Hilbert spaces -- A2. A result from perturbation theory -- A3. The Fredholm alternative -- Bibliographical notes -- Bibliography -- Index. Sound-waves Scattering. http://id.loc.gov/authorities/subjects/sh85125408 Electromagnetic waves Scattering. http://id.loc.gov/authorities/subjects/sh85042182 Scattering (Physics) http://id.loc.gov/authorities/subjects/sh85118047 Acoustic impedance. http://id.loc.gov/authorities/subjects/sh85000579 Ondes sonores Diffusion. Ondes électromagnétiques Diffusion. Diffusion (Physique nucléaire) Impédance acoustique. SCIENCE Acoustics & Sound. bisacsh Acoustic impedance fast Electromagnetic waves Scattering fast Scattering (Physics) fast Sound-waves Scattering fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85125408 http://id.loc.gov/authorities/subjects/sh85042182 http://id.loc.gov/authorities/subjects/sh85118047 http://id.loc.gov/authorities/subjects/sh85000579 |
title | Scattering of acoustic and electromagnetic waves by small impedance bodies of arbitrary shapes : applications to creating new engineered materials / |
title_auth | Scattering of acoustic and electromagnetic waves by small impedance bodies of arbitrary shapes : applications to creating new engineered materials / |
title_exact_search | Scattering of acoustic and electromagnetic waves by small impedance bodies of arbitrary shapes : applications to creating new engineered materials / |
title_full | Scattering of acoustic and electromagnetic waves by small impedance bodies of arbitrary shapes : applications to creating new engineered materials / Alexander G. Ramm. |
title_fullStr | Scattering of acoustic and electromagnetic waves by small impedance bodies of arbitrary shapes : applications to creating new engineered materials / Alexander G. Ramm. |
title_full_unstemmed | Scattering of acoustic and electromagnetic waves by small impedance bodies of arbitrary shapes : applications to creating new engineered materials / Alexander G. Ramm. |
title_short | Scattering of acoustic and electromagnetic waves by small impedance bodies of arbitrary shapes : |
title_sort | scattering of acoustic and electromagnetic waves by small impedance bodies of arbitrary shapes applications to creating new engineered materials |
title_sub | applications to creating new engineered materials / |
topic | Sound-waves Scattering. http://id.loc.gov/authorities/subjects/sh85125408 Electromagnetic waves Scattering. http://id.loc.gov/authorities/subjects/sh85042182 Scattering (Physics) http://id.loc.gov/authorities/subjects/sh85118047 Acoustic impedance. http://id.loc.gov/authorities/subjects/sh85000579 Ondes sonores Diffusion. Ondes électromagnétiques Diffusion. Diffusion (Physique nucléaire) Impédance acoustique. SCIENCE Acoustics & Sound. bisacsh Acoustic impedance fast Electromagnetic waves Scattering fast Scattering (Physics) fast Sound-waves Scattering fast |
topic_facet | Sound-waves Scattering. Electromagnetic waves Scattering. Scattering (Physics) Acoustic impedance. Ondes sonores Diffusion. Ondes électromagnétiques Diffusion. Diffusion (Physique nucléaire) Impédance acoustique. SCIENCE Acoustics & Sound. Acoustic impedance Electromagnetic waves Scattering Sound-waves Scattering |
work_keys_str_mv | AT rammag scatteringofacousticandelectromagneticwavesbysmallimpedancebodiesofarbitraryshapesapplicationstocreatingnewengineeredmaterials |